
Casado-García et al. BMC Bioinformatics (2019) 20:323

https://doi.org/10.1186/s12859-019-2931-1

SOFTWARE Open Access

CLoDSA: a tool for augmentation in
classification, localization, detection,
semantic segmentation and instance
segmentation tasks
Ángela Casado-García, César Domínguez, Manuel García-Domínguez, Jónathan Heras* , Adrián Inés,
Eloy Mata and Vico Pascual

Abstract

Background: Deep learning techniques have been successfully applied to bioimaging problems; however, these
methods are highly data demanding. An approach to deal with the lack of data and avoid overfitting is the application
of data augmentation, a technique that generates new training samples from the original dataset by applying
different kinds of transformations. Several tools exist to apply data augmentation in the context of image classification,
but it does not exist a similar tool for the problems of localization, detection, semantic segmentation or instance
segmentation that works not only with 2 dimensional images but also with multi-dimensional images (such as stacks
or videos).

Results: In this paper, we present a generic strategy that can be applied to automatically augment a dataset of
images, or multi-dimensional images, devoted to classification, localization, detection, semantic segmentation or
instance segmentation. The augmentation method presented in this paper has been implemented in the open-source
package CLoDSA. To prove the benefits of using CLoDSA, we have employed this library to improve the accuracy of
models for Malaria parasite classification, stomata detection, and automatic segmentation of neural structures.

Conclusions: CLoDSA is the first, at least up to the best of our knowledge, image augmentation library for object
classification, localization, detection, semantic segmentation, and instance segmentation that works not only with 2
dimensional images but also with multi-dimensional images.

Keywords: Data augmentation, Classification, Detection, Segmentation, Multi-dimensional images

Background
Deep learning techniques are currently the state of the art

approach to deal with bioimaging problems [1, 2]. How-

ever, these methods usually require a lot of data to work

properly, and this might be a challenge in the bioimaging

context. First of all, acquiring new data in problems related

to, for instance, object recognition in biomedical images

might be difficult [3–5]. Moreover, once the images have

been acquired, they must be manually annotated, a task

*Correspondence: jonathan.heras@unirioja.es
Department of Mathematics and Computer Science, University of La Rioja, Ed.
CCT. C/ Madre de Dios 53, 26006 Logroño, Spain

that is time-consuming and requires experts in the field to

conduct it correctly [6].

A successful method that has been applied to deal with

the problem of limited amount of data is data augmen-

tation [7, 8]. This technique consists in generating new

training samples from the original dataset by applying

transformations that do not alter the class of the data. This

method has been successfully applied in several contexts

such as brain electron microscopy image segmentation

[9], melanoma detection [3], or the detection of gastroin-

testinal diseases from endoscopical images [5]. Due to this

fact, several libraries, like Augmentor [10] or Imgaug [11],

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2931-1&domain=pdf
http://orcid.org/0000-0003-4775-1306
mailto: jonathan.heras@unirioja.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Casado-García et al. BMC Bioinformatics (2019) 20:323 Page 2 of 14

and deep learning frameworks, like Keras [12] or Tensor-

flow [13], provide features for data augmentation in the

context of object classification.

In general, those augmentation libraries have not been

designed to deal with four common tasks in bioimag-

ing problems: object localization (the identification of the

position of an object in an image), object detection (the

identification of the position of multiple objects in an

image), semantic segmentation (predicting the class of

each pixel of the image), and instance segmentation (gen-

erating a pixel-wise mask for every object in the image).

These four problems can also take advantage from data

augmentation [9, 14]; but, at least up to the best of our

knowledge, it does not exist a general purpose library that

can be applied to those problems and works with the stan-

dard annotation formats. This is probably due to the fact

that, in the classification context, transformation tech-

niques for image augmentation do not generally change

the class of an image, but they might alter the annotation

in the other four problems. For instance, applying the ver-

tical flip operation to a melanoma image does not change

the class of the image; but the position of the melanoma in

the new image has changed from the original image. This

means that, for each specific problem, special purpose

methods must be implemented, or artificially generated

images must be manually annotated. Neither of these two

solutions is feasible when dealing with hundreds or thou-

sands of images. In addition, augmentation libraries focus

on datasets of 2 dimensional (2D) images, but do not

deal with multi-dimensional images (such as z-stacks or

videos).

In this paper, we present a generic method, see

“Methods” section, that can be applied to automatically

augment a dataset of images devoted to classification,

localization, detection, semantic segmentation, and

instance segmentation using the classical image

augmentation transformations applied in object recog-

nition; moreover, this method can be also applied to

multi-dimensional images. Such a method has been

implemented in an open-source library called CLoDSA

that is introduced in “Implementation” section — the

library, together with several examples and the docu-

mentation, is available at https://github.com/joheras/

CLoDSA. We show the benefits of using CLoDSA

when training models for different kinds of problems

in “Results” section, and compare this library with other

augmentation libraries in “Discussion” section. The paper

ends with a section of conclusions and further work.

Methods
In this section, we present an approach to augment images

for the problems of object classification, localization,

detection, semantic segmentation and instance segmen-

tation. First of all, it is important to understand how the

images are annotated in each of these five problems. In the

case of object classification, each image is labeled with a

prefixed category; for object localization, the position of

the object in the image is provided using the bounding box

(that is, the minimum rectangle containing the object); for

object detection, a list of bounding boxes and the category

of the objects inside those boxes are given; in semantic

segmentation, each pixel of the image is labeled with the

class of its enclosing object; and, finally in instance seg-

mentation, each pixel of the image is labeled with the

class of its enclosing object and objects of the same class

are distinguished among them. An example of each kind

of annotation is provided in Fig. 1. It is worth noting

that, instance segmentation is the most general case, and

the other problems can be seen as particular cases of

such a problem; however, special purpose techniques and

annotation formats have been developed to tackle each

problem; and, therefore, we consider them separately.

Image augmentation for object classification is the

simplest case. This task consists in specifying a set of

transformations for which an image classification prob-

lem is believed to be invariant; that is, transformations

that do not change the class of the image. It is impor-

tant to notice that image-augmentation techniques are

problem-dependent and some transformations should

not be applied; for example, applying a 180° rotation

to an image of the digit “6” changes its class to the

digit “9”.

In the literature, the most commonly chosen image

augmentation techniques for object classification are geo-

metric transformations (such as translations, rotations,

or scaling), color transformations (for instance, chang-

ing the color palette of the image or normalizing the

image), filters (for example, Gaussian or median fil-

ters), and elastic distortions [8]. Other more specific

techniques such as Generative Adversarial Networks

(GANs) [15] have been also applied for image aug-

mentation in object classification [16]; however, we will

not consider GANs in our work since they cannot be

directly applied for image augmentation in the other four

problems.

For image augmentation in localization, detection, seg-

mentation, and instance segmentation, we consider the

classical image augmentation techniques applied in object

classification, and split them into two categories. The for-

mer category consists of the techniques that leave invari-

ant the position of the objects in the image; for example,

changing the color palette of the image does not modify

the position of an object. On the contrary, techniques that

modify the position of the image belong to the latter cat-

egory; for instance, rotation and translation belong to this

category. A list of all the transformations that have been

considered in this work, and their corresponding category,

is available in Table 1.

https://github.com/joheras/CLoDSA
https://github.com/joheras/CLoDSA

Casado-García et al. BMC Bioinformatics (2019) 20:323 Page 3 of 14

Fig. 1 Examples of annotations, from left to right, for classification, localization, detection, semantic segmentation, and instance segmentation.
Images obtained from the Oxford-IIIT Pet Dataset [17] which are available under a Creative Commons Attribution-ShareAlike 4.0 International License

Image augmentation for localization, detection, seg-

mentation, and instance segmentation using the tech-

niques from the “invariant” category consists in applying

the technique to the image and returning the resulting

image and the original annotation as result. The rest of

this section is devoted to explain, for each problem, how

the annotation can be automatically generated for the

techniques of the “variant” category.

In the case of object localization, the first step to auto-

matically generate the label from an annotated image con-

sists in generating a mask from the annotated bounding

box — i.e. a black image with a white rectangle indicating

the position of the object. Subsequently, the transformation

Table 1 List of considered augmentation techniques

Position invariant techniques Position variant techniques

Average blur Crop

Bilateral blur Elastic deformation

Brightness noising Flip

Color noising Rescale

Contrast noising Rotation

Dropout Skewing

Gamma correction Translation

Gaussian blur

Gaussian noise

Hue jitter

Median blur

Normalization

Random erasing

Salt and pepper

Saturation jitter

Sharpen

Value jitter

Channel shift

Lightning

Change space color

technique is applied to both the original image and the

generated mask. Afterwards, from the transformed mask,

the white region is simply located using basic contours

properties, and the bounding box of the region is obtained

— some transformations might generate a really small

bounding box, or produce an image without bounding box

at all since it will be located outside the boundaries of the

image; to avoid that problem, a minimum percentage is

required to keep the image; otherwise, the image is dis-

carded. Finally, the transformed image is combined with

the resulting bounding box to obtain the new annotated

image. This process is depicted in Fig. 2 using as example

the horizontal flip operation.

The procedure for image augmentation in object detec-

tion relies on themethod explained for object localization.

Namely, the only difference is that instead of generating a

unique mask, a list of masks is generated for each bound-

ing box of the list of annotations. The rest of the procedure

is the same, see Fig. 3 using as example the translation

operation.

In the semantic segmentation problem, given an image

I, each pixel I(i,j) of the image — i.e. the pixel of row i

and column j of I — is labeled with the class of its enclos-

ing object, this annotation is usually provided by means

of an image A of the same size as the original image,

where A(i,j) provides the category of the pixel I(i,j), and

where each pixel category is given by a different value. In

this case, the idea to automatically generate a new anno-

tated image consists in applying the same transformation

to the original and the annotation image, the result will

be the combination of the two transformed images, see

Fig. 4 where this procedure is shown using the rotation

operation.

Finally, we present the procedure for the instance seg-

mentation problem. The idea is similar to the method

explained for object detection. A mask is generated for

each instance of the image. Subsequently, the transforma-

tion technique is applied to both the original image and

the generated masks. Afterwards, from the transformed

masks, the new instances are obtained. This process is

depicted in Fig. 5.

Casado-García et al. BMC Bioinformatics (2019) 20:323 Page 4 of 14

Fig. 2 Process to automatically label augmented images for the localization problem: (1) generation of the mask, (2) application of the
transformation operation (horizontal flip) to both the mask and the original image, and (3) combination of the bounding box containing the new
mask and the transformed image

The aforementioned procedures are focused on 2D

images, but they can also be applied to multi-dimensional

images that can be decomposed as a collection of images

— this includes z-stacks and videos among others. The

method consists in decomposing the multi-dimensional

image into a collection of 2D images, applying the cor-

responding procedure, and finally combining back the

resulting images into a multi-dimensional image.

Implementation
The techniques presented in the previous section have

been implemented as an open-source library called

CLoDSA (that stands for Classification, Localization,

Detection, Segmentation Augmentor). CLoDSA is imple-

mented in Python and relies on OpenCV [18] and SciPy

[19] to deal with the different augmentation techniques.

The CLoDSA library can be used in any operating system,

and it is also independent from any particular machine

learning framework.

CLoDSA configuration

CLoDSA augmentation procedure is flexible to adapt to

different needs and it is based on six parameters: the

dataset of images, the kind of problem, the input anno-

tation mode, the output annotation mode, the generation

mode, and the techniques to be applied. The dataset of

Fig. 3 Process to automatically label augmented images for the detection problem: (1) generation of the masks, (2) application of the
transformation operation (translation) to the masks and the original image, and (3) combination of the new masks and the transformed image

Casado-García et al. BMC Bioinformatics (2019) 20:323 Page 5 of 14

Fig. 4 Process to automatically label augmented images for the semantic segmentation problem. From the original image (top left) and the
annotation image (bottom left), two new images are generated by applying the transformation (in this case a 90◦ rotation) to both of them (top
right and bottom right images). Images obtained from [20], these images are available under a Attribution-NonCommercial 3.0 Unported licence

Fig. 5 Process to automatically label augmented images for the instance segmentation problem. From the original annotated image (left), (1) the
original image and a mask for each instance is obtained; (2) a vertical flip is applied to each image; and (3) the images are combined

Casado-García et al. BMC Bioinformatics (2019) 20:323 Page 6 of 14

images is given by the path where the images are located;

and the kind of problem is either classification, local-

ization, detection, segmentation, instance segmentation,

stack classification, stack detection, or stack segmentation

(the former five can be applied to datasets of 2D images,

and the latter 3 to datasets of multi-dimensional images).

The other four parameters and how they are managed in

CLoDSA deserve a more detailed explanation.

The input annotation mode refers to the way of pro-

viding the labels for the images. CLoDSA supports the

most-widely employed formats for annotating classifica-

tion, localization, detection, semantic and instance seg-

mentation tasks. For example, for object classification

problems, the images can be organized by folders, and the

label of an image be given by the name of the containing

folder; another option for object classification labels is a

spreadsheet with two columns that provide, respectively,

the path of the image and the label; for object localization

and detection there are several formats to annotate images

such as the PASCAL VOC format [21] or the OpenCV

format [22]; for semantic segmentation, the annotation

images can be given in a devoted folder or in the same

folder as the images; and, for instance segmentation, the

COCO format is usually employed [23]. CLoDSA has

been designed to manage different alternatives for the dif-

ferent problems, and can be easily extended to include

new input modes that might appear in the future. To this

aim, several design patterns, like the Factory pattern [24],

and software engineering principles, such as dependency

inversion or open/closed [25], have been applied. The list

of input formats supported by CLoDSA for each kind of

problem is given in Table 2— a detailed explanation of the

process to include new formats is provided in the project

webpage.

The output annotation mode indicates the way of stor-

ing the augmented images and their annotations. The

first option can be as simple as using the same format

or approach used to input the annotations. However, this

might have the drawback of storing a large amount of

images in the hard drive. To deal with this problem, it

can be useful to store the augmented dataset using the

standard Hierarchical Data Format (HDF5) [26] — a for-

mat designed to store and organize large amounts of

data. Another approach to tackle the storage problem, and

since the final aim of data augmentation is the use of the

augmented images to train a model, consists in directly

feeding the augmented images as batches to the model, as

done for instance in Keras [12]. CLoDSA features these

three approaches, and has been designed to easily include

new methods in the future. The complete list of output

formats supported by CLoDSA is given in Table 2.

The generation mode indicates how the augmentation

techniques will be applied. Currently, there are only two

possible modes: linear and power — in the future, new

modes can be included. In the linear mode, given a dataset

of n images, and a list ofm augmentation techniques, each

technique is applied to the n images producing at most

n × m images. The power mode is a pipeline approach

Table 2 List of supported annotation formats

Data Problem Input format Output format

2D Images Classification A folder for each class of image A folder for each class of image

An HDF5 file [26]

A Keras generator [12]

Localization Pascal VOC format [21] Pascal VOC format

An HDF5 file

Detection Pascal VOC format Pascal VOC format

YOLO format [27] YOLO format

Segmentation A folder containing the images
and their associated masks

A folder containing the images
and their associated masks

An HDF5 file

A Keras generator

Instance
segmentation

COCO format [23] COCO format

JSON format from ImageJ JSON format from ImageJ

Multi-
dimensional
Images

Video Classification A folder for each class of video A folder for each class of video

Video Detection Youtube BB format [28] Youtube BB format

Stack segmentation Pairs of tiff files containing the
stack and the associated mask

Pairs of tiff files containing the
stack and the associated mask

Casado-García et al. BMC Bioinformatics (2019) 20:323 Page 7 of 14

where augmentation techniques are chained together. In

this approach, the images produced in one step of the

pipeline are added to the dataset that will be fed in the

next step of the pipeline producing a total of (2m − 1) × n

new images (where n is the size of the original dataset and

m is the cardinal of the set of techniques of the pipeline).

Finally, the last but not least important parameter is the

set of augmentation techniques to apply— the list of tech-

niques available in CLoDSA is given in Table 1, and amore

detailed explanation of the techniques and the parame-

ters to configure them is provided in the project webpage.

Depending on the particular problem, the CLoDSA users

can select the techniques that are more fitted for their

needs.

The CLoDSA architecture

In order to implement themethods presented in “Methods”

section, we have followed a common pattern applicable to

all the cases: the Dependency Inversion pattern [24]. We

can distinguished three kind of classes in our architecture:

technique classes, that implement the augmentation tech-

niques; transformer classes, that implement the different

strategies presented in “Methods” section; and augmentor

classes, that implement the functionality to read and save

images and annotations in different formats. We explain

the design of these classes as follows.

We have first defined an abstract class called Technique

with two abstract subclasses called PositionVariantTech-

nique and PositionInvariantTechnique — to indicate

whether the technique belongs to the position vari-

ant or invariant class — and with an abstract method

called apply, that given an image produces a new

image after applying the transformation technique. Sub-

sequently, we have implemented the list of techniques

presented in Table 1 as classes that extend either the

PositionVariantTechnique or the PositionInvariantTech-

nique class, see Fig. 6.

Subsequently, we have defined a generic abstract class

[29] called Transformer< T1,T2 >, where T1 represents

the type of data (2D or multi-dimensional images) to be

transformed, and T2 represents the type of the annotation

for T1; for example, a box or a mask — the concrete types

are fixed in the concrete classes extending the abstract

class. This abstract class has two parameters, an object

of type Technique, and a function f from label to label;

and an abstract method called transform that given a

pair (T1,T2) (for instance, in object detection, an image

and a list of boxes indicating the position of the objects

in the image) produces a new pair (T1,T2) using one

of the augmentation strategies presented in “Methods”

section — the strategy is implemented in the subclasses

of the Transformer< T1,T2 > class. The purpose of

the function f is to allow the transform method to not

only change the position of the annotations but also their

associated class. As we have previously mentioned, in

general, data augmentation procedures apply techniques

that do not change the class of the objects of the image;

but there are cases when the transformation technique

changes the class (for instance, if we have a dataset of

images annotated with two classes, people looking to the

left and people looking to the right, applying a verti-

cal flip changes the class); the function f encodes that

modification — by default, this function is defined as

the identity function. This part or the architecture is

depicted in Fig. 7.

Finally, we have defined an interface called IAug-

mentor that has three methods addTransformer, read-

DataAndAnnotations, and applyAugmentation; see Fig. 8.

The classes implementing this interface are in charge

of reading the data and annotations in a concrete for-

mat (using the readDataAndAnnotations), applying the

augmentation (by means of the applyAugmentation and

using objects of the class Transformer injected using

the addTransformer method), and storing the result —

the input and output format available are indicated in

Table 2. In order to ensure that the different objects of the

architecture are constructed properly (that is, satisfying

the required dependencies) the Factory pattern has been

employed [24].

Therefore, using this approach, the functionality of

CLoDSA can be easily extended in several ways. It is pos-

sible to add new augmentation techniques by adding new

classes that extend the Technique class. Moreover, we can

also extend the kinds of problems that can be tackled in

CLoDSA by adding new classes that extend the Trans-

former class. Finally, we canmanage new input/output for-

mats by providing classes that implement the IAugmentor

interface. Several examples showing how to include new

functionality in CLoDSA can be found in the project

webpage.

Using CLoDSA

We finish this section by explaining the different modes

of using CLoDSA. This library can be employed by both

expert and non-expert users.

First of all, users that are used to work with Python

libraries can import CLoDSA as any other library and

use it directly in their own projects. Several examples

of how the library can be imported and employed are

provided in the project webpage. This kind of users can

extend CLoDSA with new augmentation techniques eas-

ily. The second, and probably the most common, kind

of CLoDSA’s users are researchers that know how to

employ Python but do not want to integrate CLoDSAwith

their own code. In this case, we have provided several

Jupyter notebooks to illustrate how to employ CLoDSA

for data augmentation in several contexts — again the

notebooks are provided in the project webpage and also as

Casado-García et al. BMC Bioinformatics (2019) 20:323 Page 8 of 14

Fig. 6 Simplification of the CLoDSA UML diagram for augmentation techniques

supplementary materials. An example of this interaction

is provided in Appendix A.

CLoDSA can be also employed without any knowl-

edge of Python. To this aim, CLoDSA can be executed

as a command line program that can be configured

by means of a JavaScript Object Notation (JSON) file

[30]. Therefore, users who know how to write JSON

files can employ this approach. Finally, and due to the

fact that the creation of a JSON file might be a chal-

lenge for some users since there is a great variety of

options to configure the library; we have created a step-

by-step Java wizard that guides the user in the process of

creating the JSON file and invoking the CLoDSA library.

In this way, the users, instead of writing a JSON file, select

in a simple graphical user interface the different options

for augmenting their dataset of images, and the wizard is

in charge of generating the JSON file and executing the

augmentation procedure. Besides, since new configura-

tion options might appear in the future for CLoDSA, the

Java wizard can include those options by modifying a con-

figuration file — this avoids the issue of modifying the

Java wizard every time that a new option is included in

CLoDSA.

Results
To show the benefits of applying data augmentation using

CLoDSA, we consider three different bioimaging datasets

as case studies.

Malaria parasite classification

The first case study focuses on an image classification

problem. To this aim, we consider the classification of

Malaria images [31], where images are labelled as par-

asitized or uninfected; and, we analyse the impact of

Fig. 7 Simplification of the CLoDSA UML diagram for transformers

Casado-García et al. BMC Bioinformatics (2019) 20:323 Page 9 of 14

Fig. 8 Simplification of the CLoDSA UML diagram for augmentors

applying data augmentation when constructing models

that employ transfer-learning [32].

Transfer learning is a deep learning technique that con-

sists in partially re-using a deep learning model trained

in a source task in a new target task. In our case, we

consider 7 publicly available networks trained on the Ima-

geNet challenge [33] (the networks are GoogleNet [34],

Inception v3 [35], OverFeat [36], Resnet 50 [37], VGG16

[38], VGG19 [38], and Xception v1 [39]) and use them

as feature extractors to construct classification models

for the Malaria dataset. For each feature extractor net-

work, we consider 4 datasets: D1 is the original dataset

that consists of 1000 images (500 images per class); D2

was generated from D1 by applying flips and rotations

(D2 consists of 5000 images, the original 1000 images

and 4000 generated images); D3 was generated from D1

by applying gamma correction and equalisation of his-

tograms (D3 consists of 3000 images, the original 1000

images and 2000 generated images); and, D4 is the com-

bination of D2 and D3 (D4 consists of 7000 images, the

original 1000 images and 6000 generated images). In order

to evaluate the accuracy of the models, a stratified 5-fold

cross-validation approach was employed using the FrIm-

Cla framework [40] (a tool for constructing image classifi-

cation models using transfer learning), and the results are

shown in Fig. 9.

As can be seen in the scatter plot of Fig. 9, the accu-

racy of the models constructed for each feature extractor

method increases when data augmentation is applied. The

improvement ranges from a 0.4% up to a 6.5%; and, there

is only one case where applying data augmentation has a

negative impact on the accuracy of the model. Moreover,

we can notice that we obtain better models only apply-

ing flips and rotations (dataset D2) than using a bigger

dataset where we have applied not only flips and rota-

tions but also color transformations (dataset D4). This

indicates the importance of correctly selecting the set

of data augmentation techniques — an active research

area [41–43].

Stomata detection

In the second example, we illustrate how CLoDSA can

be employed to augment a dataset of images devoted to

object detection, and the improvements that are achieved

thanks to such an augmentation. In particular, we have

trained different models using the YOLO algorithm [27]

to detect stomata in images of plant leaves — stomata

are the pores on the plant leaf that allow the exchange

of gases.

For this case study, we have employed a dataset of 131

stomata images that was split into a training set of 100

images (from now on D1), and a test set of 31 images.

The dataset D1 was augmented using three approaches:

applying different kinds of flips (this dataset is called

D2 and contains 400 images); applying blurring, equali-

sation of histograms and gamma correction (this dataset

is called D3 and contains 400 images); and, combin-

ing D2 and D3 (this dataset is called D4 and contains

700 images).

Using each one of the four datasets, a YOLO model

was trained for 100 epochs; and, the performance of those

models in the test set, and using different metrics, is

shown in Table 3. As can be seen in that table, the mod-

els that are built using the augmented datasets produce

much better results. In particular, the precision is simi-

lar in all the models, but the recall and F1-score of the

augmented datasets are clearly higher (for instance, the

F1-score goes from 75% in the original dataset to 97%

in D3). As in the previous case study, one of the models

constructed from smaller datasets (namely, D3) produces

better results that the one built with a bigger dataset (D4).

This again shows the importance of having a library that

easily allows to generate different datasets of augmented

images.

Casado-García et al. BMC Bioinformatics (2019) 20:323 Page 10 of 14

Fig. 9 Scatter plot showing the accuracy of the models constructed for the different versions of the Malaria dataset (where D1 is the original dataset;
and D2 , D3 and D4 are the augmented datasets) using different feature extractor methods

Semantic segmentation of neural structures

Finally, we show how CLoDSA can improve results in

semantic segmentation tasks. In particular, we tackle the

automatic segmentation of neural structures using the

dataset from the ISBI challenge [44]. In this challenge,

the dataset consists of 30 images (512 × 512 pixels)

from serial section transmission electron microscopy of

the Drosophila first instar larva ventral nerve cord. Each

image is annotated with a ground truth segmentation

mask where white pixels represents cells and black pixels

membranes.

Table 3 Results using YOLO models trained with different
datasets (D1 is the original dataset, D2 is D1 augmented using
flips; D3 is D1 augmented using blurring, gamma correction and
equalisation; and D4 is the combination of D2 and D3) for the
stomata dataset

Precision Recall F1-score TP FP FN IoU

D1 0.97 0.61 0.75 591 21 374 0.75

D2 0.97 0.88 0.92 852 26 113 0.81

D3 0.95 1.00 0.97 961 52 4 0.79

D4 0.99 0.90 0.94 869 12 96 0.83

From the dataset of 30 images, we split the dataset into a

training set containing 20 images (we call this dataset D1),

and a test set with the remaining images. We augmented

the datasetD1 using CLoDSA in three different ways. First

of all, we constructed a dataset D2 from D1 by applying

elastic deformations (the dataset D2 contains 40 images,

the 20 original images of D1 and 20 generated images).

In addition, we built a dataset D3 from D1 by applying

geometric and colour transformations (namely, rotations,

translations, flips, shears, gamma correction and equal-

izations) — the dataset D3 contains 220 images, the 20

original images of D1 and 200 generated images. And,

finally, a dataset D4 was constructed by combining the

datasets D2 and D3 (the dataset D4 contains 240 images

since the images of D1 are only included once).

From these four datasets, we have trained four dif-

ferent models using the U-Net architecture [14] for 25

epochs. Those models have been evaluated using the test

set and considering as metrics the accuracy, the F1-score,

the precision, the recall, the specificity, and the balanced

accuracy. The results are shown in Table 4. Since the num-

ber of white pixels and black pixels in the mask images are

imbalanced, the most interesting metric is the balanced

Casado-García et al. BMC Bioinformatics (2019) 20:323 Page 11 of 14

Table 4 Results using several models trained with different datasets (D1 is the original dataset, D2 is D1 augmented using elastic
deformations, D3 is D1 augmented using geometric and color transformations, and D4 is the combination of D2 and D3) for the ISBI
challenge

Accuracy F1-score Precision Recall Specificity Balanced accuracy

D1 0.90 0.94 0.93 0.94 0.76 0.85

D2 0.90 0.94 0.94 0.94 0.77 0.855

D3 0.90 0.94 0.95 0.92 0.82 0.87

D4 0.91 0.94 0.94 0.94 0.78 0.86

accuracy (that combines the recall and the specificity);

and, as we can see from Table 4, by applying data augmen-

tation we can improve the results of our models.

Discussion
Image augmentation techniques have been successfully

applied in the literature; and most of those techniques

can be directly implemented using image processing and

computer vision libraries, such as OpenCV or SciPy, or

even without the help of third-party libraries. However,

this means reinventing the wheel each time; and, hence,

several libraries and frameworks have appeared over the

years to deal with image augmentation for object classifi-

cation.

Some of those libraries, like Data-Augmentation [45]

or CodeBox [46], provide a few basic augmenta-

tion techniques such as rotation, shifting and flip-

ping. There are other libraries with more advanced

features. Augmentor [10] uses a stochastic, pipeline-

based approach for image augmentation featuring the

most common techniques applied in the literature.

Imgaug [11] provides more than 40 augmentation

techniques, and albumentations [47] is the fastest

augmentation library. CLoDSA includes almost all the

augmentation techniques implemented in those libraries

and also others that have been employed in the literature

but were not included in those libraries. A comparison

of the techniques featured in each library is available

in the project webpage, and also as a supplementary

material.

All the aforementioned libraries are independent from

any particular machine learning framework, but there

are also image augmentation libraries integrated in sev-

eral deep learning frameworks. The advantage of those

libraries is that, in addition to save the images to disk,

they can directly fed the augmented images to a train-

ing model without storing them. The main deep learn-

ing frameworks provide data augmentation techniques.

Keras can generate batches of image data with real-

time data augmentation using 10 different augmenta-

tion techniques [48]. There is a branch of Caffe [49]

that features image augmentation using a configurable

stochastic combination of 7 data augmentation tech-

niques [50]. Tensorflow has TFLearn’s DataAugmentation

[51], MXNet has Augmenter classes [52], DeepLearn-

ing4J has ImageTransform classes [53], and Pytorch has

transforms [54].

In addition to these integrated libraries for image aug-

mentation, the Augmentor library, that can be used inde-

pendently of the machine learning framework, can be

integrated into Keras and Pytorch. This is the same

approach followed in CLoDSAwhere we have developed a

library that is independent of any framework but that can

be integrated into them— currently such an integration is

only available for the Keras framework.

Most of those libraries, both those that are independent

of any framework, and those that are integrated into a

deep learning library, are focused on the problem of object

classification, and only Imgaug and albumentations can be

applied to the problems of localization, detection, seman-

tic segmentation and instance segmentation. CLoDSA can

be used for dataset augmentation in problems related to

classification, localization, detection, semantic segmenta-

tion, and instance segmentation; and, additionally brings

to the table several features that are not included in any

other library.

The main difference between CLoDSA and the libraries

Imgaug and albumentations in the problems related

to localization, detection, semantic segmentation, and

instance segmentation is the way of handling the anno-

tations. The annotations of the images in Imgaug or

albumentations must be coded inside Python before using

them for the augmentation process; on the contrary,

CLoDSA deals with the standard formats for those imag-

ing problems. From the users point of view, the CLoDSA

approach is simpler since they can directly use the anno-

tation files generated from annotation tools (for instance,

LabelImg [55], an annotation tool for object detection

problems, or the Visipedia Annotation Toolkit for image

segmentation [56]) and that can be latter fed to deep

learning algorithms.

Another feature only available in CLoDSA is the chance

of automatically changing the class of an object after

applying a transformation technique. This feature can

be applied not only when augmenting images for object

classification, but also for the other problems supported

by CLoDSA. Finally, image augmentation libraries are

focused on 2D images; on the contrary, CLoDSA not only

Casado-García et al. BMC Bioinformatics (2019) 20:323 Page 12 of 14

works with this kind of images, but can also apply aug-

mentation techniques to multi-dimensional images that

can be decomposed in a collection of images (such as

stacks of images, or videos). As in the case of 2D images,

CLoDSA can augment those multi-dimensional images

for the classification, localization, detection, semantic seg-

mentation, and instance segmentation problems.

Conclusions and further work
In this work, we have presented an approach that allows

researchers to automatically apply image augmentation

techniques to the problems of object classification, local-

ization, detection, semantic segmentation, and instance

segmentation. Such a method works not only with 2D

images, but also with multi-dimensional images (such as

stacks or videos). In addition, the method has been imple-

mented in CLoDSA. This library has been designed using

several object oriented patterns and software engineering

principles to facilitate its usability and extensibility; and

the benefits of applying augmentation with this library

have been proven with three different datasets.

In the future, we plan to expand the functionality of

CLoDSA to include more features; for example, gener-

ate images using a stochastic pipeline approach as in [10],

include more augmentation techniques, or integrate it

into more deep learning frameworks. Another task that

remains as further work is the definition of a method

that could employ GANs to augment images for the prob-

lems of localization, detection, semantic segmentation

and instance segmentation.

Appendix A: A coding example
Let us consider that we want to augment a dataset of

images for object detection using the annotation for-

mat employed by the YOLO detection algorithm [27]

— in this format, for each image a text file containing

the position of the objects of such an image is pro-

vided. The dataset is stored in a folder called yoloimages,

and we want to apply three augmentation techniques:

vertical flips, random rotations, and average blurring.

After loading the necessary libraries, the user must spec-

ify the six parameters explained in “Implementation”

section (the path to the dataset of images, the kind of

problem, the input annotation mode, the output anno-

tation mode, the generation mode, and the techniques

to be applied). We store those values in the following

variables.

INPUT_PATH = "yolo_images/"
PROBLEM = "detection"
ANNOTATION_MODE = "yolo"
OUTPUT_MODE = "yolo"
OUTPUT_PATH = "augmented_yolo_images"
GENERATION_MODE = "linear"

Subsequently, we define an augmentor object that

receives as parameters the above variables.

augmentor =
createAugmentor(PROBLEM,ANNOTATION_
MODE,OUTPUT_MODE,

GENERATION_MODE, INPUT_PATH,
{"outputPath":OUTPUT_PATH})

The above function uses the Factory pattern to con-

struct the correct object, but the user does not need to

know the concrete class of the object.

Afterwards, we define the augmentation techniques

and add them to the augmentor object using a

transformer object.

transformer = transformerGenerator
(PROBLEM)
Vertical flip
vFlip = createTechnique("flip",
{"flip":0})
augmentor.addTransformer(transformer
(vFlip))
Rotation
rotate = createTechnique("rotate", {})
augmentor.addTransformer(transformer
(rotate))
Average blurring
avgBlur = createTechnique("average_
blurring", {"kernel" : 5})
augmentor.addTransformer(transformer
(avgBlur))

Finally, we invoke the applyAugmentation method

of the augmentor object to initiate the augmentation

process:

augmentor.applyAugmentation()

After a few seconds (depending on the initial amount of

images), the new images and their corresponding annota-

tions will be available in the output folder.

Abbreviations

2D: 2 dimensional; GANs: Generative adversarial networks; HDF5: Hierarchical
data format; JSON: JavaScript object notation

Acknowledgements

Not applicable.

Authors’ contributions

JH was the main developer of CLoDSA. CD, JH, EM and VP were involved in the
analysis and design of the application. AC, MG and AI were in charge of testing
CLoDSA, and use this library for building the models presented in the “Results”
section. All authors read and approved the final manuscript.

Funding

This work was partially supported by Ministerio de Economía y Competitividad
[MTM2017-88804-P], Agencia de Desarrollo Económico de La Rioja

Casado-García et al. BMC Bioinformatics (2019) 20:323 Page 13 of 14

[2017-I-IDD-00018], a FPU Grant [16/06903] of the Spanish Ministerio de
Educación y Ciencia, and a FPI grant from Community of La Rioja 2018. We
also acknowledge the support of NVIDIA Corporation with the donation of the
Titan Xp GPU used for this research. The funding bodies did not play any role
in the design of study, the collection, analysis or interpretation of the data, or
in writing the manuscript.

Availability of data andmaterials

The source code of CLoDSA is available at https://github.com/joheras/
CLoDSA, where the interested reader can also find the data for the
experiments presented in the “Results” section. CLoDSA can be installed as a
Python library using pip, and it is distributed using the GNU GPL v3 license.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Granted.

Competing interests

The authors declare that they have no competing interests.

Received: 4 March 2019 Accepted: 4 June 2019

References

1. Greenspan H, van Ginneken B, Summers RM. Guest editorial deep
learning in medical imaging: Overview and future promise of an exciting
new technique. IEEE Trans Med Imaging. 2016;35(5):1153–9.

2. Behrmann J, et al. Deep learning for tumor classification in imaging mass
spectrometry. Bioinformatics. 2018;34(7):1215–23.

3. Valle E, et al. Data, Depth, and Design: Learning Reliable Models for
Melanoma Screening. CoRR. 2017;abs/1711.00441:1–10.

4. Galdran A, et al. Data-Driven Color Augmentation Techniques for Deep
Skin Image Analysis. CoRR. 2017;abs/1703.03702:1–4.

5. Asperti A, Mastronardo C. The Effectiveness of Data Augmentation for
Detection of Gastrointestinal Diseases from Endoscopical Images. CoRR.
2017;abs/1712.03689:1–7.

6. Wang X, et al. ChestX-ray8: Hospital-scale Chest X-ray Database and
Benchmarks on Weakly-Supervised Classification and Localization of
Common Thorax Diseases. In: Proceedings of the 2017 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR’17). CVPR ’17. Hawai: IEEE Computer Society; 2017.

7. Simard P, Victorri B, LeCun Y, Denker JS. Tangent prop – a formalism for
specifying selected invariances in an adaptive network. In: Proceedings of
the 4th International Conference on Neural Information Processing
Systems (NIPS’91). Advances in Neural Information Processing Systems,
vol. 4. Denver: MIT Press; 1992. p. 895–903.

8. Simard P, Steinkraus D, Platt JC. Best practices for convolutional neural
networks applied to visual document analysis. In: Society IC, editor.
Proceedings of the 12th International Conference on Document Analysis
and Recognition (ICDAR’03), vol. 2. Edinburgh: IEEE Computer Society;
2003. p. 958–64.

9. Fakhry A, et al. Deep models for brain EM image segmentation: novel
insights and improved performance. Bioinformatics. 2016;32(15):2352–8.

10. Bloice MD, Stocker C, Holzinger A. Augmentor: An Image Augmentation
Library for Machine Learning. CoRR. 2017;abs/1708.04680:1–5.

11. JungA. imgaug:a library for imageaugmentation inmachine learningexperiments.
2017. https://github.com/aleju/imgaug. Accessed 8 June 2019.

12. Chollet F, et al. Keras. 2015. https://github.com/fchollet/keras. Accessed 8
June 2019.

13. Abadi M, et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. 2015. Software available from tensorflow.org.
http://tensorflow.org/. Accessed 8 June 2019.

14. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for
biomedical image segmentation. In: Proceedings of the International
Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI 2015). Lecture Notes in Computer Science, vol.
9351. Munich: Springer; 2015. p. 234–41.

15. Goodfellow I, et al. Generative Adversarial Networks. CoRR.
2014;abs/1406.2661:1–9.

16. Wang J, Perez L. The Effectiveness of Data Augmentation in Image
Classification using Deep Learning. CoRR. 2017;abs/1712.04621:1–8.

17. Parkhi OM, Vedaldi A, Zisserman A, Jawahar CV. Cats and dogs. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. Providence: IEEE Computer Society; 2012.

18. Minichino J, Howse J. Learning OpenCV 3 Computer Vision with Python.
Birmingham: Packt Publishing; 2015.

19. Jones E, Oliphant T, Peterson P, et al. SciPy: Open source scientific tools
for Python. 2001. http://www.scipy.org/. Accessed 8 June 2019.

20. Zheng X, Wang Y, Wang G, Liu J. Fast and robust segmentation of white
blood cell images by self-supervised learning. Micron. 2018;107:55–71.
Accessed 8 June 2019.

21. Everingham M, et al. The PASCAL Visual Object Classes Challenge 2012
(VOC2012) Results. http://host.robots.ox.ac.uk/pascal/VOC/index.html.

22. Kaehler A, Bradski G. Learning OpenCV 3. Sebastopol: O’Reilly Media; 2015.

23. Lin T-Y, et al. Microsoft COCO: Common Objects in Context. CoRR.
2015;abs/1405.0312:1–15.

24. Gamma E, et al. Design Patterns: Elements of Reusable Object-Oriented
Software. USA: Addison Wesley; 1994.

25. Martin RC. Agile Software Development, Principles, Patterns, and
Practices. USA: Prentice Hall; 2003.

26. The HDF Group. Hierarchical Data Format, Version 5. http://www.
hdfgroup.org/HDF5/. Accessed 8 June 2019.

27. Redmon J, Farhadi A. YOLOv3: An Incremental Improvement. CoRR.
2018;abs/1804.02767:1–6.

28. Real E, et al. YouTube-BoundingBoxes: A Large High-Precision
Human-Annotated Data Set for Object Detection in Video. CoRR.
2017;abs/1702.00824:1-16.

29. Musser DR, Stepanov AA. Generic programming. In: Proceedings of
International Symposium on Symbolic and Algebraic Computation
(ISSAC 1988). Lecture Notes in Computer Science, vol. 358. Rostock: ACM;
1989. p. 13–25.

30. Crockford D. The JSONData Interchange Syntax. 2013. https://www.json.
org/. Accessed 8 June 2019.

31. Rajaraman S, Antani SK, Poostchi M, Silamut K, Hossain MA, Maude RJ,
Jaeger S, Thoma GR. Pre-trained convolutional neural networks as feature
extractors toward improved malaria parasite detection in thin blood
smear images. PeerJ. 2018;16(6):e4568.

32. Razavian AS, et al. CNN features off-the-shelf: An astounding baseline for
recognition. In: Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW’14). IEEE Computer Society.
Ohio: IEEE; 2014. p. 512–9.

33. Russakovsky O, et al. ImageNet Large Scale Visual Recognition Challenge.
Int J Comput Vis. 2015;115(3):211–52.

34. Szegedy C, et al. Going deeper with convolutions. In: Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’15). IEEE
Computer Society. Massachusetts: IEEE; 2015. p. 1–9.

35. Szegedy C, et al. Rethinking the Inception Architecture for Computer
Vision. CoRR. 2015;abs/1512.00567:1–10.

36. Sermanet P, et al. OverFeat: IntegratedRecognition, Localization and
Detection using Convolutional Networks. CoRR. 2013;abs/1312.6229:1–16.

37. He K, et al. Deep Residual Learning for Image Recognition. In: Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’16). IEEE Computer Society. Las Vegas: IEEE; 2016. p. 770–8.

38. Simonyan K, Zisserman A. Very Deep Convolutional Networks for
Large-Scale Image Recognition. CoRR. 2014;abs/1409.1556:1–14.

39. Chollet F. Xception: Deep Learning with Depthwise Separable
Convolutions. CoRR. 2016;abs/1610.02357:1–8.

40. García M, et al. FrImCla: A Framework for Image Classification using
Traditional and Transfer Learning Techniques. 2019. https://github.com/
ManuGar/FrImCla. Accessed 8 June 2019.

41. Cubuk ED, et al. Autoaugment: Learning augmentation policies from
data. CoRR. 2018;abs/1805.09501:1–14.

42. Lemley J, et al. Smart Augmentation Learning an Optimal Data
Augmentation Strategy. IEEE Access. 2017;5:5858–69.

43. Tran T, et al. A bayesian data augmentation approach for learning deep
models. In: Advances in Neural Information Processing Systems. Long
Beach: MIT Press; 2017. p. 2797–806.

44. Arganda-Carreras I, et al. Crowdsourcing the creation of image
segmentation algorithms for connectomics. Front Neuroanat. 2015;9(142).

https://github.com/joheras/CLoDSA
https://github.com/joheras/CLoDSA
https://github.com/aleju/imgaug
https://github.com/fchollet/keras
http://tensorflow.org/
http://www.scipy.org/
http://host.robots.ox.ac.uk/pascal/VOC/index.html
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
https://www.json.org/
https://www.json.org/
https://github.com/ManuGar/FrImCla
https://github.com/ManuGar/FrImCla

Casado-García et al. BMC Bioinformatics (2019) 20:323 Page 14 of 14

45. Brandon B. Data-Augmentation. 2017. p. 1–13 https://github.com/
outlace/Data-Augmentation. Accessed 8 June 2019.

46. Dawson R. Codebox software: Image Augmentation for Machine
Learning in Python. 2016. https://codebox.net/pages/image-
augmentation-with-python. Accessed 8 June 2019.

47. Bulsaev A, et al. Albumentations: fast and flexible image augmentations.
CoRR. 2018;abs/1809.06839.

48. Chollet F, et al. ImageDataGenerator of Keras. 2015. https://keras.io/
preprocessing/image/. Accessed 8 June 2019.

49. Jia Y, et al. Caffe: Convolutional architecture for fast feature embedding.
CoRR. 2014;abs/1408.5093:1–4.

50. Katz S. Caffe-Data-Augmentation. 2015. https://github.com/ShaharKatz/
Caffe-Data-Augmentation. Accessed 8 June 2019.

51. Damien A, et al. TFLearn. 2016. https://github.com/tflearn/tflearn.
Accessed 8 June 2019.

52. Chen T, et al. Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. CoRR. 2015;abs/1512.01274:1–6.

53. Deeplearning4j Development Team. Deeplearning4j: Open-source
distributed deep learning for the JVM, Apache Software Foundation
License 2.0. 2017. http://deeplearning4j.org. Accessed 8 June 2019.

54. Paszke A, et al. Automatic differentiation in PyTorch. In: Proceedings of
the 31st Conference on Neural Information Processing Systems (NIPS
2017). Long Beach: MIT Press; 2017.

55. Tzutalin. LabelImg. 2015. https://github.com/tzutalin/labelImg. Accessed
8 June 2019.

56. Visipedia. Visipedia Annotation Toolkit. 2018. https://github.com/
visipedia/annotation_tools. Accessed 8 June 2019.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://github.com/outlace/Data-Augmentation
https://github.com/outlace/Data-Augmentation
https://codebox.net/pages/image-augmentation-with-python
https://codebox.net/pages/image-augmentation-with-python
https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://github.com/ShaharKatz/Caffe-Data-Augmentation
https://github.com/ShaharKatz/Caffe-Data-Augmentation
https://github.com/tflearn/tflearn
http://deeplearning4j.org
https://github.com/tzutalin/labelImg
https://github.com/visipedia/annotation_tools
https://github.com/visipedia/annotation_tools

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Implementation
	CLoDSA configuration
	The CLoDSA architecture
	Using CLoDSA

	Results
	Malaria parasite classification
	Stomata detection
	Semantic segmentation of neural structures

	Discussion
	Conclusions and further work
	Appendix A: A coding example
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

