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Abstract

Next-generation sequencing has been used to infer the clonality of heterogeneous tumor samples. These analyses yield
specific predictions—the population frequency of individual clones, their genetic composition, and their evolutionary
relationships—which we set out to test by sequencing individual cells from three subjects diagnosed with secondary acute
myeloid leukemia, each of whom had been previously characterized by whole genome sequencing of unfractionated tumor
samples. Single-cell mutation profiling strongly supported the clonal architecture implied by the analysis of bulk material. In
addition, it resolved the clonal assignment of single nucleotide variants that had been initially ambiguous and identified
areas of previously unappreciated complexity. Accordingly, we find that many of the key assumptions underlying the
analysis of tumor clonality by deep sequencing of unfractionated material are valid. Furthermore, we illustrate a single-cell
sequencing strategy for interrogating the clonal relationships among known variants that is cost-effective, scalable, and
adaptable to the analysis of both hematopoietic and solid tumors, or any heterogeneous population of cells.
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Introduction

Intratumoral heterogeneity is an emerging hallmark of cancer

that can be interrogated genome-wide with next-generation

sequencing. Critically, sub-populations of tumor cells are orga-

nized into hierarchies through clonal evolution. A powerful

strategy for studying this population structure is multi-sam-

pling—independently assaying genetic variation at distinct points

in time or space and comparing mutation profiles. In particular,

whole genome sequencing (WGS) of de novo acute myeloid

leukemia (AML) has demonstrated genetic evolution between

diagnosis and relapse [1,2], and similar results have been obtained

from WGS of paired primary-metastasis samples in breast cancer

[3]. Furthermore, whole exome sequencing (WES) of multiple

regions within primary tumors has revealed extensive regional

heterogeneity in pancreatic [4], hepatocellular [5], and renal [6]

carcinomas. Thus, clonal heterogeneity within tumors compounds

the biological complexity of human cancers, and a detailed

understanding of this is important for clinical genomics.

The ultimate resolution of multi-sampling is single-cell analysis,

which is rapidly becoming tractable. For example, Anderson et al.

have used fluorescence in situ hybridization (FISH) to genotype up

to five so-called ‘‘driver’’ lesions in individual pediatric acute

lymphoblastic leukemia (ALL) cells, which demonstrated a range

of clonal architectures (from linear to complex) in different subjects

[7]. Jan et al., Potter et al., and Klco et al. have reported similar

findings using either single-cell allele-specific PCR or amplicon

sequencing to assay five to ten clonal markers in de novo AML or

pediatric ALL [8–10]. In broader (genome-wide) analyses, Navin

et al. and Voet et al. have leveraged WGS to call copy number

variants (CNVs) in single cells, which they used to reconstruct the

phylogenetic history of breast cancer cell lines and primary tumors

[11,12].

In addition to multi-sampling strategies, we and others have

reported clonal inference from deep sequencing of individual

tumor samples [1,13–15]. Briefly, this approach uses the fraction

of sequencing reads calling a specific somatic mutation (i.e., the

variant allele fraction, or VAF) to estimate the frequency of that

variant in the original sample. Often, large numbers of single

nucleotide variants (SNVs) cluster at a common VAF, suggesting

the presence of a clonal population at a defined frequency.

Analyzing tumors in this way yields specific predictions about the
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clonal relationships among variants detected in unfractionated

samples: 1) the genetic composition of individual clones (groups of

SNVs that arose together), 2) the frequency of each clone

(proportional to the mean VAF of the corresponding cluster),

and 3) a model for how the clonal architecture evolved (clones at

lower frequencies descending from those at higher frequencies).

We set out to test these predictions by sequencing single cells

from three subjects with an initial diagnosis of myelodysplastic

syndrome (MDS), each of whom progressed to secondary AML

(sAML). We had previously characterized these subjects by WGS

of both MDS and sAML bone marrow as well as matched skin

samples, resulting in a call set of several thousand validated

somatic mutations in addition to specific models for the clonal

architecture of each tumor [14]. In the current study, we used

targeted sequencing to genotype .1,900 of these positions in a

dozen single cells from each subject. We used SNP array data to

quantify the accuracy of single-cell variant calling, and—as

reported by others—we observed frequent genotyping errors due

to stochastic biases in whole genome amplification (allelic dropout,

or ADO) [11,12,16]. Nevertheless, while ADO inflated our false

negative rate, we maintained a relatively low false positive rate. It

was therefore possible to evaluate the major clonal relationships

among targeted variants using single-cell sequencing.

Ultimately, the single-cell data strongly supported the major

clonal populations predicted from the analysis of bulk tissue, in

addition to resolving the clonality of SNVs that were originally

ambiguous and suggesting previously unappreciated complexity

among rare subclones. Accordingly, our findings validate many of

the critical assumptions underlying the inference of tumor clonality

from unfractionated samples, in addition to demonstrating a high-

throughput approach to single-cell genotyping that provides

insight into the clonal architecture of heterogeneous samples.

Results

Targeted Sequencing of Single-Cell, Two-Cell, and
Unfractionated Samples
We prepared a total of 56 sequencing libraries from whole

genome amplified (WGA) single-cell and two-cell sAML samples

in addition to non-WGA unfractionated MDS, sAML, and normal

(skin) samples (Table S1). We used hybridization capture to

enrich these libraries for 1,953 somatic SNVs discovered and

validated previously in unfractionated samples [14] (Table S2).
Sequencing yielded 4.1 Gb of de-duplicated data that aligned to

targeted loci, resulting in an average depth of coverage of 1486

per sample (Table 1, Table S3). The subject identity

corresponding to each sequencing library was confirmed using

variant calls at both germline SNPs and targeted somatic SNVs

(Table S4, Table S5). In order to assess the quality of our

capture reagent, we compared the VAF distributions of variants in

unfractionated MDS and sAML samples to those previously

reported [14] (Figure S1), finding a strong correlation between

these independently-generated datasets (R2=0.66–0.96).

Consistent with previous reports, we observed a number of

differences in sequencing performance between WGA libraries

and those prepared from unfractionated material [11,12,16]. In

particular, single- and two-cell libraries had a lower proportion of

the capture target covered at any threshold (Figure 1A). This was
attributable in part to 20% fewer reads obtained from libraries

prepared from WGA material (Table 1). Furthermore, these

libraries had a lower on-target rate (likely driven by locus dropout)

and a higher rate of PCR duplicates (i.e., reduced library

complexity) (Table 1). In addition, single- and two-cell samples

had a significantly less uniform distribution of reads across the

capture target (Figure 1B), again reflecting WGA biases. In

aggregate, these technical issues limited callable positions (sites

with $256 coverage) to approximately 55% of targeted SNVs in

single- and two-cell samples (41%–63% for single-cell and 46–53%

for two-cell libraries).

Performance of Variant Calling
To quantify the accuracy of variant calling in single cells, we

examined germline (i.e., inherited) SNPs genotyped previously

using Affymetrix 6.0 arrays. We evaluated three separate variant

callers: SAMtools [17], VarScan2 [18], and the Genome Analysis

Author Summary

Human cancers are genetically diverse populations of cells
that evolve over the course of their natural history or in
response to the selective pressure of therapy. In theory, it
is possible to infer how this variation is structured into
related populations of cells based on the frequency of
individual mutations in bulk samples, but the accuracy of
these models has not been evaluated across a large
number of variants in individual cells. Here, we report a
strategy for analyzing hundreds of variants within a single
cell, and we apply this method to assess models of tumor
clonality derived from bulk samples in three cases of
leukemia. The data largely support the predicted popula-
tion structure, though they suggest specific refinements.
This type of approach not only illustrates the biological
complexity of human cancer, but it also has the potential
to inform patient management. That is, precise knowledge
of which variants are present in which populations of cells
may allow physicians to more effectively target combina-
tions of mutations and predict how patients will respond
to therapy.

Table 1. Sequencing metrics.

Total (Mb) Aligned (Mb) Aligned (%) On-Target (%) Duplicate (%)

On-Target, Unique

Coverage (X)

Sample Average (n =56) 408 397 97.3 25.6 29.0 148

Unsorted Sample

Average (n=14)

490 487 99.5 35.7 24.0 261

Single-Cell Sample

Average (n=36)

382 369 96.6 22.4 30.3 113

Two-Cell Sample

Average (n=6)

373 358 96.2 21.0 33.1 94

doi:10.1371/journal.pgen.1004462.t001

Leukemia Single-Cell Sequencing
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Toolkit (GATK) Unified Genotyper [19,20]. With SAMtools and

VarScan2, we called variants from individual samples, whereas

with GATK, we called variants jointly across all single-cell

libraries. At homozygous SNPs, all three callers performed

similarly (Figure 2A, 2B). However, at heterozygous SNPs

(which best approximate targeted SNVs), calling samples jointly

yielded a modest benefit in sensitivity, while reducing specificity

(Figure 2C). Based on these results, we chose to call variants

jointly using GATK at sites with $256 coverage, and we

estimated our sensitivity and specificity for singe-cell variant

calling to be 0.88 and 0.98, respectively. As a caveat, benchmark-

ing joint variant calling at germline SNPs (which are present in

every cell) potentially overestimates sensitivity to detect subclonal

SNVs (which may be present in only a subset of cells).

Nevertheless, joint variant calling likely offers a genuine increase

in sensitivity, without incurring much cost in specificity, especially

when calls are restricted to sites with high coverage.

As shown in Table 2, the majority of genotyping errors

(assessed at germline SNPs) were false negatives, i.e. failures to

detect true non-reference alleles, which resulted in reduced true

positive rates (TPRs). These occurred exclusively at heterozygous

positions in libraries prepared from WGA material, implicating

ADO as the underlying mechanism (approximately equal to the

false negative rate, or FNR). This assumption is further supported

by the observation that the frequency of homozygous reference

calls was similar to that of homozygous variant calls at known

heterozygous SNPs (Figure S2). ADO is a well-documented

limitation of commercial single-cell WGA kits [11,12,16]. Never-

theless, although our analysis of germline SNPs demonstrated that

single-cell reference allele calls were enriched for false negatives (at

heterozygous positions), it also showed that non-reference allele

calls were generally accurate (overall false positive rate, or FPR,

approximately equal to 0.02). This asymmetry between FNR and

FPR was critical for differentiating genuine clonal relationships

among targeted SNVs from genotyping errors.

Finally, we tested whether ADO could be linked to systematic

(i.e., locus-specific) effects, or if it was predominantly stochastic. To

do this, we compared the rate at which inherited heterozygous

SNPs common to all three subjects were called reference in single-

cell libraries (Figure S3). In general, the dropout rate of a specific

locus across single-cell libraries from one subject was not predictive

of its dropout rate across single-cell libraries in another (R2=0.25–

0.30), suggesting that ADO was not attributable to strong

positional biases.

Validation of Sample Cellularity
As an additional quality control measure, we asked if the VAF

distribution in single cells could be used to infer sample cellularity.

In single cells, the true (unobserved) VAF of heterozygous variants

is 0.5 (at diploid loci). As shown in Figure S4, S5, S6, the VAF

distributions in single-cell samples exhibited high variance (ranging

from 0 to 1) compared to unsorted samples, reflecting stochastic

biases in WGA. However, the mean VAF for each cluster, as well

as for germline heterozygous SNPs, was fixed at approximately

Figure 1. Depth and distribution of coverage for each sequencing library (n=56). (A) Cumulative coverage represented as the proportion of
the capture target (y-axis) with read depth greater than or equal to specific coverage thresholds (x-axis). Coverage values are derived from quality-
filtered data (de-duplicated, phred-scaled alignment quality$10, phred- scaled base quality$13). The intersection of each curve with y= 0.5 identifies
the median coverage. Higher coverage was obtained for the unsorted samples (median 2286), compared to the single- or two-cell samples (median
286). (B) Lorenz curve detailing uniformity of coverage as proportion of targeted bases versus proportion of sequenced bases. Dashed line (y = x)
represents a perfectly uniform distribution of read depth across the capture target. Libraries prepared from WGA samples (single- and two-cells) exhibit
significantly less uniform representation, compared to libraries derived from unfractionated material. See Table 1 and Table S3 for additional details.
doi:10.1371/journal.pgen.1004462.g001

Leukemia Single-Cell Sequencing
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0.5. In contrast, in intentionally ‘‘cross-contaminated’’ two-cell

samples, the mean VAF of individual clusters (but never germline

heterozygotes) dropped to 0.25, the precise dilution expected from

the admixture of two cells sharing some, but not all, heterozygous

SNVs (Figure S4, Figure S6). To analyze this further, we

modeled these distributions computationally and used maximum

likelihood analysis integrating a site-specific error model to assess

the probability that each dataset was generated from all possible

combinations of two cells. This predicted that .90% of single-cell

libraries were derived from true single-cell samples (Table S7).

Assessment of Tumor Clonality
Previously, we generated WGS data from MDS, sAML and

normal samples for each subject in the current study, and we

analyzed the VAF distribution of validated somatic mutations to

infer the clonal architecture of each tumor [14]. In the current

Figure 2. Performance of variant calling. The specificity (A) and sensitivity (B, C) of three separate variant callers—SAMtools, VarScan2, and
GATK—were evaluated by analyzing single-cell variant calls at germline SNPs previously ascertained by Affymetrix SNP arrays [14]. As we have
defined true positive and true negative, sensitivity is undefined at homozygous reference positions (there are no true positives) and specificity is
undefined at heterozygous and homozygous variant positions (there are no true negatives). Sensitivity and specificity were similar among all three
callers at homozygous positions, but GATK demonstrated greater sensitivity at heterozygous sites. Variants were called jointly across all single-cell
libraries with the GATK Unified Genotyper utility, whereas variants were called independently for each sample using SAMtools and VarScan2. See
Table 2 and Table S6 for additional details. TPR: true positive rate. FPR: false positive rate.
doi:10.1371/journal.pgen.1004462.g002

Table 2. Performance of variant calling at germline SNPs.

# of Positions TPR FPR FNR

Homozygous Sites Heterozygous Sites

UPN461282 Average: Unsorted Cells 17 1.00 0.00 0.00 0.00

Average: Single Cells 9 0.90 0.00 0.00 0.21

Average: Two Cells 8 0.88 0.00 0.00 0.25

UPN182896 Average: Unsorted Cells 329 0.99 0.00 0.00 0.00

Average: Single Cells 189 0.93 0.01 0.00 0.13

Average: Two Cells 181 0.94 0.01 0.00 0.09

UPN288033 Average: Unsorted Cells 327 1.00 0.01 0.00 0.00

Average: Single Cells 195 0.92 0.02 0.00 0.13

Average: Two Cells 204 0.98 0.03 0.00 0.04

True Positive (TP): $1 non-reference allele called by Affymetrix array, $1 non-reference allele called by sequencing.
True Negative (TN): 0 non-reference alleles called by Affymetrix array, 0 non-reference alleles called by sequencing.
False Positive (FP): 0 non-reference alleles called by Affymetrix array, $1 non-reference allele called by sequencing.
False Negative (FN): $1 non-reference allele called by Affymetrix array, $0 non-reference alleles called by sequencing.
True Positive Rate (TPR): TP/(TP+FN) = sensitivity = power.
False Positive Rate (FPR): FP/(FP+TN) = 1-specificity.
False Negative Rate (FNR): FN/(TP+FN) = 1 - sensitivity = type II error.
doi:10.1371/journal.pgen.1004462.t002

Leukemia Single-Cell Sequencing
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study, we applied SciClone—a variational Bayesian algorithm—to

the original WGS data to refine these models [13,21]. As shown in

Figure 3A–C, groups of SNVs cluster at distinct frequencies, and

we hypothesized that each cluster represented a clonal population

of tumor cells. I.e., clustered SNVs were predicted to colocalize

within individual cells. Furthermore, we predicted that the

population frequency of putative clones was proportional to the

mean VAF of the corresponding cluster. Finally, we hypothesized

that clones present at successively lower frequencies evolved

linearly from clones at higher frequencies, i.e., that these

populations were nested. Accordingly, subjects were predicted to

be monoclonal (UPN182896) or biclonal (UPN461282,

UPN288033) at the time of MDS diagnosis, and harbor two or

more clones upon progression to sAML (Figure 3D). In addition,

our analysis of both unfractionated blood and bone marrow

samples indicated that tumor clonality was similar in both

compartments (consistent with recent findings in both de novo

AML and MDS [10,22]), though UPN288033 had an overall

reduction in tumor cells in peripheral blood (Figure S4, S5, S6).

To evaluate models of tumor clonality predicted from unfrac-

tionated samples, we overlaid tracks of single-cell variant calls on

the cluster definitions derived previously (Figure 4, Figure S7).
In general, single-cell mutation profiles strongly supported the

existence and composition of the predicted clonal populations. We

observed multiple cells from each subject harboring the majority of

targeted SNVs, and at least one cell in each subject in which

complete clusters of putatively subclonal variants were called

reference. Single-cell sequencing thus demonstrated the existence

of distinct cells arising at successive points in tumor evolution, in

addition to validating our hypothesis that SNVs present at similar

VAFs travel together in individual cells.

As shown in Figure 4, we observed a significant rate of

reference calls (15%, on average) in each cell at sites predicted to

be within a mutation cluster. Formally, this could reflect cryptic

subclonal heterogeneity, but these positions could not be

aggregated into clusters of more than a few variants. Furthermore,

mutually exclusive sets of variants that were reference in cells

representing the founding clone were recovered in cells corre-

sponding to more mature clones, which would imply an unlikely

rate of convergent evolution. Alternatively, these reference calls

likely represent stochastic false negatives in each cell. Indeed, the

rate of these reference calls was consistent with our estimated FNR

(due to ADO) of 0.12. Accordingly, the majority of these reference

calls likely reflect ADO (are false negatives), not cryptic population

substructure.

While the single-cell genotypes we obtained generally validated

our predicted model, they suggested a number of modifications.

First, there was ambiguity in our original analysis as to which clone

gave rise to cluster 5 variants in UPN461282; this appeared to be a

rare subclone that could have emerged from any of its

predecessors. The single-cell data unambiguously show that

cluster 5 SNVs descended linearly from cluster 4 (i.e., cluster 5

variants always colocalized with cluster 4 variants). Second,

approximately 9% of targeted SNVs could not be clustered in

our original study, i.e., the clone to which they belonged was

ambiguous. For UPN461282 and UPN288033 (for which we had

multiple cells representing each clone), we were able to confidently

assign 50% of these outliers to specific clones (Figure 4A, C). For

UPN182896 (for which we only had one cell representing the

founding clone), we were only able to recover 35% of outliers

(Figure 4B).

In addition to resolving the clonality of ambiguous clusters and

outliers, the single-cell data identified a small set of variants

that were mutually exclusive across multiple cells in each

subject—suggesting that a subset of targeted SNVs may in fact

represent subclones within the cluster to which they were

originally assigned (Figure 4). For UPN461282, this occurred

among low-frequency cluster 5 variants. Only 20 of the 60 variants

we targeted in this cluster were detectable—suggesting that these

variants were enriched for false positives or belonged to additional

rare subclones not sequenced in the current study—but these 20

appear to be split between two distinct clones. We observed similar

evidence of mutually exclusive variant sets (i.e., evolutionary

branch points) among the outliers that could be re-clustered in

UPN182896 and UPN288033. Again, these potential subclones

were small, consisting of only 4–5 SNVs, thus supporting the

interpretation that the dominant evolutionary relationship among

targeted variants was linear, though a minority of variants may

have arisen secondarily to major clonal expansion events.

Finally, we performed phylogenetic analysis to assess tumor

clonality based solely on the genetic distance between individual

cells (independent of predicted cluster definitions). We used

maximum likelihood to reconstruct the phylogenetic tree of each

tumor using single-cell genotypes at targeted SNVs (Figure 5),

which again supported our original model. The major clones

ascertained from single-cell mutation profiles were separated by

stable branches in each tree. These trees illustrate a generally

linear topology, in addition to the branching event within cluster 5

in UPN461282, but they also provide evidence for additional

branching events within UPN182896 and UPN288033. We

integrated single-cell mutation profiles and trees to assign groups

of individual cells to clones; we then compared the frequency of

each clone among single cells to our prediction from sequencing

unfractionated material, based on the mean VAF of each cluster,

and we found a modest but significant correlation (R2=0.60)

(Figure S8).

Discussion

Deep sequencing of unfractionated tumors is a powerful tool for

interrogating inter- and intra-tumoral genetic variation [23].

Multiple studies have demonstrated that clonal heterogeneity is a

key aspect of cancer biology [13,15]. These results have validated

long-standing models of cancer as an evolutionary process [24],

which has clinical implications for the design of effective therapies

(selecting targeted agents and predicting response). Indeed, recent

work has demonstrated functional heterogeneity among AML

subclones [10] as well as prognostic value in detecting subclonal

variation in MDS and chronic lymphoid leukemia [25,26]. Thus,

even though the clonal architecture of individual tumors is often

strongly implied from sequencing unfractionated samples, a direct

assessment of these models and their underlying assumptions is

critical.

Here, single-cell analysis of MDS-derived secondary AML

samples generally validated predictions from prior analysis of

unfractionated samples. The vast majority of SNVs predicted to

co-occur in a clonal population were shown to be present in at

least one cell, clusters of variants corresponding to subclones were

called reference en bloc (supporting the predicted evolutionary

progression), and the frequency of each clone was correlated

(albeit, modestly) with the mean VAF of clusters in unfractionated

samples. Nevertheless, the single-cell data suggested specific

modifications to the original models. A limited set of variants

(n = 3) appear to have been misclustered in the original analysis,

35–50% of outliers could be assigned to clones for the first time,

and the ambiguous clonal assignment of clone 5 in UPN461282

was resolved. In addition, approximately 9% of targeted positions

(covered in at least one cell) were never called as variants,

Leukemia Single-Cell Sequencing
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Figure 3. Model of tumor clonality predicted from unfractionated samples. SciClone analysis and cluster assignment of previously validated
somatic mutations present in unsorted MDS and sAML bone marrow cells [14,21]. Variant allele fractions of variants at MDS (x-axis) and sAML (y-axis)
predict specific tumor substructure and evolution over time. Color-coded mutation clusters are completely non-overlapping between subjects. (A) At
sAML diagnosis, UPN461282 was predicted to harbor 10% non-tumor cells in addition to 5 subclones: 1) 6% of cells harboring cluster 1 variants (clone
1), 2) 4% of cells harboring cluster 1 and cluster 2 variants (clone 2), 3) 33% of cells harboring cluster 1, cluster 2, and cluster 3 variants (clone 3), 4)

Leukemia Single-Cell Sequencing
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suggesting that some targeted SNVs were false positives in the

original study, or belonged to subclones that were not sampled in

this study by chance.

Although most of the variants we targeted were found to

colocalize in at least one cell (supporting generally linear

evolution), we did observe clusters of variants in each subject that

were mutually exclusive (suggesting subclonal branch points).

These clusters were typically small (with five or so variants

differentiating a putative subclone), but were supported by

multiple cells. The strongest evidence for this occurred in a low-

frequency subclone in subject UPN461282 (cluster 5 variants). As

a class, it is plausible that low-frequency variants may be enriched

for complexity, i.e., may tend to be divided among multiple clones,

and/or derive from different ancestral populations. Thus, we find

that genotyping unfractionated and single-cell libraries are

complementary approaches to resolving subclonal complexity.

Analysis of unfractionated samples at multiple time points

identifies major branches that may not be appreciated at a single

33% of cells harboring cluster 1, cluster 2, cluster 3, and cluster 4 variants (clone 4), and 5) 14% of cells harboring either cluster 1, cluster 2, cluster 3,
and cluster 5 variants or cluster 1, cluster 2, cluster 3, cluster 4, and cluster 5 variants (clone 5). (B) At diagnosis with sAML, UPN182896 was predicted
to harbor 35% non-tumor cells in addition to 2 subclones: 1) 13% of cells harboring cluster 1 variants (clone 1), and 2) 52% of cells harboring cluster 1
and cluster 2 variants (clone 2). (C) At diagnosis with sAML, UPN288033 was predicted to harbor 7% non-tumor cells in addition to 2 subclones: 1)
62% of cells harboring cluster 1 variants (clone 1), and 2) 31% of cells harboring cluster 1 and cluster 2 variants (clone 2). (D) Schematic summarizing
our initial models of clonal evolution inferred from SciClone analysis—the question mark denotes ambiguity of clone 5 origin in UPN461282.
doi:10.1371/journal.pgen.1004462.g003

Figure 4. Single-cell mutation profiles. Variant profiles across targeted somatic mutations in single-cell samples (sAML bone marrow) in (A)
UPN461282, (B) UPN182896, and (C) UPN288033. Rows display positive and negative variant calls color-coded by mutation cluster for each single-cell
sample, and columns indicate specific SNVs somatic at sAML diagnosis. Variants are grouped and color-coded by cluster as predicted from
sequencing unfractionated material (uppermost track in each panel). Each cell is grouped by the clone it is inferred to represent. Outlier SNVs (purple)
were those which could not be confidently clustered based on bulk sequencing. Here, many of these are merged into predicted clusters based upon
their presence/absence in single-cell libraries (i.e., harboring the same pattern as well-defined clones). Positions where reference calls were made are
colored grey; positions where no call was made (,256coverage) are colored white. Pairs of variants that always travel in the same state (reference or
variant) likely arose in the same clonal expansion. Pairs of variants that are called together in some cells but not others are likely related by linear
evolution. Pairs of variants that are mutually exclusive suggest evolutionary branch points, and were rare. This suggested that variants in subclone 5
in UPN461282 (A), and subclone 1 in UPN288033 (C) were divided among additional subclones (now 5A/5B, 2A/2B). See Figure S7 for data
presentation with unmodified clone and cluster definitions (derived from bulk sequencing).
doi:10.1371/journal.pgen.1004462.g004
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time point (e.g., clone 1.clone 2.clone 3 in UPN461282),

whereas single-cell genotyping improves the interpretation of low-

frequency variants (removing false positive calls and revealing

cryptic clonal substructure).

Consistent with our results, recent work by Klco et al. has

shown that single-cell genotyping supports the tumor clonality

predicted from unfractionated de novo AML samples [10]. Klco et

al. used WGA and amplicon sequencing to assay a smaller

number of clonal markers (n = 1–3 SNVs per clone, 10 total)

across a larger number of single cells (n = 95). This illustrated the

utility of a large sample size for accurately estimating clone

frequencies from single cells—Klco et al. achieved more precise

single-cell estimates of variant frequencies that more closely

matched estimates from bulk tumors. Alternatively, our analysis of

several hundred clonal markers suggested that the secondary AML

tumors we analyzed harbored complexity that was not appreciated

Figure 5. Single-cell reconstruction of tumor phylogeny. Maximum likelihood phylogenetic trees derived from single-cell genotypes at
targeted somatic SNVs. (A) UPN461282 (B) UPN182896 (C) UPN288033. Values along edges represent branch support determined by non-parametric
bootstrap (n = 1000 iterations). Edges with $75% support are considered strongly supported. Cell labels are identical to those in Figure 4, and
colored based on the presence variant clusters corresponding to the profiles detailed in Figure 4.
doi:10.1371/journal.pgen.1004462.g005
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by bulk analysis, and assaying a small number of variants per clone

would not have shown this. Together, the Klco et al. study and our

own suggest that the clonal architecture of complex tumors is best

appreciated through the analysis of a large number of variants

across a large number of cells.

Previous reports of single-cell sequencing have already de-

scribed the primary technical challenges we encountered in this

study: 1) locus dropout and non-uniform coverage led to a

substantial amount of missing data (positions inadequately

covered), and 2) ADO compromised the accuracy of variant

calling at heterozygous sites [10–12,16,27,28]. Nevertheless,

previous studies have generally attempted variant discovery from

single-cell sequencing, whereas we sought to genotype a defined

set of validated variants, i.e., to understand the clonal relationships

among SNVs that were supported by prior knowledge. Alterna-

tively, others have reported analyses of tumor clonality using more

accurate single-cell genotyping methods (FISH, allele-specific

PCR) [7–9], but these lack the throughput required to assay

hundreds of variants simultaneously. Therefore, as improvements

to WGA technologies are developed (increasing coverage and

reducing allelic bias) [16], in addition to more sensitive methods

for rare variant detection [29,30], a capture-based strategy offers

an attractive balance of throughput and cost-effectiveness for

studying tumor clonality. Accordingly, the approach we have

outlined here—integrating both variant discovery in bulk samples,

and clonality analysis in single-cells—could be used to confidently

localize mutations within clonal hierarchies prior to the initiation

of targeted therapies. This has the potential to inform treatment

regimens that target complex populations of cells, not just isolated

subclones, which may lead to improved patient outcomes.

Materials and Methods

Subjects and Samples
All subjects were diagnosed with de novo myelodysplastic

syndrome (MDS) and progressed to secondary acute myeloid

leukemia (sAML) within 32 months. UPN461282: 65 year-old

male (refractory anemia with excess blasts and complex karyo-

type); UPN182896: 75 year-old male (refractory anemia with

trisomy 8); UPN288033: 31 year-old female (refractory anemia

with excess blasts and normal karyotype). Detailed clinical histories

have been reported previously [14]. All subjects provided written

informed consent authorizing whole genome sequencing on a

protocol approved by the Washington University Office of Human

Research Protection.

SNP Genotyping and Somatic Mutation Discovery in
Unfractionated Samples
Affymetrix 6.0 SNP genotyping and WGS of unfractionated

normal, MDS, and secondary AML samples were performed as

described previously [14]. Somatic mutations were validated by

solid phase targeted capture and deep sequencing.

Isolation and Amplification of Single-Cell DNA
Single vials of cryopreserved bone marrow cells from each

subject at sAML diagnosis were thawed, washed in PBS, counted,

and adjusted to 7.5 million cells/mL. Single bone marrow cells

were deposited into 96 well plates by flow cytometric cell sorting.

Additional microtiter plates with two-cells per well were generated

to produce intentionally ‘‘cross-contaminated’’ samples. Bivariate

plot isolation of single, viable cells was made by forward low angle

light scatter and 90 degree light scatter against apex debris and

noise, as well as scatter pulse width to isolate single cells from

aggregates. This sort decision was applied to a MoFlo cell sorter

(Beckman Coulter Inc., Brea, CA) equipped with a Cyclone X-Y

deposition instrument, configured to deposit densities of 0–4 cells

per well. The coincident cell abort mask was set to be the most

stringent, allowing sorted droplets to contain only one target cell

with no particles within adjacent droplets.

Cells were sorted directly into extraction buffer; genomic DNA

extraction and amplification were carried out using a PicoPlex

WGA kit according to the manufacturer’s protocol (Rubicon

Genomics, Ann Arbor, MI). WGA DNA yield was determined by

Qubit fluorometric quantitation (Life Technologies, Carlsbad,

CA), and WGA DNA quality was assessed by qPCR.

Sequencing Library Production and Target Enrichment
Sequencing libraries were prepared from single-cell WGA DNA

(n= 12 per subject), two-cell WGA DNA (two cells intentionally

deposited in one well, n = 2 per subject), as well as unamplified

genomic DNA from unsorted samples—bone marrow and

peripheral blood cells (at MDS and sAML diagnosis) and matched

normal tissue (skin biopsy) (Table S1). Barcoded paired-end

Illumina libraries were prepared according to the manufacturer’s

recommendations (Illumina Inc., San Diego, CA), with the

following exceptions: 1) 250–1000 ng of WGA DNA (sorted

samples) and 1000–3000 ng of unamplified DNA (unsorted

samples) were fragmented using the Covaris E220DNA Sonicator

(Covaris Inc., Woburn, MA) to a size range between 100–400 bp;

2) Illumina adapter-ligated library fragments were amplified in

four 50 mL PCR reactions for eighteen cycles; 3) Solid Phase

Reversible Immobilization (SPRI) bead cleanup was used for

enzymatic purification throughout the library process, as well as

final library size selection targeting 300–500 bp fragments.

All 56 sequencing libraries were pooled (normalized to 85 ng

per library) and hybridized in solution to a custom library of

capture oligonucleotides targeting 492,297 bases, according to the

manufacturer’s protocol (Roche NimbleGen, Madison, WI).

Capture baits targeted a total of 1,953 validated somatic single

nucleotide variants (SNVs): 872 SNVs from UPN461282, 777

SNVs from UPN182896, and 304 SNVs from UPN288033, as

reported previously [14] (Table S2). qPCR was used to calibrate

flow cell loading concentration and cluster density. Libraries were

run on a single lane of an Illumina HiSeq2000, according the

manufacturer’s recommendations (Illumina Inc., San Diego, CA).

Bioinformatics Analysis
Illumina reads were de-multiplexed and aligned to the NCBI

37/hg19 reference sequence (GRCh37-lite) using BowTie2 in

local mode to allow soft-clipping of WGA adapter sequences [31].

Binary alignment/map (BAM) files were merged and duplicates

marked using Picard v1.46 (http://picard.sourceforge.net). Cov-

erage metrics were calculated with GATK v1.2 DepthOfCover-

age, with reads filtered for a minimum alignment score of 10 (-

mmq10) and a minimum base quality of 13 (-mbq13) [19,20].

Read pileups were generated for individual samples with the

SAMtools v0.1.18 mpileup command using default settings with

the following exceptions: 1) base alignment quality (BAQ)

computation disabled (-B); 2) minimum alignment score of 10 (-

q 10); and 3) minimum base quality score of 13 (-Q 13); 4)

maximum read depth of 99999 (-d 99999) [17]. Variants were

called from individual sample pileup files with either SAMtools or

VarScan v2.3.5 using default parameters [17,18], or using the

GATK Unified Genotyper applied jointly across all single-cell

libraries [19,20]. The identity of each sample was confirmed by

variant calls at known germline homozygous SNPs (Table S4), as

well as individual-specific somatic SNVs (Table S5).
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Phylogenetic Analysis
Phylogenetic analysis was performed in R (v3.0.1) using the

packages ape [32] and phangorn [33]. Briefly, genetic distances

were estimated among all single cells for each subject under a

generalized Kimura model [34], and initial trees were derived

using a modified neighbor joining algorithm. Likelihood optimi-

zation was then used to obtain the maximum likelihood (ML) tree

for each subject using a generalized time reversible (GTR)

substitution model. Finally, we performed a non-parametric

bootstrap on each ML tree to estimate the support for individual

branches (n = 1000 iterations).

Maximum Likelihood Estimation of Sample Cellularity
For each single- and two-cell sample, the number of variant reads

at heterozygous loci was modeled as a binomial process with a

probability, p, derived from: 1) the variant allele fraction, f, in the

original population (putatively 1 or 2 cells), and 2) the cumulative

error rate, e, attributable to WGA, library preparation, and

sequencing. I.e., for each locus, P(X= k),Bin(n,p), where k is the

number of variant reads, n is the total read depth, and p is given by

p= f(12e)+(12f)e. For each mutation cluster, the cumulative

likelihood of the observed variant allele counts was calculated using

specific VAFs for every possible combination of two clones. A

likelihood ratio test using a one-sided chi-square distribution with 1

degree of freedom was then applied to calculate the overall

probability that the observed variant allele fraction distribution was

generated from a clonally pure (single-cell) or clonally heteroge-

neous (two-cell) sample. For each subject, the cumulative error rate

was estimated for each cluster by calculating the mean VAF at these

sites among single-cell samples from the other two subjects (samples

expected to be reference at these positions). I.e., since all samples

were processed in parallel and run on the same sequencing lane,

subjects served as mutual controls for modeling the site-specific

error rates intrinsic to WGA, library prep, and sequencing.

Supporting Information

Figure S1 Correlation of VAFs between array-based and liquid-

phase targeted sequencing. Libraries prepared from genomic

DNA (without amplification) from unfractionated MDS (left

panels) or sAML (right panels) bone marrow cells were enriched

for target regions by hybridization capture. The variant allele

fraction (VAF) for each targeted SNV determined by array-based

(x-axis, previous study [14]) and liquid-phase capture (y-axis,

current study) is plotted for each sample. The R2 is included for

each pair. The VAFs for somatic SNVs are highly correlated

between capture reagents.

(PDF)

Figure S2 Genotyping errors at germline heterozygous posi-

tions. The average number of genotype calls per library are plotted

for each individual and sample type (unfractionated, single- and

two-cell) at positions known to be germline heterozygous SNPs

(based on Affymetrix arrays). Heterozygous calls (‘‘Het’’) therefore

represent the correct genotypes at these loci, whereas homozygous

reference (‘‘Hom Ref’’) or homozygous variant calls (‘‘Hom Alt’’)

represent a genotyping error due to the loss of a single allele. These

errors are rare in unfractionated samples, and—among sorted

samples—losses of reference and variant alleles occur at roughly

equal rates (two-sided binomial exact test), supporting ADO as the

underlying mechanism. Statistical tests comparing proportion of

homozygous reference and homozygous variant errors were

omitted for UPN461282 due to an inadequate number of

genotype observations.

(PDF)

Figure S3 Pairwise comparison of dropout rates among germ-

line heterozygous positions between subjects. The false negative

rate (FNR) for each single-cell library was assessed at heterozygous

sites common to all three subjects. The R2 is included for each

pairwise comparison (A–C). There appears to be a weak

correlation between subjects, but site-specific effects only explain

25–30% of the variance in FNR. I.e., the rate of allelic dropout

appears to be predominantly driven by stochastic effects.

(PDF)

Figure S4 VAF distribution for UPN461282 predicted hetero-

zygous somatic mutations among all sequenced samples. (A)

Unfractionated samples—sAML bone marrow, MDS bone

marrow, MDS peripheral blood, and skin—demonstrate the

emergence of distinct mutation clusters over time with successively

lower mean VAFs. (B) The VAF distribution among single cells

appears uniform for each cluster, centered on 0.5—except cluster

5, which our analyses suggest was enriched for false positives and

composed of at least two mutually exclusive sub-clusters. (C) Two-

cell experiments show deviations from 0.5 in specific variants—all

three clusters in two-cell 1 (suggesting a non-clonal cell mixed with

a clone 3 cell), but only cluster 4 in two-cell 2 (consistent with a

clone 3 cell mixed with a clone 4 cell). Clone numbers denote the

latest mutation cluster observed in a particular cell; e.g. clone 2

harbors mutations from clusters 1 and 2. BM: bone marrow. PB:

peripheral blood.

(PDF)

Figure S5 VAF distribution for UPN182896 predicted hetero-

zygous somatic mutations among all sequenced samples. (A)

Unfractionated samples—sAML bone marrow, sAML peripheral

blood, MDS bone marrow, MDS peripheral blood, and skin—

demonstrate the emergence of distinct mutation clusters over time

with successively lower mean VAFs. (B) The VAF distribution

among single cells appears uniform for each cluster, centered on

0.5. Cell 12 exhibits less variance than other single cells, suggesting

this library was derived from multiple cells (it was excluded from

all single-cell analyses). (C) Two-cell experiments show no

deviations in mean VAF, suggesting two cells belonging to the

same clone were sorted in each (clone 2 cells and healthy cells were

estimated to constitute 52% and 35% of the sample, respectively).

Clone numbers denote the latest mutation cluster observed in a

particular cell; e.g. clone 2 harbors mutations from clusters 1 and

2. BM: bone marrow. PB: peripheral blood.

(PDF)

Figure S6 VAF distribution for UPN288033 predicted hetero-

zygous somatic mutations among all sequenced samples. (A)

Unfractionated samples—sAML bone marrow, sAML peripheral

blood, MDS bone marrow, MDS peripheral blood, and skin—

demonstrate the emergence of distinct mutation clusters over

time with successively lower mean VAFs. (B) The VAF

distribution among single cells appears uniform for each cluster,

centered on 0.5. (C) Two-cell experiments show deviations from

0.5 in cluster 2 variants. The mean VAF of cluster 2 in two-cell 2

is diluted near 0.25, consistent with a clone 1 cell mixed with a

clone 2 cell. The mean VAF of clusters 1 and 2 in two-cell 1 do

not appear to be 0.25 or 0.50, suggesting that more than two cells

were sequenced in this library. No non-tumor samples were

observed in single- or two-cell samples, but these were only

predicted to be present at ,7%. Here, clone numbers denote the

latest mutation cluster observed in a particular cell; e.g. clone 2

harbors mutations from clusters 1 and 2. BM: bone marrow. PB:

peripheral blood.

(PDF)
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Figure S7 Unedited variant profiles. Variant profiles across

targeted somatic mutations in single-cell samples (sAML bone

marrow) in (A) UPN461282, (B) UPN182896, and (C)

UPN288033. Rows display positive and negative variant calls

color-coded by mutation cluster for each single-cell sample, and

columns indicate specific SNVs somatic at sAML diagnosis.

Variants are grouped and color-coded by cluster as predicted from

sequencing unfractionated material (uppermost track in each

panel). Each cell is grouped by the clone it is inferred to represent.

Outlier SNVs (purple) were those which could not be confidently

clustered based on bulk sequencing. Positions where reference calls

were made are colored grey; positions where no call was made (,

256 coverage) are colored white. Pairs of variants that always

travel in the same state (reference or variant) likely arose in the

same clonal expansion. Pairs of variants that are called together in

some cells but not others are likely related by linear evolution.

Pairs of variants that are mutually exclusive suggest evolutionary

branch points, and were rare. Clone and variant assignment are

derived solely from predictions from bulk sequencing.

(TIF)

Figure S8 Correlation of clone frequencies derived from

unfractionated samples and single cells. Previous whole genome

sequencing identified 2–5 clusters within the VAF distributions for

each subject in the current study [14]. Each cluster was predicted

to correspond to a defined subclone at a frequency approximately

equal its mean VAF (x-axis). Sequencing 11–12 single-cell libraries

and 1–2 two-cell libraries for each subject yielded mutation

profiles generally consistent with predicted clones, allowing direct

determination of clone frequencies (y-axis).

(PDF)

Table S1 Summary of sample set. Summary of source material

for each of the 56 libraries sequenced in this study.

(XLSX)

Table S2 Summary of targeted SNVs. Characteristics of each

targeted SNV discovered and validated in the previous study [14].

The right-most 56 columns list the variant allele fraction (VAF) of

each variant in every sequenced sample.

(XLSX)

Table S3 Detailed sequencing metrics. Summary of sequencing

data generated, aligned, on-target and non-PCR/optical duplicate

for each sample.

(XLSX)

Table S4 Identity confirmation at germline homozygous SNPs.

Targeted regions included 26 germline homozygous SNPs

(ascertained by Affymetrix 6.0 SNP arrays) that differentiated

UPN182896 and UPN288033 (data not available for

UPN461282). Next-generation sequencing calls verified the

sample identity of unfractionated material as well as single-and

two-cell samples at these loci (overall true positive rate

(TPR) = 0.98).

(XLSX)

Table S5 Identity confirmation at somatic SNVs. For each

subject, summary of non-reference calls at positions harboring

somatic SNVs in either of the other two subjects. Somatic SNVs

were mutually exclusive between subjects, so the expected non-

reference call rate is 0, and non-reference calls constitute false

positives. These data provided additional verification that each

sample was derived from the intended subject (overall false positive

rate (FPR),0.01).

(XLSX)

Table S6 Variant calling performance at germline SNPs.

Sample-level data detailing accuracy of next-generation sequenc-

ing variant calls compared to Affymetrix array genotypes. True

positive (TP): variant allele called by NGS at a site with $1 non-

reference alleles called by Affymetrix array. True negative (TN):

reference alleles called by NGS at a site with 0 non-reference

alleles called by Affymetrix array. False positive (FP): variant allele

called by NGS at a site with 0 non-reference alleles called by

Affymetrix array. False negative (FN): reference allele called by

NGS at a site with $1 non-reference alleles called by Affymetrix

array. True positive rate (TPR): TP/(TP+FN)= sensitivity =

power. False positive rate (FPR) =FP/(FP+TN) = 1 – specificity.

False negative rate (FNR) =FN/(FN+TP)= 1- sensitivity.

(XLSX)

Table S7 Maximum likelihood analysis. Summary of maximum

likelihood analysis of VAF distributions for each single- and 2-cell/

well sample. For .90% of single-cell samples, MLE predicts the

observed VAFs were derived from a clonally pure sample. The

model does not differentiate between 1 cell and 2 cells of the same

clone type. It is unlikely that multiple cells were sorted and in 35/

36 cases contained only one clone type. Five putative single-cell

samples were predicted to be heterogeneous (i.e., they represent

the admixture of at least two distinct clones). Four of these involve

UPN461282 cluster 5, which 1) appear to have been enriched for

false positives, and 2) appear to have been split between at least

two independent subclones. The fifth (UPN182896 single-cell 12)

appears to be a genuine sorting error, and data from this cell were

excluded from all single-cell analyses. Two putative 2-cell/well

samples were predicted to be homogenous, which may reflect

sorting two cells of the same type (this tumor was largely clone 2

and wild type), or the failure to successfully sort a second cell.

MLE Predicted State: most likely two-cell configuration. Expected

Clone: state assuming sample was single-cell, belonging to a clone

defined by the latest cluster with variant alleles detected. LRT: p-

value from one-sided chi-square distribution with one degree of

freedom comparing of most likely mixed configuration to most

likely unmixed configuration.

(XLSX)
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