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GBM is the most common and most aggressive type of primary brain 

tumor in adults1. Therapeutic options are limited, consisting of sur-

gery and treatment with radiotherapy plus an oral alkylating agent, 

temozolomide (TMZ). Despite the benefits from TMZ, the exten-

sion of patient survival averages ~2.5 months and tumors invariably 

recur, leading to a fatal outcome2. Recent reports using large-scale 

sequencing approaches have characterized the genomic landscape 

of untreated tumors3,4, yet very few studies have analyzed recurrent 

GBM and patient cohorts are limited in size5–7.

The evolution of tumor cells under therapy can be viewed as a 

Darwinian process of clonal replacement8–10 in which treatment 

ablates vulnerable cells while positively selecting for resistant clones. 

Studies of spatially distinct tumor fragments indicate that treatment 

failure is frequently complicated by intratumoral heterogeneity 

(ITH), a common phenomenon in low- and high-grade glioma11–14. 

Mutations in TP53 were recently proposed as a marker of subclonal 

heterogeneity in GBM7, but a clear pattern of tumor evolution remains 

elusive. ITH and diversity in evolutionary trajectories preclude the 

identification of general evolutionary patterns in GBM, especially 

when only limited cohorts of patients are available.

To find genetic markers of progression and to elucidate the diverse 

evolutionary trajectories by which GBM can occur and recur, we per-

formed whole-exome and transcriptome analyses of untreated and 

recurrence tumors from 114 patients with GBM for whom corre-

sponding matched normal tissue was available.

RESULTS
Longitudinal mutational landscape of GBM
To elucidate the mechanisms driving the evolution of high-grade 

glioma under therapy, we analyzed 293 whole exomes and 141 

transcriptomes from longitudinal tumor–matched normal samples 

in 114 patients with GBM (Fig. 1a). Patients with recurrent GBM 

(89 diagnosed with primary GBM) were collected from the Istituto 

Neurologico C. Besta (INCB; R001–R019), the MD Anderson Cancer 

Center (R020–R029), The Cancer Genome Atlas (TCGA; R030–R042), 

the University of California San Francisco (UCSF; R043–R052), Kyoto 

University (KU; R053–R055), and Samsung Medical Center (SMC; 

R056–R114). Whole-exome triplets comprising the initial tumor 

sample, recurrence tumor sample, and normal genomic DNA were 

sequenced for 93 patients. The transcriptomes of initial and recur-

rence tumor pairs were sequenced for 65 patients. All but 14 patients 

received standard treatment, including TMZ2. Greater than 200-fold 

mean target coverage was achieved in 84% of samples (246 of 293). 

On average, 76% of coding bases in the exome were covered by at least 

100 high-quality reads (Supplementary Table 1).

To identify somatic single-nucleotide variants (SNVs) as well as 

short insertions and deletions (indels), we used the variant calling 

software SAVI2 (ref. 15). We included as somatic variants only those 

with a mutant allele frequency of 5% or greater. Among these variants, 

we selected 40 mutations from the INCB cohort for validation. Sanger 

sequencing successfully validated 98% (39/40) of the mutational calls 
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as well as changes in allele frequency between untreated and recur-

rence tumors (Supplementary Table 2 and Supplementary Data). 

Untreated tumor samples harbored an average of 60 somatic muta-

tions. Recurrence tumor samples had 585 somatic mutations on aver-

age, but this figure is not representative because of the inclusion of 17 

patients (6 primary GBM and 11 secondary GBM) with hypermutated 

recurrence tumors (>500 mutated genes per tumor). The remaining 

non-hypermutated tumors had only 50 mutations on average. All 

hypermutated tumors originated in TMZ-treated patients. Sixteen 

of the 17 hypermutated samples gained mutations in genes encod-

ing DNA mismatch-repair (MMR) proteins (MSH6, MSH2, MHS4, 

MSH5, PMS1, PMS2, MLH1, and MLH2) (Fig. 1b).

We compared mutations found in the initial and recurrence sam-

ples for each of the 93 patients for whom whole-exome triplets were 

available. Appearance of the same mutation in both the initial and 

recurrence samples for a patient suggests that the mutation origi-

nated relatively early in that patient’s tumor development, whereas  

appearance of a mutation in only one sample suggests that the muta-

tion may have occurred after the clonal lineages leading to the two 

samples diverged. We discovered that the mutations occurring in 

only one of a patient’s two GBM samples outnumbered the shared 

mutations in more than half of all patients (57%; 53/93) (Fig. 1a, 

single-sample mutations versus shared mutations). We next assessed 

the pairwise co-occurrence and mutual exclusivity of genomic and 

clinical features across all patients. In addition to previously reported 

association16–18 (Fig. 1c), we observed a number of significant asso-

ciations not previously reported for GBM that were exclusive to recur-

rence. These associations included co-occurrence of MGMT promoter 

methylation and hypermutation (P = 4 × 10−3, Fisher’s exact test; only 

in TMZ-treated patients), co-deletion of RB1 and PTEN (P < 1 × 10−4, 

Fisher’s exact test), and co-mutation of NF1 and TP53 (P = 1 × 10−2, 

Fisher’s exact test).

Overall, our mutational analysis identifies both known and poten-

tially new driver gene mutations in GBM. We observed mutations 
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Figure 1 Mutational landscape of recurrent glioblastoma. (a) Number of somatic mutations. Data are shown for 114 patients from six sources (Istituto 

Neurologico C. Besta, MD Anderson Cancer Center, The Cancer Genome Atlas, University of California San Francisco, Kyoto University, and Samsung 

Medical Center). (b) Clinical and genetic profiles of patients. TMZ, treatment with temozolomide; MMR, mutation in a mismatch-repair pathway gene 

(MSH6, MSH2, MSH4, MSH5, PMS1, PMS2, MLH1, and MLH3 were considered); MUT, somatic nonsynonymous mutation with variant allele frequency 

(VAF) >5% in at least one sample; AMP and DEL, amplification or deletion with mean segmentation >0.5, as computed by SNP array data, by array 

comparative genomic hybridization (CGH) data or by whole-exome sequencing data. (c) Pyramid plot highlighting the correlation between different 

features. A hypergeometric test was performed for each pair of elements, considering initial and recurrent tumors separately. The size of each circle 

corresponds to the significance level of the correlation. Associations with P < 0.1 are shown. MET, altered methylation. (d) Three-dimensional bubble 

plot showing the frequency of somatic nonsynonymous mutations exclusively in initial tumors (red; left axis), exclusively in recurrent tumors (black; 

right axis), and in common to the two tumors (yellow; upper axis). Ninety-three patients with exome sequencing data from matched normal, initial 

tumor, and recurrent tumor samples were considered in this analysis.
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in known drivers of GBM3, including TP53, PTEN, EGFR, PIK3CA, 

ATRX, IDH1, PIK3R1, and PDGFRA, with similar frequencies 

in untreated and recurrence tumors (Fig. 1d). We also identified 

hotspot mutations in unreported potential driver genes in GBM. In 

particular, we found seven patients with nonsynonymous mutations 

in PTPN11 (encoding SHP2 protein) mapping to the first SH2 and 

PTP domains with a similar distribution to variants found in juve-

nile myelomonocytic leukemia19. A few genes seemed to be mutated 

and expressed exclusively in recurrence tumors (Fig. 1d), including 

LTBP4 (10/93), the DNA MMR gene MSH6 (encoding MutS homolog 

6; 8/93), PRDM2 (10/93), and IGF1R (9/93) (for a complete list, see 

Supplementary Table 2). Interestingly, all eight cases with mutations 

in MSH6 corresponded to hypermutated recurrences (P < 1 × 10−4, 

Fisher’s exact test), and three of these cases included nonsense muta-

tions in the gene, indicating that loss of function of MSH6 is related 

to genomic hypermutation in GBM. This finding is consistent with 

previous observations of the induction of a hypermutated genotype 

following treatment of glioma20–23. The recurrence-only mutated 

gene LTBP4 has been reported to be an activator of transforming 

growth factor (TGF)-β signaling by promoting the assembly, secre-

tion, and targeting of sites where TGF-β1 is stored and/or activated24. 

Disruption of Ltbp4 causes abnormal lung development, cardiomy-

opathy, and colorectal cancer in mice25.

To explore copy number variations (CNVs) of initial and recurrent 

GBM, recurrence-based analysis, GISTIC2 (ref. 26) (Supplementary 

Fig. 1 and Supplementary Table 3), and MutComFocal27 

(Supplementary Fig. 2 and Supplementary Table 4) were applied.  

We found CNVs in several well-known GBM driver genes. EGFR 

amplification, which frequently co-occurred with EGFR SNVs and 

the EGFRvIII receptor variant, was observed in 42% of initial tumors 

(44/104) and 34% of recurrence tumors (35/102), whereas CDK4 

amplification was detected in 19% of both initial and recurrence 

samples (20/104). Deletions in CDKN2A were the most frequent dele-

tion in 47% of initial samples (49/104) and 52% of recurrent tumors 

(53/102). PTEN displayed a similar prevalence of loss in initial (37%; 

38/104) and recurrent (34%; 35/102) samples.

We then defined a zygosity score to identify regions of loss of het-

erozygosity (LOH) (Online Methods, Supplementary Fig. 3, and 

Supplementary Table 5). The median zygosity score for a normal 

diploid chromosome is expected to be close to 0.25. To identify 

potential tumor suppressors associated with a two-hit mechanism, 

we analyzed genes with point mutations in regions with LOH in 

non-hypermutated recurrence tumors. This analysis recapitulated 

known tumor suppressors in GBM, including TP53 (14/78 samples), 

PTEN (9/78 samples), and NF1 (3/78 samples), and identified LOH 

encompassing inactivating mutations in other genes not previously 

reported in GBM, including APC (mutation encoding p.Arg876*) 

(Supplementary Table 5).

The gene fusions detected by RNA-seq analysis are summarized in 

Supplementary Table 6. We found gene fusions reported as recur-

rent alterations in GBM, such as FGFR3-TACC3 (ref. 28) and EGFR 

fusions with multiple partners3. FGFR3-TACC3 fusions were highly 

expressed in both the untreated and matched recurrence tumors, 

thus confirming the clonal nature of these fusion events28,29. We also 

found rare fusions involving other receptor tyrosine kinase (RTK)-

encoding genes, such as PDGFRA, MET, and ROS. Interestingly, two 

patients harbored in-frame gene fusions involving MGMT at relapse 

(Supplementary Fig. 4). Patient R114 harbored two highly expressed 
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in-frame fusions, NFYC-MGMT and BTRC-MGMT, and patient R056 

at recurrence harbored a SAR1A-MGMT fusion. Of particular note, 

these three fusion transcripts carried the same breakpoint in the 

MGMT gene, and the reconstructed ORF for each preserved the meth-

yltransferase and DNA-binding domains (Supplementary Table 6).  

The fusion transcripts were further validated by RT–PCR (Online 

Methods and Supplementary Fig. 5). MGMT is a gene that encodes 

an O6-methylguanine DNA methyltransferases, and epigenetic silenc-

ing of this gene has been associated with longer overall survival in 

patients with GBM under therapy30. Consistently, we observed that 

MGMT methylation at diagnosis predicted longer survival (P = 0.018). 

We also observed a high correlation between MGMT methylation and 

expression, both in initial and relapse samples (P = 6 × 10−3 in initial 

and 0.016 in relapse samples; Supplementary Fig. 6). At recurrence 

but not in the initial tumor, low expression of MGMT was significantly 

related to better prognosis (P = 4 × 10−4).

Hypermutation related to temozolomide
As shown in Figure 1a, 17% of patients with TMZ-treated GBM 

(17/100) relapsed with hypermutated tumors, yet there was no inci-

dence of hypermutation in non-TMZ-treated patients (0/14). The 

median survival time of patients with hypermutated primary GBM hav-

ing wild-type IDH1 was 24 months, corresponding to a slight increase 

in comparison to other patients with GBM having wild-type IDH1  

(18 months). The gain of mutations in the MMR pathway as well as the 

accompanying hypermutation in patients with glioma after treatment 

has been reported before20–23, but the pattern of the hypermutated 

genes and the mechanism causing the mutations remain unclear. To bet-

ter investigate patient mutational variation, we grouped all mutations  

into four types: those identified in recurrence tumors without TMZ 

treatment, those identified in untreated tumors, those identified in 

TMZ-treated but non-hypermutated cases, and those identified in 

TMZ-treated hypermutated cases. Hypermutated recurrence tumors 

were highly enriched for C>T (G>A) transitions (Fig. 2a). To iden-

tify additional markers of hypermutation, we extracted 10 bp of 

DNA sequence from the coding strand of hypermutated loci. Motif  

analysis31 showed that hypermutation occurred predominantly on 

the coding strand at the first cytosine of CpY elements (where Y rep-

resents a pyrimidine base) (Fig. 2b). By contrast, a pattern of muta-

tions at CpR elements (where R represents a purine base)32 could be 

seen in all other tumor types tested. Although we found no signifi-

cant association of the ratios of silent/missense mutations in non- 

hypermutated tumors, recurrence hypermutated samples contained 

significantly greater numbers of silent mutations (Fig. 2c). Moreover, 

hypermutation may be related to expression of genes involved in 

tumor recurrence. In hypermutated tumors, genes containing hyper-

mutated loci were more highly expressed than mutated genes with  

no hypermutated loci and non-mutated genes (Fig. 2d).

Reconstruction of the main routes of GBM evolution
The number of mutations exclusive to untreated tumors and recur-

rence tumors or in common can be used to describe an evolutionary 

tree. We developed a method to perform statistics on the space of 

evolutionary trees33 by embedding each tree in a sphere (Fig. 3a). 

In each representation, the upper vertex corresponds to the frac-

tion of mutations that are common to both samples, the left vertex 

corresponds to the fraction of mutations exclusive to the untreated 

sample, and the right vertex corresponds to the fraction of muta-

tions exclusive to recurrence. Unsupervised clustering of the different 

phylogenies identified three clusters (Online Methods). The yellow 
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Figure 3 Mathematical model of tumor 

evolution. (a) Moduli space of GBM evolutionary 

trees. Each ball represents one patient, and the 

different colors correspond to three clusters in 

moduli space. (b) Model of branching tumor 

evolution. This model assumes an independent 

monophyletic origin for initial and recurrence 

tumors sharing an ancestral clonal lineage 

(duration tS), after which point they branch off 

from one another (durations tI and tR1 + tR2).  

After this clonal evolution, the lineage leading 

to each sample diversifies for duration tMRCA, 

during which subclonal variants can accrue. 

Somatic variants accrue according to the 

substitution rates µ1 and µ2 before and after 

treatment, respectively. (c) Relationship 

between estimated substitution rates before 

and after treatment (the median and IQR are 

shown for each patient). The dashed line is 

the diagonal (where the pretreatment and 

post-treatment substitution rates are equal). 

Red, hypermutated tumors; light blue, non-

hypermutated tumors; squares, primary 

GBM diagnoses; diamonds, secondary GBM 

diagnoses. A black dot in the center of a symbol 

indicates patients whose disease fit the  

model well. A yellow halo indicates patients with 

TP53 mutated in both the initial and recurrence 

samples. Patient R069 was not considered 

for evolutionary analysis as no valid mutations 

were detected in the initial sample. (d) Cross-

sectional integration of longitudinal data  

by TEDG. Arrows show the order in which mutations occur. Thicker arrows correspond to more independent patients with the same order of mutations.  

The size of each node corresponds to the frequency of mutations in that gene in our cohort.
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cluster represents the limiting case where few 

mutations are lost from tumors after diagno-

sis, similar to the classical model of linear 

tumor evolution typified in previous studies 

of treatment-naive colon cancer34. However, 

treatment can change linear patterns of evo-

lution35. The abundance of points far from 

the right edge of the diagram suggests that, 

in most patients, the dominant clones before 

treatment are replaced by new clones that do not have many of the 

same mutations.

If many mutations in the initial sample are lost at recurrence, this 

suggests that the dominant clone at recurrence originated (that is, 

diverged from the dominant clone at diagnosis) at a time point rela-

tively long before the initial sample was taken. Consistent with epide-

miological observations and classical models of tumor evolution from 

Armitage and Doll10 and Nordling9, the number of mutations in the 

untreated tumor increased with the patient’s age at diagnosis (with 

an increase on average of 0.6 protein-changing mutations per year, 

or 0.02 mutations per megabase per year; Supplementary Fig. 7d). 

Encouraged by this concordance, we developed a mathematical model 

of branching tumor evolution with an independent monophyletic 

origin for diagnostic and relapse samples.

In our branching model (Fig. 3b), if a mutation occurs along the 

lineage common to both the initial and recurrence samples, it will 

be clonal in both of these samples. If a mutation occurs along the 

lineage leading to the most recent common ancestor (MRCA) of a 

single sample, then it will be clonal in that sample and absent in the 

other. If a mutation occurs in a descendant of the MRCA of a sam-

ple, then it will be subclonal in that sample and absent in the other. 

Any other pattern—where a mutation appears subclonally in both 

samples or appears clonally in one sample and subclonally in the 

other—would require either recurrent mutation or ‘back-mutation’ 

(a mutation that restores the wild-type allele). An alternate model 

is also possible in which the recurrence sample stems from a lin-

eage nested within the initial sample, perhaps selected by therapy. 

In this case, a single mutational event could produce a variant that 

is present subclonally at diagnosis and clonally at recurrence, but 

two events would be needed to explain loss of a clonal mutation 

(Supplementary Fig. 7a,b). We found that 59% of patients (54/92) 

had at least four clonal mutations at diagnosis that were lost in the 

recurrence sample, supporting the branching model as the typical 

scenario. The picture is nuanced, however, as 17 patients had at 

least four subclonal mutations at diagnosis that became clonal at 

recurrence, supporting the alternate model as a minority scenario  

(Supplementary Fig. 7c).

By accounting for the likelihood of each mutational pattern in our 

branching model, we fit substitution rates before and after treatment, 

as well as the amount of time before diagnosis that the untreated and 

recurrence lineages diverged (Online Methods). Using a collection of 

statistical criteria (Online Methods), we found that 49% of the patients 

analyzed (45/92) fit the model well, without requiring an unrealistic 

frequency of recurrent mutation or back-mutation. The pretreatment 

substitution rate was consistent among these 45 patients (Fig. 3c), 

corresponding to a median (interquartile range, IQR) of 0.028 (0.018–

0.041) substitutions per megabase per year. The statistics for all 92 

patients were similar, with a median (IQR) of 0.024 (0.018–0.035) 

substitutions per megabase per year. No relationship was observed 

between the substitution rate and age at diagnosis (Supplementary 

Fig. 8). Considerably more variation was observed in post-treatment 

substitution rates, with 15 of the 92 patients exhibiting remarkably 

higher mutation rates after treatment (Supplementary Fig. 9). All but 

one of these patients showed hypermutation, with over 500 variants 

found in the recurrence sample.

Estimates of divergence time suggested that recurrence clones 

diverged from untreated clones many years before disease was detected 

(Supplementary Fig. 7e). The median divergence time among the 

45 patients whose disease fit the model well was 12.6 years (range 

of 2.3–50.5 years, IQR of 7.2–22.6 years). Because the remaining 47 

patients may fail the model’s assumption that untreated and recur-

rence tumors are evolutionarily distinct (that is, monophyletic), we 

caution that divergence time for these patients should be interpreted 

only as a heuristic measure of the genetic difference between a given 

pair of tumor samples. In general, the uncertainty in divergence time 

estimates was large, with the median for patients whose disease fit the 

model well showing a 95% confidence interval of 24 years. Still, even 

the lower bound of the 95% confidence interval exceeded 3 years for 

a majority of the patients.

To analyze the potential evolutionary trajectories of GBM under 

therapy, a tumor evolutionary directed graph (TEDG)36 was con-

structed for the 93 triplet samples. As this analysis uses as input the 

fraction of cells harboring a particular mutation, we estimated the 

purity of each tumor using ABSOLUTE37 (Supplementary Table 7) 

and PyClone38 (Supplementary Table 8). The resulting TEDG indi-

cates that mutations in IDH1, PIK3CA, and ATRX are early events, 

mutations in TP53, NF1, and PTEN occur later, and mutations in MSH6 

and LTBP4 are relapse-specific events (Fig. 3d). A more complex set of 

possible evolutionary trajectories appears when copy number informa-

tion is included in the analysis (Supplementary Fig. 10).

Clonal replacement events are frequent in GBM
To discover the pattern of alterations in recurrent GBM as compared 

with untreated tumors, we performed in-depth investigations into any 
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Figure 4 Clonal mutation replacement in key 

driver genes. (a) Mutations of seven key GBM 

drivers (EGFR, TP53, PDGFRA, PTEN, ATRX, 

NF1, and RB1) were replaced by different 

mutations in the same genes (enrichment 

compared to non-drivers at P < 1 × 10−4, 

Fisher’s exact test). (b–d) Replacement in three 

different patients of mutations in PDGFRA (b), 

TP53 (c), and EGFR (d). Cancer cell frequency 

was estimated by PyClone. 
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gains or losses of genetic alterations. The EGFR gene (encoding epidermal 

growth factor receptor) is known to be frequently amplified, mutated, and 

rearranged in untreated gliomas39. To uncover the role of EGFR altera-

tions in GBM evolution, we applied PRADA to detect EGFR structure 

variance from RNA-seq data40. In examining junction reads, we found 

at least one junction read corresponding to EGFRvIII in 18% (12/67) of 

initial tumors and 11% (8/76) of recurrence tumors (Supplementary 

Table 9). Interestingly, nine patients lost EGFRvIII and one patient gained 

EGFRvIII at relapse (transcribed allelic fraction >5%), indicating, first, 

that the variation resulting in EGFRvIII is a late event that occurred after 

the clonal lineages leading to the two samples diverged and, second, that 

EGFRvIII is more common in initial tumors and is lost during treatment 

(Fig. 1d). However, EGFRvIII also occurs in recurrence. An example  

is provided by patient R005, whose untreated tumor harbored EGFR 

amplification and a mutation encoding p.Ser645Cys. The EGFR mutation 

encoding p.Ser645Cys was lost in the recurrence tumor and replaced by 

a variation resulting in EGFRvIII (Supplementary Fig. 11).

A switch between differentially mutated versions of the same gene 

also occurred for PDGFRA (encoding platelet-derived growth fac-

tor receptor α polypeptide), another RTK-encoding gene frequently 

mutated in GBM (Fig. 4b and Supplementary Fig. 11). Mutation 

encoding p.Glu229Lys, which is relatively common in cross-sectional 

mutation databases (for example, TCGA41), seemed to be a relatively 

late event, as it was exclusive to the recurrence sample and replaced the 

initial mutation encoding p.Pro443Leu (Fig. 4b). Mutational replace-

ment also occurred in the tumor suppressor TP53 (p.Gly105Arg to 

p.Arg337Cys in patient R038; Fig. 4c) and in EGFR (p.Ala1201Thr 

to p.Gly598Val in patient R065; Fig. 4d). In total, we found that 11% 

(10/93) of patients with recurrent GBM had clonal replacements in 

key driver genes (Supplementary Fig. 12). These clonal switching 

events in the same gene occurred preferentially in genes known to 

have a role in GBM (P < 1 × 10−4; Fig. 4a). The strong association 

between the switching of alterations and key driver genes (EGFR, 

TP53, and PDGFRA) suggests (i) that some of these genes contribute 
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Figure 5 Expression-based subtyping of recurrent GBM. (a) Expression-based GBM subtyping. ssGSEA was performed to cluster each sample into one of 

four subtypes (proneural, neural, classical, and mesenchymal). An asterisk indicates samples where the subtype had a maximal enrichment score (max ES).  

If the optimal subtypes in the initial and recurrence tumors were different, a patient is labeled as having switched subtype. The P value was calculated 

by Fisher’s exact test. (b) Association between switching of expression-based subtype and genetic and clinical features. The analysis was performed as in 

Figure 1c. (c) Stochastic matrix of GBM subtypes. The large cohort of longitudinally collected GBM samples allows the construction of a probability matrix 
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to a late expansion, both in treated and untreated tumors, and (ii) that 

converging evolution is associated with these genes.

Expression analysis and subtype switching
On the basis of gene expression pattern, GBM is commonly divided 

into four subtypes, which show different responses to treatment4. To 

study the evolution of gene expression in GBM, we followed the ssG-

SEA method4 to subtype each tumor sample (Fig. 5a). As expected, 

we found that patients with IDH1 mutations were mostly classified 

as proneural gliomas42; EGFR alterations were associated with the 

classical subtype; and NF1 alterations were associated with the mes-

enchymal subtype (Fig. 5b). We observed that all five hypermutated 

primary GBM cases switched subtype (two to the mesenchymal, one 

to the neural, and two to the proneural subtypes). Strikingly, we found 

that two-thirds of primary GBM cases (39/58) switched transcrip-

tional subtype at relapse, whereas secondary GBM cases seemed more 

stable (2/7 switched subtype) (Fig. 5a). Interestingly, the mesenchy-

mal subtype was the most stable primary GBM subtype, switching in 

55% (12/22) primary GBM cases at recurrence, and the mesenchy-

mal subtype at recurrence was associated with worse overall survival  

(P = 3 × 10−3; Supplementary Fig. 13). As EGFRvIII is associated with 

the classical subtype (Fig. 5b), loss of this alteration in the recurrence 

tumor was consistently associated with transition from the classical 

subtype to other expression subtypes (P = 8 × 10−3, Fisher’s exact 

test; Fig. 5a,c).

LTBP4 promotes tumor growth and reduces survival
We found that the LTBP4 gene (encoding latent TGF-β–binding 

protein 4) harbored significantly more mutations in recurrent than 

untreated GBM (Fig. 1d and Supplementary Fig. 14). The LTBP4 

gene encodes a protein that belongs to the LTBP family, which is 

implicated in regulation of the TGF-β pathway, typically acting as an 

activator of TGF-β signaling24. Interestingly, activation of TGF-β is 

known to drive aggressiveness in malignant glioma43–46. We found 

that high expression of LTBP4 in recurrence tumors was associated 

with worse prognosis in patients with primary GBM having wild-type 

IDH1 (P = 7 × 10−3; Fig. 6b). Furthermore, mutations in LTBP4 were 

correlated with higher expression of this gene (P < 0.05; Fig. 6a). 

Further strengthening the case that LTBP4 expression could drive 

tumor growth via TGF-β activation, elevated expression of LTBP4 in 

GBM was associated with elevated expression of genes implicated in 

the TGF-β pathway (Gene Set Enrichment Analysis, false discovery 

rate (FDR) < 0.05; Fig. 6c).

To experimentally test the functional link between LTBP4 and 

TGF-β, we used lentiviruses carrying two independent short hair-

pin RNA (shRNA) cassettes targeting LTBP4 to silence the LTBP4 

gene in the human glioma cell lines U87 and U251 (Fig. 6d). LTBP4 

silencing in both cell lines resulted in reduced expression of the ID 

genes ID1 and ID2, whose expression is positively regulated by TGF-β 

in glioma. Conversely, LTBP4 silencing also led to the upregulation 

of RHOB and GADD45A, two genes repressed by TGF-β in glioma 

(Fig. 6e,f)43. Consistent with the protumorigenic role of TGF-β in 

GBM, LTBP4 silencing markedly impaired the proliferation of U87 

and U251 glioma cells (Fig. 6g,h).

DISCUSSION
Using longitudinal genomic and transcriptomic analyses of 114 

patients with GBM, we have detailed the major routes of GBM evo-

lution under therapy. GBM evolution is highly branched, and specific 

alterations and evolutionary patterns are associated with treatment. 

Our first observation from this analysis is that, despite 45% of muta-

tions (in non-hypermutated tumors) being shared by diagnostic and 

relapse samples, the dominant clone at diagnosis is generally not a 

lineal ancestor of the dominant clone at relapse. Instead, these two 

clones seem to have diverged from a common ancestor more than a 

decade before diagnosis in most patients (Supplementary Fig. 7e).
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Because 11% of patients (10/93) exhibit replacement of one mutated 

version of a gene (at diagnosis) with another, differently mutated ver-

sion of the same gene (at relapse), it is conceivable that the genes asso-

ciated with undergoing clonal completion are the sites of late driver 

events. In fact, this phenomenon of mutational switching is enriched 

~200-fold in genes known to be implicated in GBM, including EGFR, 

TP53, and PDGFRA (Fig. 4a and Supplementary Fig. 13). This sce-

nario of convergent evolution suggests that the common ancestor of 

the diagnostic and relapse clones had fewer driver alterations and 

likely a less aggressive phenotype. The accumulation of alterations 

in GBM cells therefore seems to occur over a decade(s)-long growth 

phase that leads to a highly diverse population, with each clone expe-

riencing a parallel series of expansions.

Related to mutational switching, we also find that two-thirds of 

patients with primary GBM exhibit different transcriptional subtypes 

at diagnosis and relapse. Our observation of subtype switching, con-

sidered together with recent findings that different parts of the same 

tumor can exhibit different GBM subtypes12,47, also calls into ques-

tion the usefulness of the expression-based classification system as a 

prognostic marker before relapse.

Evolutionary dynamics generally appear similar before and after treat-

ment: our mathematical model estimates typical substitution rates of 

~0.03 substitutions per megabase per year during both periods, except 

in the 16% of cases that recur with hypermutated tumors. Hypermutated 

tumors, which are highly enriched for mutations at CpC dinucleotides21, 

harbor mutations in MMR pathway genes, most commonly in MSH6, 

and can exhibit 100-fold higher substitution rates (~3 substitutions per 

megabase per year). We found that hypermutation preferentially tar-

gets highly expressed genes, suggesting that the mutagenic mechanisms 

related to TMZ treatment and subsequent MMR alteration act more 

efficiently in highly expressed regions of open chromatin.

Finally, and of particular relevance to the discovery of new GBM 

treatment strategies, we uncovered unique alterations associated with 

relapsed GBM. In addition to identifying previously reported muta-

tions in MMR pathway genes in 15% of patients (14/93), we found 

mutations in the LTBP4 gene in 11% of relapse tumors (10/93). LTBP4 

encodes a protein that binds to TGF-β. The TGF-β signaling pathway 

has been associated with a variety of biological contexts, including cell 

proliferation, epithelial-to-mesenchymal transition21,48, and apopto-

sis. We have provided both clinical and in vitro evidence that LTBP4 

seems to activate this signaling pathway to drive tumor growth: higher 

expression of LTBP4 in primary GBM samples with wild-type IDH1 

is associated with poorer survival (P = 7 × 10−3; Fig. 6b), and silenc-

ing LTBP4 in two different cell lines decreases both cell proliferation 

and the expression of TGF-β target genes. These results are consistent 

with recent animal studies showing that TGF-β inhibitors reduce the 

viability and invasiveness of gliomas49 and advance the case for these 

molecules as potential antitumor therapeutics.

In conclusion, our study sketches the main routes of GBM evo-

lution under therapy, identifying a highly branched process with  

specific alterations and evolutionary patterns associated with  

treated tumors.

URLs. Broad Institute Firehose platform for TCGA data, http://gdac.

broadinstitute.org/; AROMA for SNP6 data preprocessing, http://

www.aroma-project.org/; Cancer Genomics Hub for TCGA raw data, 

https://cghub.ucsc.edu/.

METHODS
Methods and any associated references are available in the online 

version of the paper.

Accession codes. Additional samples (R094–R114) from the SMC 

cohort have been deposited in the European Genome-phenome 

Archive (EGA) under accession EGAS00001001800. Additional 

samples from the INCB cohort have been deposited in the Sequence 

Read Archive (SRA) under accession SRP074425. Array CGH data for 

patients from the MD Anderson cohort have been deposited in the 

Gene Expression Omnibus (GEO) under accession GSE63035.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Patients and samples. Patients with recurrent GBM were collected from INCB 

(R001–R019), the MD Anderson Cancer Center (R020–R029; ref. 7), TCGA 

(R030–R042; ref. 7), UCSF (R043–R052; ref. 13), KU (R053–R055; ref. 14), 

and SMC (R056–R093 (ref. 6) and R094–R114).

The specimens in the INCB cohort originate from the Besta Brain Tumor 

Biobank, which is partly funded by the Italian Ministry of Health. All patients 

signed informed consent for the use of their biological material for research 

purposes. One case (R012) in this cohort had a history of lower-grade glioma 

before first diagnosis with GBM. All patients were treated by standard Stupp 

treatment with surgery followed by radiotherapy plus concomitant and adju-

vant TMZ2.

Samples from the MD Anderson cohort were primary and recurrent paired 

tumors obtained from the Henry Ford Hospital in accordance with institu-

tional policies, and all patients provided written consent, with approval from 

the Institutional Review Board (protocol 402). Three cases had a history of 

lower-grade astrocytoma before the first diagnosis with GBM (R022, R027, and 

R029). All of the recurrent GBMs had been treated with radiochemotherapy 

plus TMZ. The TCGA cohort contains TCGA samples, collected following the 

published protocol for TCGA. All of the recurrent GBMs had been treated with 

chemotherapy or radiation. Six patients were not treated with TMZ (R031 and 

R034–R038). The MD Anderson and TCGA cohorts were initially published 

by Kim et al.7.

The UCSF cohort contains eight patients (R043–R050) collected from 

the Neurosurgery Tissue Bank at UCSF, with approval by the Committee on 

Human Research at UCSF. Two patients (R051 and R052) in this cohort were 

from the University of Tokyo hospital, where the study was approved by the 

ethics committee of the University of Tokyo. Initial tumors from all patients 

in this cohort were low-grade gliomas, and their recurrences were secondary 

GBM. This cohort was initially published by Johnson et al.13. The KU cohort 

makes use of data generated by the Department of Pathology and Tumor 

Biology at Kyoto University. Initial tumors of patients in the KU cohort were 

low-grade gliomas, and their recurrences were secondary GBM. These patents 

were initially described by Suzuki et al.14.

The SMC cohort consists of GBM samples from the Samsung Medical 

Center, Republic of Korea, including samples from a previous publication 

(R056–R093, including 14 cases from Seoul National University Hospital; Kim 

et al.6) and additional, unpublished samples (R094–R114). All samples in the 

SMC cohort had been collected with approval from the institutional review 

board (files 201004004 and 201310072). Initial tumors from R076–R078, R098, 

R105, and R114 were secondary GBM, with a history of low-grade glioma. 

Patient R103 had cervical cancer 3 years before first diagnosis with GBM.

Detailed clinical information for all cohorts is provided in Supplementary 

Table 10.

Sequencing and mapping. Genomic DNA from initial tumor–recurrence 

tumor–matched normal blood triplets for patients R001–R016 and recurrent 

tumors for patients R017–R019 was extracted, purified, quantified, fragmented, 

subjected to quality control, and used to create a library of genomic DNA 

fragments. Genomic DNA fragmentation was performed using the Covaris 

S220 AFA instrument to reproducibly generate fragments of a precise length; 

quality control of both genomic DNA samples and library fragments (at a later 

time) was performed using the Agilent Bioanalyzer 2100 microfluidic device. 

Both untreated and treated tumor samples from R009, R011, and R014, plus 

recurrent samples from patients R017–R019 were sequenced using the Agilent 

v3 50Mb kit, obtaining 90-bp paired-end reads. Mapping files for untreated, 

normal samples from patients R017–R019 were obtained from TCGA through 

the Cancer Genomics Hub. All other DNA samples from the INCB cohort were 

sequenced using the protocol for the Agilent SureSelect XT Human All Exon 

v4 Kit, with paired-end sequencing of 80 million reads with 150× on-target 

coverage. High-quality reads for these samples were mapped by BWA50 to the 

hg19 (ref. 51) human genome assembly with default parameters. All mapped 

reads were then marked for duplicates by Picard to eliminate potential duplica-

tions. Total RNA for the samples in the INCB cohort was collected to investi-

gate transcriptional profiles by mRNA-seq using Illumina technology. After 

quantification and quality controls, mRNA was reverse transcribed to cDNA 

and a library of fragments was synthesized using Illumina TruSeq mRNA kits. 

Total RNA depleted of rRNA from patients R001–R005, R007, R008, R010, and 

R012 was sequenced by TrueSeq3 stranded prep (Illumina). RNA samples from 

R006, R009, and R017–R019 were sequenced at BGI. All reads were mapped to 

the hg19 human genome assembly from the UCSC Genome Browser51, using 

a fast splice junction mapper, TopHat52.

Mapping files for the TCGA samples except for R039 were downloaded 

through the Cancer Genomics Hub from TCGA. DNA mapping files for the 

UCSF, MD Anderson, and KU cohorts and patients R056–R093 from the 

SMC cohort were all downloaded from the European Genome-phenome 

Archive. (EGAS00001000579, EGAD00001001113, EGAD00001001213, and 

EGAD00001001424) Additional samples (R094–R114) for the SMC cohort 

were subjected to the same sequencing protocols as the samples described in 

the previous publication (R056–R093; ref. 6).

SAVI2 and driver gene selection. To identify somatic mutations from whole-

exome sequencing data for triplet samples (normal, initial tumor, and recur-

rence tumor) from patients with GBM, we applied the variance calling software 

SAVI2 (statistical algorithm for variant frequency identification15), which is 

based on the empirical Bayesian method. Specifically, we first generated a list 

of candidate variants by successively eliminating positions without variant 

reads, positions with low sequencing depth, positions that were biased for one 

strand, and positions that contained only low-quality reads. Then, the number 

of high-quality reads for forward-strand reference alleles, reverse-strand ref-

erence alleles, forward-strand non-reference alleles, and reverse-stand non-

reference alleles was calculated at the remaining candidate positions to build 

the prior and the posterior distribution of mutation allele fraction. Finally, 

somatic mutations were identified on the basis of the posterior distribution of 

differences in mutation allele fraction between normal and tumor samples15. 

SAVI2 was able to assess mutations by simultaneously considering multiple 

tumor samples, as well as their corresponding RNA samples, if available.

The identity of common somatic mutations for patients R078–R082 was 

unknown because of the lack of normal DNA for these patients. Mutations 

exclusive to initial and recurrence samples were identified on the basis of 

differences between initial and recurrence tumor DNA. Tumor DNA from 

patients R083–R093, R102, and R111–R114 was not complete. The somatic 

mutations for these patients were estimated on the basis of RNA-seq data.

The list of known drivers used in this manuscript (Supplementary Table 2)  

was generated by combining GBM drivers from the Cancer Gene Census53 

and our previous analysis of primary GBM2.

Analysis of loss of heterozygosity and copy number change. All common 

dbSNP variants from single samples were extracted to define the zygosity score 

(ZS) as ZS = f(1 − f), where f is mutation allele frequency. The LOH rate (r) of 

somatic mutations in a tumor sample was then defined by 

r
i

n
i
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n
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∑
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where ZSTi  is the zygosity score in tumor samples and ZSNi  is the zygosity score 

in normal samples. If r < 0.8, we expected the corresponding mutation to be 

in an LOH region. Segmentation in Supplementary Figure 3 was performed 

with the CBS algorithm54.

The EXCAVATOR55 pipeline was carried out to detect copy number altera-

tions on the basis of whole-exome sequencing data. EXCAVATOR considers 

the mean number of reads per exon and normalizes the data by a three-step 

normalization procedure to eliminate bias introduced by GC content, genomic 

mappability, and exon size. Segmentation was then performed with a new 

heterogeneous hidden Markov model algorithm, the heterogeneous shifting-

level model (HSLM) algorithm, which considers the genomic distance between 

consecutive exons55. To confidently quantify variation arising in whole-exome 

sequencing data in each patient’s initial and recurrence samples in comparison to 

normal samples, we calibrated whole-exome sequencing CNV calls to SNP array 

data in samples for which these data were available (Supplementary Fig. 15).  

In addition to whole-exome sequencing, we used segmentation data for TCGA 

samples from the Broad Firehose platform and, when available, SNP6 data 

preprocessed with AROMA and normalized array CGH data obtained from 

the Gene Expression Omnibus (GSE63035). To identify statistically significant 
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regions of variation, GISTIC26 was applied separately in initial and recurrence 

tumors. GISTIC estimated the background rates for each amplification and 

deletion and then summarized the input samples to score the significance of 

regions with altered copy number. To integrate mutation and copy number 

data, MutComFocal27 was separately performed in initial and recurrence 

tumors. In the MutComFocal analysis, long proteins (with more than 3,500 

amino acids), genes lacking expression (where mutations were not expressed in 

any samples), and high-synonymous-rate genes (synonymous/nonsynonymous 

ratio >0.2) were not considered.

Gene fusion detection and structural rearrangement of EGFR. 

ChimeraScan56 was used to generate the starting set of gene fusion candi-

dates. To reduce the false positive rate and nominate potential driver events, 

we applied the Pegasus annotation and prediction pipeline. We reconstructed 

the entire fusion sequence on the basis of breakpoint coordinates and assigned 

a driver score to each candidate fusion via a machine learning model trained 

largely on GBM data57. All candidates reported in Supplementary Table 6 

were selected according to three criteria: (i) Pegasus score >0.5; (ii) either more 

than 400 spanning reads or at least 2 split reads supporting fusion; and (iii) the 

two fusion partners being separated from each other by at least 50 kb.

To examine rearrangement of EGFR, we applied prada-guess-if from the 

PRADA package. PRADA is an RNA-seq analysis pipeline developed at MD 

Anderson40. Following the definition in Brennan et al., the transcribed allelic 

fraction of EGFRvIII was defined as the fraction of junction reads joining 

exon 1 to exon 8.

Gene expression analysis and expression-based subtyping analysis of GBM 

samples. FPKM values were calculated by Cufflinks58. To eliminate batch 

effects, we normalized gene expression by calculating the z score for each 

batch. Gene expression was assessed by corresponding z scores for genes. ssG-

SEA was applied to determine the subtype of GBM samples. For each sample, 

z scores were used to rank all genes to generate the rnk.file as the input for 

the GseaPreranked software. An enrichment score was generated for all four 

subtypes initially defined in Verhaak et al.42. The subtype with the maximal 

enrichment score was selected as the representative subtype for each sample.

Moduli space analysis. Clustering analysis of patient data was performed as 

follows. Each phylogenetic tree was represented as a point in the projective 

evolutionary moduli space, which in this case was a triple (x1, x2, x3) such that 

x1 + x2 + x3 = 1, by taking the raw mutation counts (z1, z2, z3) for the common, 

initial, and recurrent mutations and normalizing, setting xi =zi/(z1 + z2 + z3).  

We discarded samples for which any of the mutation counts was missing, 

leaving 93 points (from 114 patients). The metric for the evolutionary moduli 

space was in this case simply the standard Euclidean metric. Note that, for the 

purposes of constructing this space, the ‘branch lengths’ of each patient’s tree 

were simply mutation counts, in contrast to the evolutionary analysis described 

below, which estimates branch lengths in years.

We then applied three clustering algorithms to this metric space: k-means 

clustering, spectral clustering, and density-based spatial clustering (DBSCAN). 

We used the code provided as part of the scikit Python package. For k-means 

clustering and spectral clustering, we set the number of clusters at three; 

DBSCAN determines the number of clusters from the data, but we set the 

parameters to be small distance of close neighbors ε = 0.5 and minimum 

cluster size = 5. For spectral clustering, the affinity matrix was computed using 

the Gaussian kernel applied to the Euclidean distance.

To ensure stability of the results, we performed cross-validation using 

Monte Carlo simulations in which we sampled without replacement 95% of 

the data points and performed clustering.

Tumor purity estimation and cellular fraction. ABSOLUTE37 was used to 

infer tumor purity and ploidy for each whole-exome sequencing sample by 

integrating mutational allele frequencies and copy number calls.

PyClone38 was run for each sample using default parameters. Briefly, we 

integrated mutation alleles, copy number calls, and LOH status for each sample 

as input to obtain cellular frequencies. Cellular frequencies were then rescaled 

by median adjustment and used as input for TEDGs and mathematical mod-

eling of tumor evolution.

Evolutionary model. We considered all 92 patients for whom mutations 

were identified in both the initial and recurrence tumor samples. To exclude 

false positives, only variants with an allele frequency of at least 5% were used. 

Variants occurring at a cellular fraction of at least 95% were classified as clonal 

in a sample, and other variants were considered to be subclonal. Details of the 

model are given in the Supplementary Note. In Supplementary Figure 16, 

we perform sensitivity analysis using alternate cutoffs for clonality. Related 

code is provided as Supplementary Code.

Tumor evolutionary directed graph reconstruction. To reconstruct the order 

of events during tumor progression, we followed the strategy in Wang et al.36. 

We selected genes that were recurrently mutated and expressed in our samples. 

In hypermutated cases, we only considered mutations of MSH6 and LTBP4. 

A mutation that was predicted to be clonal (cellular fraction >0.8) in both the 

initial tumor and recurrence tumor was defined as an early event, whereas a 

mutation that was only present (variant allele fraction >5%) in one of these 

samples was defined as a late event. To represent the order of clonal muta-

tions, for each sample, directed edges were added to connect early and late 

events. Then, we combined the directed edges from different patients to show 

a global landscape of GBM evolution. A copy number alteration was defined 

as clonal if the absolute value of segmean was greater than 1. A copy number 

alteration was defined as present if above the threshold of 0.5 and as absent if 

below the threshold of 0.1.

Hypermutation score. Hypermutation score (HS) was defined as

HM
WMH WM F WMN WM F= −− − − −

e e
( ) ( )   

where WM is the weight matrix of the DNA sequence logo of a given  

sample, WMH is the weight matrix of all mutations in hypermutated  

samples, and WMN is the weight matrix of mutations from all non- 

hypermutated samples.

Validation of mutations. The genomic regions surrounding predicted muta-

tions were amplified using AccuPrime Taq DNA Polymerase High Fidelity 

(Invitrogen). Primers are summarized in Supplementary Table 11.

PCR products were purified with ExoSAP-IT (Affymetrix) and subjected to 

Sanger sequencing (Macrogen). The amplicons containing predicted genomic 

mutations were sequenced using BigDye Terminator Cycle Sequencing Kit v3.1 

on the ABI Prism 3730xl DNA Analyzer (Applied Biosystems). All figures for 

Sanger sequencing validation are in the Supplementary Data.

To assess the sensitivity in judging absence of a mutation in one phase 

that is present in the other phase, we studied 15 variants in the panel that 

were absent in one of the samples in whole-exome sequencing, with median 

whole-exome sequencing depth of 117 (10–402) reads. Using CancerScan6, 

we found that no read reported the variant in the sample where it was deemed 

absent by whole-exome sequencing (Supplementary Table 12), with median 

CancerScan depth of 563 (217–1,377).

Cell culture, lentivirus production, and cell growth analysis. The U87 cell line 

was acquired through the American Type Culture Collection (ATCC HTB-14).  

The U251 cell line was obtained through Sigma (09063001). Cell lines were 

cultured in DMEM supplemented with 10% FBS (Sigma). Cells were routinely 

tested for mycoplasma contamination using the Mycoplasma Plus PCR Primer 

Set (Agilent Technologies) and were found to be negative.

Lentivirus was generated by cotransfection of the lentiviral vectors 

with pCMV-∆R8.91 and pMD2.G plasmids into HEK293T cells as previ-

ously described59,60. The sequences for the shRNAs targeting LTBP4 are  

provided in  Supplementary Table 11.

After infection, cells were selected with puromycin (Sigma) at a concen-

tration of 2 mg/ml for 48 h. Cells were analyzed by immunoblot analysis, 

qRT–PCR, and growth assay 3 d later.

Evaluation of cell growth was performed using the MTT assay. Cells were 

plated at a density of 2.5 × 103 cells/well in 96-well plates in six replicates 

and allowed to adhere for 24 h. Viability was assessed daily by adding MTT 

((3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium, Sigma; 5 mg/ml in 

PBS). After 4 h of incubation, medium was removed and formazan crystals 
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were solubilized with acidic isopropanol (0.1 N HCl in absolute isopropanol). 

The absorbance at 550 nm was measured with a plate reader.

RT–PCR. Total RNA was prepared with TRIzol reagent (Invitrogen), and 

cDNA was synthesized using Superscript II Reverse Transcriptase (Invitrogen) 

as described60,61. qRT–PCR was performed with the 7500 Real-Time PCR sys-

tem, using SYBR Green PCR Master Mix (Applied Biosystems). The primers 

used in qRT–PCR are summarized in Supplementary Table 11.

Results are presented as the means ± s.d. of three independent experiments, 

each performed in triplicate (n = 9). Statistical significance was determined 

using unequal-variance t tests (two-tailed).

Immunoblotting. Cells were lysed in RIPA buffer (50 mM Tris-HCl, pH 7.5, 

150 mM NaCl, 1 mM EDTA, 1% NP-40, 0.5% sodium deoxycholate, 0.1% 

SDS, 1.5 mM sodium orthovanadate, 50 mM sodium fluoride, 10 mM sodium 

pyrophosphate, 10 mM β-glycerophosphate, and EDTA-free protease inhibitor 

cocktail (Roche)). Lysates were cleared by centrifugation at 25,000g for 15 min  

at 4 °C. Protein samples were separated by SDS–PAGE and transferred to 

nitrocellulose membrane. Membranes were blocked in TBS with 5% nonfat  

milk and 0.1% Tween-20 and probed with primary antibodies. The antibodies  

and working concentrations were as follows: LTBP4 (1:200 dilution;  

sc-393666) obtained from Santa Cruz Biotechnology; and β-actin (1:2,000 

dilution; A5441) obtained from Sigma.

Gene fusion validation. For validation of fusion transcripts, RT–PCR assays 

were performed. Total RNA was extracted from the tissues by AllPrep DNA/ 

RNA Mini kit according to the manufacturer’s instructions (Qiagen). Total 

RNA (0.5 µg) was reverse transcribed to synthesize template cDNA using 

a random hexamers with the Superscript III First-Strand System (Life 

Technologies), and 20 µl of synthesized cDNA was diluted tenfold with DEPC-

treated water. For RT–PCR, EzWay Taq PCR MasterMix (Komabiotech) and 

5 µl of synthesized cDNA as template were used. Thermal cycling was carried 

out under the following conditions: incubation at 95 °C for 1 min followed  

by 30 cycles of 30 s at 95 °C, 30 s at 55 °C, and 30 s at 72 °C. The primer 

pairs used in this experiment were designed so that the amplification  

product would include the breakpoints of the fusion genes. PCR products  

were analyzed by agarose gel electrophoresis. The primers used are  

summarized in Supplementary Table 11.
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