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Abstract

Recombination is an important evolutionary force in bacteria, but it remains challenging to

reconstruct the imports that occurred in the ancestry of a genomic sample. Here we present

ClonalFrameML, which uses maximum likelihood inference to simultaneously detect

recombination in bacterial genomes and account for it in phylogenetic reconstruction.

ClonalFrameML can analyse hundreds of genomes in a matter of hours, and we demon-

strate its usefulness on simulated and real datasets. We find evidence for recombination

hotspots associated with mobile elements in Clostridium difficile ST6 and a previously

undescribed 310kb chromosomal replacement in Staphylococcus aureus ST582. Clonal-

FrameML is freely available at http://clonalframeml.googlecode.com/.

Introduction

Following recent developments in sequencing technologies, both the time and cost required to

sequence whole bacterial genomes have dropped to levels where it is now being applied in clini-

cal and public health microbiology [1,2]. On its own, the genome of a single bacterial isolate

can indicate many clinically important features such as the species and strain [3,4], the level of

virulence [5,6] and antimicrobial resistance properties [7,8]. Comparisons of multiple bacterial

genomes can be used to investigate within-host diversity and evolution [9,10], to delineate and

reconstruct local outbreaks [11–13], or to describe the global population structure and epide-

miology [14,15]. Such comparisons typically involve the construction of a phylogenetic tree to

reflect the relationships between genomes. One of the most popular approaches to do this is

the maximum likelihood (ML) method, as implemented for example in PhyML [16], RAxML

[17] and FastTree [18]. Bayesian methods such as BEAST [19] or MrBayes [20] are also fre-

quently used, but less often than other methods because Bayesian methods tend to be more

computationally expensive for applications to large genomic sets.

Phylogenetic reconstruction by any method is problematic because bacteria occasionally

undergo homologous recombination, whereby a fragment of the recipient’s genome is replaced

by that of the donor [21]. There are three different mechanisms that can lead to homologous

recombination in bacteria: transduction where a virus transmits DNA from the donor to the
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recipient, transformation where donor DNA in the environment is free to be taken up by the

recipient, and conjugation where donor and recipient come into direct contact [22]. The fre-

quency of recombination varies from species to species [23], and sometimes also from one line-

age to another within a single species, for example in Clostridium difficile [24] and

Streptococcus pneumoniae [25]. Even in Staphylococcus aureus which is often described as a

clonal species, some branches of the ML phylogeny contain significant evidence for recombina-

tion [26]. Ignoring recombination altogether when reconstructing a bacterial phylogeny is like-

ly to be misleading about the true clonal relationships between isolates [27–29]. For example,

the signal of temporal evolution was only detectable in S. pneumoniae once recombined regions

had been excluded prior to phylogenetic reconstruction [30]. To correctly infer phylogenetic

relationships it is therefore necessary to detect and account for recombination, but doing so also

allows the study of recombination which is an interesting and important evolutionary phenome-

non in its own right. For example, recombination played a key role in host adaptation of Salmo-

nella enterica [31] and Campylobacter jejuni [32,33], in the evolution of C. difficile cell surface

[34] and pathogenicity [6], inHelicobacter pylori within-host diversification [35,36] and global

population structure [37,38], and in S. pneumoniae evolution and vaccine escape [25,39,40].

In the absence of recombination, all genomic positions would be in the clonal frame and a

phylogenetic reconstruction would therefore reflect the clonal genealogy [41–43]. The Clonal-

Frame software [44] attempts to reconstruct this tree of clonal relationships between isolates

by detecting the location of recombined regions on each branch. However, ClonalFrame was

developed almost ten years ago primarily for application to multi-locus sequence typing data

[45], and it is not able to deal with the large amounts of whole genome sequencing data cur-

rently being generated. For that reason, we developed a completely new implementation called

ClonalFrameML which allows ML inference to be performed under the ClonalFrame model

for hundreds of whole genomes in a matter of hours.

Design and Implementation

The ClonalFrame model of recombination. To consider the effect of recombination on phylo-

genetic reconstruction, it is useful to distinguish two types of events, namely imports from a source

within the population under study, and imports from an external source. The former is especially

relevant if the sampled genomes cover a whole species or several species, in which case recombina-

tion typically originates from within the same species, does not introduce new polymorphism but

does result in homoplasy and genetic incompatibility [46]. On the other hand, if recombination

comes from an external source, then the recombined segments contain a high number of substitu-

tions which are not seen elsewhere in the dataset [46]. This is especially relevant if the genomes

under study are all from a single lineage (for example a single sequence type according to multi-

locus sequence typing [45]), with frequent imports from other lineages. In this case, recombination

with other members of the same lineage might also occur but would have little effect (typically

none) compared to imports from other lineages because of the low diversity within the lineage.

A simple model of recombination from external sources has previously been proposed and

Bayesian inference under this model is implemented in ClonalFrame [44]. In this model, geno-

mic evolution occurs on the branches of the clonal genealogy via point mutation and recombina-

tion respectively at rates θ/2 and R/2 per site per coalescent unit of time (which is equal to the

effective population sizeNe times the duration g of a generation). Note that other models use a

different parameterisation involving the scaled rate of occurrence of either initiation or termina-

tion of recombination, ρ = 2R [47–49]. Recombination is assumed to affect segments of length

exponentially distributed with mean δ in which each site is substituted with probability ν, irre-

spective of whether recombination involved transduction, transformation or conjugation.
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Overview of the ClonalFrameML algorithm. Here we describe a new algorithm for infer-

ence under the ClonalFrame model, ClonalFrameML, which proceeds in the following steps:

1. An ML tree is constructed using standard software such as PhyML [16] or RAxML [17] and

taken to be the initial clonal genealogy.

2. The ancestral sequences at internal nodes of the clonal genealogy, and any missing base

calls in the observed sequences, are reconstructed by ML using a previously described algo-

rithm [50].

3. A Baum-Welch Expectation-Maximisation (EM) algorithm is used to obtain ML estimates

of the recombination parameters and the branch lengths of the clonal genealogy.

4. The ML importation status is inferred at every site using a Viterbi algorithm.

5. Uncertainty in the parameters is quantified using a bootstrapping method.

Description of the ClonalFrame model as a hidden Markov model. We assume the pa-

rameters R/θ, δ and ν are the same for all branches, and that the length of branch i, in terms of

the expected number of mutations, isMi. Unlike ClonalFrame, which assumes a coalescent

prior on the genealogy, the use of an ML tree makes no such assumption. We have found that

the topology of the clonal genealogy can be estimated extremely well by ML from whole ge-

nome data [51]. Since we use an ML tree, we measure the lengths of branches and the recombi-

nation rate in units of expected numbers of mutations, whereas the ClonalFrame method

measures them in units of Neg generations. For efficient computation, the ClonalFrame model

can be thought of as a hidden Markov model (HMM, see, e.g. [52]) when the ancestral and de-

scendant genomes for each branch of the clonal genealogy have been observed or recon-

structed. The hidden state of the HMM records whether each nucleotide was subject to

recombination or not on the branch connecting the two genomes. Nucleotides unaffected by

recombination are said to be unimported (U) and nucleotides subject to recombination are said

to be imported (I) [44]. Based on the ClonalFrame model, we define the following transition

probability matrix for the hidden variable between sites, Hj and Hk distance djk apart:

PrðHk j HjÞ ¼

e�djkM
R
y Hj ¼ U and Hk ¼ U

1� e�djkM
R
y Hj ¼ U and Hk ¼ I

1� e�djk=d Hj ¼ I and Hk ¼ U

e�djk=d Hj ¼ I and Hk ¼ I

8

>

>

>

>

>

<

>

>

>

>

>

:

Again following the ClonalFrame model, we define the following emission probabilities for

the data at nucleotide j, which define the likelihood for the ancestral and descendant sequences

conditional on the underlying hidden variable:

PrðAj;DjjHjÞ ¼
p
ðMÞ
AjDj

Hj ¼ U

p
ðnÞ
AjDj

Hj ¼ I
:

8

<

:

Here Aj and Dj are the nucleotides of the ancestral and descendant sequences and p
ðtÞ
jk is the

transition probability from nucleotide j to k in time t under the HKY85 model [52].

ML inference under the ClonalFrame model
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In the EM algorithm that follows, we approximate the transition and emission probabilities

to obtain analytic results for the parameter updates. We employ a Poisson approximation to

the transition probabilities that, in effect, assumes no more than a single transition between ad-

jacent sites:

Pr HkjHj

� �

�

e�djkM
R
y Hj ¼ U and Hk ¼ U

djkM
R
y

� �

e�djkM
R
y Hj ¼ U and Hk ¼ I

ðdjk=dÞe�djk=d Hj ¼ I and Hk ¼ U

e�djk=d Hj ¼ I and Hk ¼ I

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

We summarize the sixteen possible combinations of ancestral and descendant nucleotides

by a single observation Oj that records whether they are the same (S) or different (D), and em-

ploying a Poisson approximation that, in effect, assumes no more than a single substitution

along the branch, then:

PrðAj;DjjHjÞ �

e�M Oj ¼ S and Hj ¼ U

M e�M Oj ¼ D and Hj ¼ U

e�n Oj ¼ S and Hj ¼ I

n e�n Oj ¼ D and Hj ¼ I

8

>

>

>

>

<

>

>

>

>

:

We use a Baum-Welch EM algorithm to estimate the model parameters. Given initial pa-

rametersY ¼ R
y
; d; n;M

1...B

� �

comprising the recombination parameters and the B branch

lengths, we use the forward-backward algorithm to calculate the expected number of transi-

tions, Tijk between the hidden states j and k for sites less than 1kb apart, and the expected num-

ber of observations, Eijk, of state k given hidden state j on branch i. The 1kb restriction helps

ensure the validity of the Poisson approximation. We then update the parameters as follows

M0
i ¼

aM þ EiUD

bM þ EiUS þ EiUD

;

n0 ¼ an þ
PB

i¼1
EiID

bn þ
PB

i¼1
EiIS þ EiID

;

1

d
0 ¼

ad þ
PB

i¼1
TiIU

bd þ �d
PB

i¼1
ðTiIU þ TiIIÞ

;

R

y

� �0

¼
aR

y
þPB

i¼1
TiUI

bR
y
þ �d

PB

i¼1
MiðTiUU þ TiUIÞ

;

where α and β represent prior information in the form of pseudocounts for the various param-

eters and
‒
d is the mean distance between adjacent called sites less than 1kb apart. The prior in-

formation conveyed by the pseudocounts is analogous to a gamma prior distribution with

shape and rate parameters α and β. In the analyses presented in this paper we set the prior

means, α/β, equal toM = 10−4, ν = 10−1 1/δ = 10−3, and R/θ = 10−1, and the prior standard

Inference of Recombination in Bacterial Genomes
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deviations,
ffiffiffi

a
p

=b, equal to the prior means, representing prior uncertainty over roughly three

orders of magnitude.

Quantifying the uncertainty in the parameters. To obtain a measure of uncertainty in the

parameter estimates, we perform a parametric bootstrap where we simulate the number of

transitions Tijk and emissions Eijk of each sort based on the ML parameter estimates using a

posterior decoding algorithm [51]. The parameters are then drawn from gamma distributions

with shape and rate parameters given by the numerators and denominators respectively in the

above equations. This computationally efficient but somewhat heuristic procedure accounts for

uncertainty in Tijk and Eijk, and for uncertainty in the parameters given Tijk and Eijk, but not in

the tree topology or ancestral state reconstruction, so it will underestimate the true uncertainty

in the parameter estimates.

Extended model with separate recombination parameters for each branch. To allow de-

tection of heterogeneity in the recombination process on different branches of the tree, we im-

plemented an EM algorithm that estimates parameters for each branch, using a hyperprior in

the form of pseudocounts to help obtain sensible values for uninformative branches. Formally,

we defined the per-branch recombination parameters to be related to the mean recombination

parameters through a branch-specific factor as follows:

li ¼ �lw
ðlÞ
i

where λ represents one of the parameters, �l is the mean of that parameter and wi is the branch-

specific factor. This leads to the following EM updates. First, the mean branch length parameter

is iteratively updated until the following equation converges:

�M 0 ¼ aM þPB

i¼1
EiUD

bM þPB

i¼1
ðaw þ EiUDÞðEiUS þ EiUDÞ=ðbw þ �MðEiUS þ EiUDÞÞ

Then the individual branch length factors are updated as follows:

w0ðMÞ
i ¼ ðaw þ EiUDÞ=ðbw þ �M 0ðEiUS þ EiUDÞÞ

The updating equations are similar for the other parameters:

�n 0 ¼ an þ
PB

i¼1
EiID

bn þ
PB

i¼1
ðaw þ EiIDÞðEiIS þ EiIDÞ=ðbw þ �nðEiIS þ EiIDÞÞ

;

w0ðnÞ
i ¼ ðaw þ EiIDÞ=ðbw þ �n 0ðEiIS þ EiIDÞÞ;

1

�d 0
¼ ad þ

PB

i¼1
TiIU

bd þ
PB

i¼1
ðaw þ TiIUÞ�dðTiIU þ TiIIÞ=ðbw þ �dðTiIU þ TiIIÞ=�dÞ

;

w0ðdÞ
i ¼ ðaw þ TiIUÞ=ðbw þ �dðTiIU þ TiIIÞ=�d 0Þ;

�R

y

� �0

¼
aR

y
þPB

i¼1
TiUI

bR
y
þPB

i¼1
ðaw þ TiUUÞMi

�dðTiUU þ TiUIÞ= bw þ �R
y

	 


Mi
�dðTiUU þ TiUIÞ

� � ;
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w0
R
yð Þ

i ¼ ðaw þ TiUUÞ= bw þ
�R

y

� �0

Mi
�dðTiUU þ TiUIÞ

 !

:

To ensure �l was the mean of parameter λ across branches we set αw = βw and we chose an

absolute value of 100 to prevent poorly identified parameters from deviating far from

the mean.

Results

Example application to a simulated dataset

To illustrate the working of ClonalFrameML, we simulated under the ClonalFrame model [44]

a dataset made of 50 genomes of 1Mb each. The clonal genealogy was taken from the coalescent

model [53] with a scaled mutation rate of θ = 10−3 per site (Fig. 1A). The ratio of recombina-

tion and mutation rates, the mean length of imports and the average distance of the imports

were equal to R/θ = 0.0626, δ = 554.95 bp and ν = 0.0374, respectively. The first step of our in-

ference procedure is to compute an ML phylogeny, and here PhyML [16] took approximately

one minute on a standard desktop computer to produce the ML tree (Fig. 1B). This tree has the

same topology as the true clonal genealogy (Fig. 1A). This is because in the ClonalFrame

model, recombination has an external origin so that the substitutions imported on a given

branch are shared by the genomes that descend from that branch. Recombination is therefore

informative about the tree topology in exactly the same way as mutation, which is why the tree

topology reconstructed by the ML phylogeny is correct even when no attempt is made to ac-

count for recombination.

The scale of branch lengths in the reconstructed phylogeny (Fig. 1B) was 2.1 times greater

than in the true tree (Fig. 1A), because the latter accounts only for the substitutions introduced

by mutation whereas the former also includes the differences imported by recombination. The

relative effect of recombination and mutation [54] was equal to r/m = (R/θ) × δ × ν = 1.3 so

that recombination introduced a similar number of substitutions as did mutation, which ex-

plains the difference in the reconstructed scale. Apart from this important difference in the

scale, the relative lengths of branches in the reconstructed phylogeny were approximately con-

sistent with the correct genealogy. This is because the substitutions introduced by recombina-

tion accumulate in the genomes in a clock-like manner, as do mutations. The most noticeable

difference concerned some of the shortest terminal branches in the true clonal genealogy,

which had lengths several times longer in the reconstructed phylogeny (see examples of this

marked by red boxes in Fig. 1B). The overestimation of these terminal branch lengths could

have important consequences, for example it could mislead one into excluding the possibility

of direct transmission between two infected individuals in a genomic epidemiology study

[11,55–57].

ClonalFrameML was then applied to this simulated dataset using the ML phylogeny

(Fig. 1B) as tree input, which took approximately 15 minutes to run on a standard desktop

computer. The parameter estimates and 95% confidence intervals were as follows: R/θ = 0.061

[0.053–0.067], δ = 511.59bp [456.96–575.77] and ν = 0.0386 [0.0373–0.0397]. These three in-

tervals included the correct values used when simulating the data. ClonalFrameML also esti-

mates a phylogeny with corrected branch lengths (Fig. 1C). Unlike the ML tree (Fig. 1B), the

scale of the branch lengths in the ClonalFrameML tree is the same as in the true phylogeny

(Fig. 1A). Where short terminal branch lengths had been overestimated by the ML tree in the

Inference of Recombination in Bacterial Genomes
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example data, these were corrected by ClonalFrameML (red boxes in Fig. 1C). One way to as-

sess and compare the correctness of phylogenetic reconstructions is through a distance mea-

sure between trees known as the branch score [58]. Between the true tree (Fig. 1A) and the ML

reconstruction (Fig. 1B), the branch score was equal to 1.29×10−3 whereas between the true

Figure 1. An example application of ClonalFrameML to a simulated dataset. (A) The clonal genealogy produced by simulation. (B) Maximum-likelihood
reconstructed phylogeny. (C) ClonalFrameML reconstructed phylogeny. (D) Representation of recombination events along the genome for each branch of
the genealogy in (A). True events are shown in blue and events detected by ClonalFrameML are shown in red. Three branches of interest and their
associated recombination events are highlighted by red boxes.

doi:10.1371/journal.pcbi.1004041.g001
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tree (Fig. 1A) and the ClonalFrameML reconstruction (Fig. 1C), the branch score was lower,

equal to 7.88×10−5. This large improvement is partly, but not exclusively, due to the difference

in scales between the trees. All three trees were rescaled to have a sum of branch lengths equal to

one, and the two branch scores were then equal to 0.053 and 0.019, respectively. The true and in-

ferred recombination events were compared for all branches of the clonal genealogy (Fig. 1D).

All the exemplar terminal branches that were too long in the ML phylogeny corresponded to re-

combination events that have been accurately detected by ClonalFrameML (red boxes in Fig. 1).

There were 248 real recombination events throughout the tree, and 213 (86%) of them were cor-

rectly detected. The 35 events that were not detected tended to be short and to contain relatively

few substitutions. All the detected recombination events corresponded to genuine events.

The original Monte-Carlo Markov Chain (MCMC) algorithm implemented in the

ClonalFrame software [44] was applied to the same simulated dataset for comparison with

ClonalFrameML. Each iteration of the MCMC took about 7.5 seconds. ClonalFrame was run

for 20,000 iterations which took about 42 hours—more than a hundred times the time it took

to run ClonalFrameML. The first half of the iterations were discarded as MCMC burn-in, and

the second half were recorded every ten iterations to produce a sample of size 1000 from the

posterior. Assessing MCMC convergence and mixing properties is always challenging, and

the generally recommended method is to compare separate runs. Four separate runs were

performed and found to yield comparable samples of the parameters (S1 Fig.). The four

runs were combined to produce the following parameter estimates and 95% credibility inter-

vals: R/θ = 0.056 [0.049–0.064], δ = 529.62 [464.47–603.50] and ν = 0.0386 [0.0375–0.0398].

These estimates are in good agreement with both the correct values and the estimates from

ClonalFrameML. The intervals of uncertainty, often seen as one of the great advantages of fully

Bayesian methods, are also similar to the ones estimated using ClonalFrameML thus suggesting

that our bootstrapping method is appropriate.

Evaluation of performance

The simulation and inference steps described above were repeated one hundred times to study

the performance of ClonalFrameML under various conditions. Each simulation used different

parameter values drawn uniformly on a log10 scale for R/θ between 0.01 and 10, for δ between

100 and 10,000bp and for ν between 0.01 and 0.1. The average running time of ClonalFrameML

was 15 minutes on a standard desktop computer, with all runs taking less than an hour.

The true and inferred values were compared for the parameters R/θ, δ and ν in each simula-

tion (Fig. 2). The key determinant for how well the algorithm performs is the compound pa-

rameter δR (Fig. 2). When this parameter is below one, the inferred values are well aligned with

the correct values, and the 95% confidence intervals contain the correct values in 82%, 85%

and 74% of the simulations for R/θ, δ and ν, respectively. When δR is greater than one, the esti-

mates of δ and ν remain in good alignment with the correct values, but the relative rate of re-

combination R/θ is sometimes underestimated. The compound parameter δR represents the

rate at which a given site is affected by recombination on a branch of the clonal genealogy mea-

sured in coalescent units of time. When δR is greater than one, there is a significant chance that

recombination happened more than once at any genomic position for the longer branches of

the phylogeny, but this is not accounted for in the ClonalFrame model which considers that

each position is either imported or not. For example, one of the simulations used δ = 958bp

and R = 0.002 and the values inferred by ClonalFrameML were δ = 866bp and R = 0.0006, so

that R was underestimated by a factor of three. In spite of this, the location of inferred recom-

bined regions was correct but saturated for some of the long branches (S2 Fig.). Because of this

saturation effect, r/m was correctly estimated as long as the correct value was below 100, but

Inference of Recombination in Bacterial Genomes
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was often underestimated beyond that (Fig. 2). ClonalFrameML may therefore underestimate

the recombination rate in situations where there has been so much recombination that it hap-

pened several times over for some branches. A good indication of this is provided by the pres-

ence of branches on which the whole genome has been found to be recombinant (S2 Fig.). This

is a limitation of the original ClonalFrame model [44] rather than of the ML implementation

presented here, but this has not been found to be a significant problem in practice, even in ap-

plication to the highly recombinant Helicobacter pylori [59]. However, in such promiscuous

species the signal of clonal inheritance is rapidly lost so that models of pure admixture may be

more appropriate, such as the Structure and FineStructure models where linkage disequilibri-

um is caused only by linkage along the genome [37,38].

The branch score [58] was calculated to compare both the ML trees and the ClonalFrameML

trees against the correct tree used in each simulation where δR was below one. We found that

the ClonalFrameML trees were closer to the true trees than the uncorrected ML trees in all re-

maining simulations. The average branch score between the true and uncorrected ML trees

was 7.47×10−3 whereas it was 9.72×10−5 between the true and ClonalFrameML trees (for full

comparative results see S3 Fig.). A large part of this improvement is due to the fact that the

overall scale of the ClonalFrameML tree is more accurate than that of the ML tree, as noted ear-

lier. We repeated the comparison after normalizing all trees to have a sum of branch lengths

Figure 2. Comparison of correct parameter values with estimates from ClonalFrameML for a hundred
datasets simulated under the ClonalFramemodel. Dots represent the point estimates and bars the 95%
confidence intervals. Colours represent the correct value of the compound parameter δR ranging from 10−3

(black) to 102 (red).

doi:10.1371/journal.pcbi.1004041.g002
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equal to one. The average branch score between the true and ML trees was then 4.81×10−2

compared with 1.68×10−2 between the true and ClonalFrameML trees. There was therefore a

clear improvement in the estimated branch lengths beyond the correction in scale.

Application to simulated data with intra-population recombination

The ClonalFrame model considers that recombination events have an external source, so that

they introduce substitution at a relatively high rate denoted ν [44]. If the dataset contained ge-

nomes covering the diversity of a whole bacterial species, there might be a few recombination

events coming from other closely related species, but most events will have donors from the

species under study, so that the main source of recombination is not external. This situation is

best modelled by the coalescent with gene conversion [60], but drawing inference under the re-

sulting ancestral recombination graph is a notoriously complex statistical problem [46,61,62].

Instead, here we consider the application of the ClonalFrame model of external recombination

to analyse data simulated with within-population recombination.

Simulation of sequence data under the coalescent with gene conversion is implemented in

the software SimMLST [63], which was used to simulate a hundred different datasets, each

consisting of 50 genomes of length 1Mb. Each simulation used a mutation rate of θ = 10−3 per

site, a ratio of recombination to mutation rate R/θ sampled between 0.01 and 1, and an average

length of recombined fragment δ sampled between 100 and 10,000bp, with these two samples

being taken uniformly on a log10 scale.

The correct and inferred values of the two parameters R/θ and δ were compared for each

simulation (Fig. 3). The estimates of δ were unbiased and strongly reflected the correct values

used in simulation. The relative recombination rate R/θ was also correlated with the correct

values, but almost always underestimated. This bias was especially important when the recom-

bination tract length δ was short, which typically resulted in an underestimation of R/θ by an

order of magnitude. For longer values of δ on the other hand, the bias was smaller. In datasets

where the bias was important, a good indication of this was provided by large confidence inter-

vals around both estimates of R/θ and δ (Fig. 3). These performance characteristics fit with our

expectations given the differences between the models used for simulation and inference. Since

the simulated recombination events come from within the population of interest, they intro-

duce fewer substitutions than if they had come from an external source, which makes them

more difficult to detect. When these events are relatively short, they are likely to introduce very

little polymorphism if any, so that a large fraction of them becomes impossible to detect. In

these conditions, there is much uncertainty about the relative rate of recombination R/θ. When

Figure 3. Comparison of correct parameter values with estimates from ClonalFrameML for a hundred
datasets simulated under the coalescent with gene conversionmodel of intra-population
recombination.Dots represent the point estimates and bars the 95% confidence intervals. Colours
represent the correct value of the parameter δ ranging from 102 (black) to 104 (red).

doi:10.1371/journal.pcbi.1004041.g003
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the events are longer they are easier to detect, but a fraction of them will still be impossible to

detect, for example if their donor was a close relative of the recipient, leading to underestima-

tion of R/θ.

Application to Clostridium difficile ST6

Detection of transmission relies on the identification of closely related bacteria. Recombination

events have the potential to mask recent transmission by inflating the genomic divergence be-

tween closely related bacteria. In previous work the genomes of bacteria sampled from all cases

of Clostridium difficile infection reported in Oxfordshire between 2007 and 2011 were se-

quenced to investigate the importance of transmission within hospitals [24,64]. To investigate

the ability of ClonalFrameML to detect recombination in a transmission setting, we analysed

86 of these genomes sharing the same multi-locus sequence type, ST6. As previously described

[24,64], these genomes were mapped to the complete sequence of reference genome CD630

[65]. However, ClonalFrameML can be equally well applied to a whole-genome alignment ob-

tained from a de novo assembly approach. In a gene-by-gene approach, for example [66], one

can scaffold local alignments using a reference genome to obtain a whole-genome alignment.

ClonalFrameML took approximately 2 hours to run on our dataset. The average length of re-

combined fragments was estimated to be δ = 591bp [528–691] and the average divergence be-

tween donor and recipient was ν = 0.032 [0.031–0.033]. The ratio of rates of recombination

and mutation was R/θ = 0.30 [0.25–0.35], whereas the ratio of effects of recombination and

mutation was r/m = 5.67 [4.62–7.18]. This indicated that recombination happened three times

less often than mutation, but because each recombination event introduced on average δν = 19

substitutions, recombination overall caused six times more substitutions than mutation, con-

firming the importance of recombination even in these closely related bacteria.

ClonalFrameML identified 167 recombination events on all branches of the clonal genealo-

gy (Fig. 4). Three regions appeared to be possible hotspots of recombination, since we found

multiple imports on several branches (up to seven) which would not be expected to happen by

Figure 4. Application of ClonalFrameML to 86 genomes of C. difficile ST6. For any branch of the genealogy and any position along the genome, inferred
recombination is marked in blue.

doi:10.1371/journal.pcbi.1004041.g004
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chance if events were uniformly distributed along the genome for each branch. The first hot-

spot spanned from 314kb to 315kb in CD630 and corresponded to the annotated fliI gene [65].

This gene been described as one of only two integration sites for prophage FCD27 [67]. The

second hotspot, from position 600kb to 602kb, corresponded to the tetM gene which encodes a

conjugative transposon tetracycline resistance protein [68]. The third hotspot, from position

1,307kb to 1313kb, contained several conjugal transfer proteins [65]. Recombination hotspots

in C. difficile seem therefore to be caused by the presence of genomic mobile elements, as previ-

ously reported for example in S. pneumoniae [30] and S. aureus [26].

Based on a measure of the within-host mutation rate, it was previously estimated that the di-

vergence between two C. difficile genomes sampled from the donor and recipient of a direct

transmission event would be at most two single nucleotide polymorphisms (SNPs) [64]. We

compared the distance between all pairs of genomes in the ML tree and in the corrected Clonal-

FrameML tree (S4 Fig.). Amongst the 86 genomes of ST6, there were 12 pairs for which the dis-

tance was greater than 2 SNPs in the ML tree and lower than 2 SNPs once recombination had

been accounted for in the ClonalFrameML tree (S4 Fig.), suggesting that they may represent

cases of direct transmission. This result illustrates the importance of accounting for recombina-

tion when performing genomic epidemiology investigations.

Application to Staphylococcus aureus

Recombination is an important force in bacterial evolution and has played a role in shaping the

population structure of many species [22,69], including those such as Staphylococcus aureus that

have otherwise been characterized as evolving clonally [26]. Although there is limited signal of re-

combination within closely related lineages [15,70–74], analysis of species-wide diversity reveals

evidence of widespread homoplasy in the genome [26]. Further, recombination has been shown to

have played an important role in the emergence of certain lineages, notably the hospital-associated

ST 34 and the globally distributed MRSA ST 239 [75,76]. STs 34 and 239 are hybrids resulting

from large chromosomal replacement events. ST 34 is thought to have evolved from an ST 30 line-

age via the introduction of a 244kb region from an ST 10 donor lineage [75]. ST 239 appears to

have arisen from the integration of a 635kb region from an ST 30 donor into an ST 8 background

[76]. In both hybrid lineages, the chromosomal replacements span the origin-of-replication.

We applied ClonalFrameML to investigate 110 S. aureus carriage and reference genomes that

represent species-wide diversity [26] using an extension to the standard ClonalFrame model that

allows different recombination parameters to be inferred on different branches of the clonal gene-

alogy. The mean parameters were estimated to be R/θ = 0.215, δ = 183bp and ν = 7.20×10−3, but

substantial variation was detected between the branches of the tree (Fig. 5). In particular, large im-

portations of 231kb and 555kb were detected, corresponding to the chromosomal replacements

spanning the origin-of-replication in STs 34 and 239 respectively. Note that the positions and

lengths of recombination events reported here are measured relative to the MRSA252 reference

genome. Additionally, we found a new chromosomal replacement event of 310kb associated with

ST 582, a close relative of ST 15. Unlike the previously described events, this large chromosomal

replacement spans 845–1155kb, a region approximately 1Mb from the origin-of-replication. The

nature and origin of this novel chromosomal replacement requires further investigation.

The ClonalFrameML analysis of recombination in S. aureus reveals a curious property of the

method that we expect applies to phylogenetic methods in general. The effect is visible most

clearly in the three large chromosomal replacement events ancestral to STs 34, 239 and 582. In

each case, the large recombination event, marked by a dark blue horizontal line, is mirrored on

the branch leading to the sister clade. This mirroring can be explained by substitution events that

occurred on the branch immediately ancestral to the two sister clades. When recombination

Inference of Recombination in Bacterial Genomes
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introduces DNA from a relative that does not possess these derived substitutions, then it becomes

more parsimonious to attribute the mirrored substitutions to the sister clade rather than have

them arise on the parent branch only to immediately revert them in the branch that receives the

recombination event (S5 Fig.). This effect is likely to contribute to the well-recognized distortion

of branch lengths leading to spurious inference of demography, selection and molecular clocks

when phylogenetic methods are applied to recombining populations [27,28,77,78].

Conclusion

The advent of rapid, inexpensive whole genome sequencing is revealing more than ever the im-

portance of recombination to bacteria. Accounting for recombination in phylogenetic analyses

remains a fundamental yet challenging problem, and one that has become more difficult, not

easier, with the volume of information provided by hundreds or thousands of bacterial whole

genomes. We have introduced a new maximum likelihood method, ClonalFrameML, that im-

plements the model underlying the popular Bayesian ClonalFrame approach in a computation-

ally efficient manner, and we have demonstrated its ability to estimate recombination

parameters and detect importation events in the context of understanding short-term trans-

mission dynamics and long-term bacterial evolution.

Availability and Future Directions

ClonalFrameML is freely available from http://clonalframeml.googlecode.com/. Further work

is planned to improve the front end, and to provide compatibility with the input files of the

ClonalFrame software.

Figure 5. ClonalFrameML analysis of recombination in S. aureus based on 110 genomes representing carriage and reference isolatesmapped to
MRSA252.Reconstructed substitutions (white vertical bars) are shown for each branch of the ML tree. Grey areas represent non-core regions of the
MRSA252 genome. Dark blue horizontal bars indicate recombination events detected by the analysis.

doi:10.1371/journal.pcbi.1004041.g005
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