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Abstract

Reusing software through copying and pasting is a
continuous plague in software development despite the
fact that it creates serious maintenance problems. Var-
ious techniques have been proposed to find duplicated
redundant code (also known as software clones). A re-
cent study has compared these techniques and shown
that token-based clone detection based on suffix trees is
extremely fast but yields clone candidates that are of-
ten no syntactic units [26]. Current techniques based
on abstract syntax trees—on the other hand—find syn-
tactic clones but are considerably less efficient.

This paper describes how we can make use of suf-
fix trees to find clones in abstract syntax trees. This
new approach is able to find syntactic clones in linear
time and space. The paper reports the results of sev-
eral large case studies in which we empirically compare
the new technique to other techniques using the Bellon
benchmark for clone detectors.

1 Introduction

It is still a common habit of programmers to reuse
code through copy&paste. Albeit copy&paste is an
obvious strategy of reuse and avoidance of unwanted
side effects if a programmer does not oversee the con-
sequences of a change to an existing piece of code, this
strategy is only a short-term win. The interests of these
strategies must be paid back later by increased main-
tenance through replicated changes in all copies if the
original code must be corrected or adapted.

Although some researchers argue not to remove
clones because of the associated risks [6], there is a
consensus that clones need to be detected at least. De-
tection is necessary to find the place where a change
must be replicated and also useful to monitor develop-
ment in order to stop the increase of redundancy before
it is too late.

Various techniques have been proposed to find dupli-
cated redundant code (also known as software clones).
A recent study has compared these techniques and
shown that token-based clone detection based on suf-
fix trees is extremely fast but yields clone candidates
that are often no syntactic units. Current techniques
based on abstract syntax trees (AST)—on the other
hand—find syntactic clones but are considerably less
efficient.

There are additional reasons for AST-based clone
detection beyond better precision. Because most refac-
toring tools are based on ASTs, they need to access
clones in terms of nodes in the AST if they sup-
port clone removal. Furthermore, ASTs offer syntac-
tic knowledge which can be leveraged to filter certain
types of clones. For instance, one could exclude clones
in declarative code or strictly sequential assignments as
in constructors, which can often not be avoided. From
a research point of view, it would be also interesting to
categorize and see where the redundancy occurs mostly
in syntactic terms [14]. Such empirical studies could
also help to identify programming language deficien-
cies.

Contributions. This paper describes how we can
make use of suffix trees to find clones in abstract syntax
trees. This new approach is able to find syntactic clones
in linear time and space. The paper reports the results
of several large case studies in which we empirically
and quantitatively compare the new technique to nine
other techniques using the Bellon benchmark for clone
detectors. As a side effect of our case study, we extend
the Bellon benchmark by additional reference clones.

Overview. The remainder of this paper is orga-
nized as follows. Section 2 summarizes related re-
search. In particular, this section describes clone de-
tection based on suffix trees and ASTs in detail as they
form the foundation of our new technique. Section 3
introduces the new technique. In Section 4, we com-
pare the new technique to other techniques based on
the Bellon benchmark for clone detectors.



2 Related Research

Software clone detection and removal is an active
field of research. This section summarizes research in
clone detection.

The foremost question to answer is “What is a
clone?” Generally speaking, two code fragments form
a clone pair if they are similar enough according to a
given definition of similarity. Different definitions of
similarity and associated levels of tolerance allow for
different kinds and degrees of clones.

Ideally, code is free of redundancy. A piece of code,
A, is redundant if there is another piece of code, B,
that subsumes the functionality of A, in other words,
they have “similar” pre and post conditions. We call
such a pair (A,B) a semantic clone. Unfortunately,
detecting semantic clones is undecidable in general.

Another definition of similarity considers the pro-
gram text: Two code fragments form a clone pair if
their program text is similar. The two code fragments
may or may not be equivalent semantically. These
kinds of clones are most often the result of copy&paste;
that is, the programmer selects a code fragment and
copies it to another location.

Clones of this nature may be compared on the basis
of the program text that has been copied. We can
distinguish the following types of clones:

• Type 1 is an exact copy without modifications
(except for whitespace and comments).

• Type 2 is a syntactically identical copy; only
variable, type, or function identifiers have been
changed.

• Type 3 is a copy with further modifications; state-
ments have been changed, added, or removed.

Several techniques have been proposed to find these
types of clones.

Textual comparison: the approach by Rieger et
al. compares whole lines to each other textually [9]. To
increase performance, lines are partitioned using a hash
function for strings. Only lines in the same partition
are compared. The result is visualized as a dotplot,
where each dot indicates a pair of cloned lines. Clones
may be found as certain patterns in those dotplots vi-
sually. Consecutive lines can be summarized to larger
cloned sequences automatically as uninterrupted diag-
onals or displaced diagonals in the dotplot.

Johnson [12] uses the efficient string matching by
Karp and Rabin [15] based on fingerprints.

Token comparison: Baker’s technique is also a
line-based comparison. Instead of a string comparison,
the token sequences of lines are compared efficiently

through a suffix tree. First, each token sequence for
whole lines is summarized by a so called functor that
abstracts of concrete values of identifiers and literals.

The functor characterizes this token sequence
uniquely. Assigning functors can be viewed as a per-
fect hash function. Concrete values of identifiers and
literals are captured as parameters to this functor. An
encoding of these parameters abstracts from their con-
crete values but not from their order so that code frag-
ments may be detected that differ only in systematic
renaming of parameters. Two lines are clones if they
match in their functors and parameter encoding.

The functors and their parameters are summarized
in a trie1 that represents all suffixes of the program
in a compact fashion. Every branch in this trie repre-
sents program suffixes with common beginnings, hence,
cloned sequences. A more detailed description follows
in Section 2.1.

Kamiya et al. increase recall for superfluous differ-
ent, yet equivalent sequences by normalizing the token
sequences [13].

Because syntax is not taken into account, the found
clones may overlap different syntactic units, which can-
not be replaced through functional abstraction. Either
in a preprocessing [7, 10] or post-processing [11] step,
clones that completely fall in syntactic blocks can be
found if block delimiters are known.

Metric comparison: Merlo et al. gather different
metrics for code fragments and compare these metric
vectors instead of comparing code directly [20, 18, 24,
17]. An allowable distance (for instance, Euclidean dis-
tance) for these metric vectors can be used as a hint
for similar code. Specific metric-based techniques were
also proposed for clones in web sites [8, 21].

Comparison of abstract syntax trees (AST):
Baxter et al. partition subtrees of the abstract syntax
tree of a program based on a hash function and then
compare subtrees in the same partition through tree
matching (allowing for some divergences) [4]. A simi-
lar approach was proposed earlier by Yang [30] using
dynamic programming to find differences between two
versions of the same file.

Comparison of program dependency graphs:
control and data flow dependencies of a function may
be represented by a program dependency graph; clones
may be identified as isomorphic subgraphs [19, 16]; be-
cause this problem is NP hard, Krinke uses approxi-
mative solutions.

Other techniques: Marcus and Maletic use latent
semantic indexing (an information retrieval technique)
to identify fragments in which similar names occur [23].

1A trie, or prefix tree, is an ordered tree data structure that
is used to store an associative array where the keys are strings.
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Figure 1. Suffix Tree for CDUASTCDUASS’T$;
the large dot is the root

Leitao [22] combines syntactic and semantic techniques
through a combination of specialized comparison func-
tions that compare various aspects (similar call sub-
graphs, commutative operators, user-defined equiva-
lences, transformations into canonical syntactic forms).
Each comparison functions yields an evidence that is
summarized in an evidence-factor model yielding a
clone likelihood. Walter et al. [29] cast the search for
similar fragments as a data mining problem. Statement
sequences are summarized to item sets. An adapted
data mining algorithm searches for frequent item sets.

In the following section, we will go into details of
token-based clone detection and AST-based clone de-
tection as they build the foundation for our own algo-
rithm.

2.1 Token-Suffix-Tree based Clone Detection

Very efficient token-based clone detection is based
on suffix trees. Suffix trees have been originally used
for efficient string search [25]. Later, Brenda Baker
has extended the original algorithm to parameterized
strings for clone detection [2]. Baker’s approach offers
the advantage of finding cloned token sequences with
consisting renaming of parameters (variables and lit-
erals can be treated as parameters). To simplify the
description, however, we prefer to describe the original
string-based approach as follows.

We will use the following string as an example
(two concatenated titles of research papers on clone
detection):

Clone Detection Using Abstract Syntax Trees Clone
Detection Using Abstract Syntax Suffix Trees

A suffix tree is a representation of a string as a trie
where every suffix is presented through a path from
the root to a leaf. The edges are labeled with the sub-
strings. Paths with common prefixes share an edge.
Suffix trees are linear in space with respect to the string
length (the edge labels are stored as start and end to-
ken of a substring in an efficient implementation) and
there are linear algorithms to compute them [25, 28].

The suffix tree for our running example is shown in
Figure 1 where we use the first letter as an abbrevi-

ation for the words in the text (e.g., A for Abstract)
and S’ denotes Suffix. That is, we construct the suffix
tree for the string CDUASTCDUASS’T$. The unique
character $ denotes the end of the string.

A clone can be identified in the suffix tree as an inner
node. The length is the number of characters from the
root to this inner node. The number of occurrences
of the clone is the number of the leaves that can be
reached from it. For instance, CDUAS occurs twice
and has length 5 and AS occurs twice, too, but has
length 2.

As shown in the suffix tree, there are six clones in
the text, but we notice, too, that all of them except T
are suffixes of the longest one, namely, CDUAS. Baker
describes an algorithm to determine the maximal clone
sequences in the tree efficiently [3] .

A filter on minimal length can be used to exclude
irrelevant clones such as T. In summary, we detect that
the string ”Clone Detection Using Abstract Syntax”
occurs twice.

For computer programs, we apply this kind of clone
detection to the tokens of the program.

2.2 AST-based Clone Detection

Baxter et al. have proposed a clone detection tech-
nique based on AST. To find clones in the AST, we
need to compare each subtree to each other subtree in
the AST in principal. Because this approach would not
scale, Baxter et al. use a hash function that first par-
titions the AST into similar subtrees. Because such
a hash function cannot be perfect (there is an infi-
nite number of possible combinations of AST nodes),
it is necessary to compare all subtrees within the same
partition in a second step. This comparison is a tree
match, where Baxter et al. use an inexact match based
on a similarity metric. The similarity metric measures
the fraction of common nodes of two trees. Cloned
subtrees that are themselves part of a complete cloned
subtree are combined to larger clones. Special care is
taken of chained nodes that represent sequences in or-
der to find cloned subsequences.

2.3 Token based versus AST based

The suffix-tree-based analysis offers several advan-
tages over other techniques. It scales very well because
of its linear complexity in both time and space, which
makes it very attractive for large systems. Moreover,
no parsing is necessary and, hence, the code may be
even incomplete and syntactically incorrect. Another
advantage for a tool builder is that a token-based clone
detector can be adjusted to a new language in very
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short time [27]. A scanner for a programming language
is typically developed in one or two days. As opposed
to text-based techniques, this token-based analysis is
independent of layout (this argument is not quite true
for Baker’s technique, which is line based; however, if
one uses the original string-based technique, line breaks
do not have any effect). Also, token-based analysis is
more reliable than metrics because the latter are often
very coarse-grained abstractions of a piece of code; fur-
thermore, the level of granularity of metrics is typically
whole functions rather than individual statements.

Two independent quantitative studies by Bel-
lon/Koschke [5, 26] and Bailey/Burd [1] have shown
that token-based techniques have a high recall but suf-
fer from many false positives, whereas Baxter’s tech-
nique has a higher precision at the cost of a lower re-
call.

In both studies, a human analyst judged the clone
candidates produced by various techniques. One of the
criteria of the analysts was that the clone candidate
should be something that is relatively complete,
which is not true for token-based candidates as they
often do not form syntactic units. For instance, the
two program snippets left and right in Listing 1 are
considered a clone by a token-based analysis because
their token sequence is identical:

return id ; } int id ( ) { int id ;

Although from a lexical point of view, these are in
fact rightful clones, a maintenance programmer would
hardly consider this finding useful.

return r e s u l t ; return x ; }
}
int f oo ( ) { int bar ( ) { int y ;

int a ;

Listing 1. Spurious clones
Syntactic clones can be found to some extent by

token-based techniques if the candidate sequences are
split in a postprocessing step into ranges where opening
and their corresponding closing tokens are completely
contained in a sequence. For instance, by counting
matching opening and closing brackets, we could ex-
clude many spurious clones such as the one in List-
ing 1. However, programming languages do have many
types of delimiting tokens beyond brackets. The if,
then, else, and end if all constitute syntax delim-
iters. In particular, end if is an interesting example
as two consecutive tokens form one delimiter, of which
both can be each individual delimiters in other syntac-
tic contexts. If one wants to handle these delimiters
reliably, one is about to start imitating a parser by a
lexer.

The AST-based technique, on the other hand, yields
syntactic clones. And it was Baxter’s AST-based tech-
nique with the highest precision in the cited experi-
ment. Moreover, the AST-based clone detection offers
many additional advantages, which we already men-
tioned in the introduction.

Unfortunately, Baxter’s technique did not match up
with the speed of token-based analysis, although in-
herent parallelism was leveraged. Even though parti-
tioning the subtrees in the first stage helps a lot, the
comparison of subtrees in the same partition is still
pairwise and hence requires quadratic time. Moreover,
the AST nodes are visited many times both in the com-
parison within a partition and across partitions because
the same node could occur in a subtree subsumed by a
larger clone contained in a different partition.

It would be valuable to have an AST-based tech-
nique at the speed of token-based techniques. In the
next section, we show how a linear-time analysis can
be achieved.

3 Approach

The algorithm consists of the following steps:
1. parse program and generate AST
2. serialize AST
3. apply suffix tree detection
4. decompose resulting cloned token sequence into

complete syntactic units

Step (1) is a standard procedure which will not be
discussed further. Step (3) has been described in Sec-
tion 2.1. We will primarily explain step (4) step-by-
step. We will first explain the serialization of the AST
and then present the algorithm to cut the cloned token
sequence into syntactic units.

3.1 Serializing the AST

We will use the example in Listing 2 as an example
to illustrate the algorithm. The AST corresponding to
Listing 2 is shown in Figure 2.

i f x + y then a := i ; else f oo ; end i f ;
i f p then a := j ; else f oo ; end i f ;
i f q then z := k ; else bar ; end i f ;

Listing 2. Sequence of if statements in Ada
Because the token-based clone detection is based on

token sequences, we need to serialize the AST nodes.
We serialize the AST by a preorder traversal. For each
visited AST node N , we emit N as root and associate
the number of arguments (number of AST nodes tran-
sitively derived from N) with it (in the following, pre-
sented as subscript).
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= call

if
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seq

Figure 2. Example AST

Note that we assume that we traverse the children of
a node from left to right according to their correspond-
ing source locations so that their order corresponds to
the textual order.

The serialized AST nodes produced in step (2) for
the example are shown in Listing 3.

1 i f 8 +2 id 0 id 0 =2 id 0 id 0 c a l l 1 id 0

2 i f 6 id 0 =2 id 0 id 0 c a l l 1 id 0

3 i f 6 id 0 =2 id 0 id 0 c a l l 1 id 0

Listing 3. Serialized AST nodes
The serialized form is isomorphic to the original

AST. Hence, no clones are lost and no artificial syn-
tactic clones are introduced.

3.2 Suffix Tree Detection

The original suffix tree clone detection is based on
tokens. In our application of suffix trees, the AST node
type plays the role of a token. Because we use the AST
node type as distinguishing criterion, the actual value
of identifiers and literals (their string representation)
does not matter as they are treated as AST node at-
tributes and hence are ignored. The actual value of
identifiers and literals becomes relevant in a postpro-
cessing step where we make the distinction between
type-1 and type-2 clones.

Rather than Baker’s algorithms for parameterized
strings, we are using the simpler string-based algo-
rithm by Ukkonen [28]. Consequently, the token-based
clone detection returns equivalence classes of type-1
and type-2 clones as we do not distinguish type-1 and
type-2 clones at this stage.

For our running example, the two representative
cloned token sequences in Listing 4 and Listing 5, re-
spectively, would be considered.

The token sequence in Listing 4 is a complete syntac-
tic unit whereas the sequence in Listing 5 is not a single
syntactic unit and, hence, needs to be decomposed into
three syntactic subsequences as follows: <id0>, <=2

id0 id0>, and <call1 id0>.

i f 6 id 0 =2 id 0 id 0 c a l l 1 id 0

−− in l i n e 2 and 3

Listing 4. Cloned token sequence

id 0 id 0 =2 id 0 id 0 c a l l 1 id 0

−− in l i n e 1 ( token pos . 4−9) , 2 , and 3

Listing 5. Cloned token sequence

3.3 Decomposing into Syntactic Clones

The previous step has produced a set of clone classes
of maximally long equivalent AST node sequences.
These sequences may or may not be syntactic clones.
In the next step—described in this section—these se-
quences will be decomposed into syntactic clones. The
main algorithm is shown in Listing 6 where il is the
input set of clone sequence partitions as determined in
the previous step. For each class in is, we select a
representative and decompose it with algorithm cut,
which we will explain shortly. The output is denoted
by os and incrementally produced by cut. The result
is again a set of token sequence partitions, but the dif-
ference here is that each sequence in os is a syntactic
unit. Hence, os is a refinement of is.

Procedure emit is used to report clones based on
the representative. It may filter clones based on var-
ious additional criteria such as length, type of clone,
syntactic type (e.g., it may ignore clones in declarative
code), differentiates the clone class elements into type-
1 and type-2 clones, and finally reports all clones of a
class to the user. We omit the details of emit here.

To ease the presentation, we will first ignore series
of consecutive syntactic units that could be combined
into one clone subsequence. We will come back to this
issue after the presentation of the basic algorithm.
Finding Syntactic Token Sequences (Basic)
The underlying observation for our basic algorithm is
as follows. Let ts be the clone token sequence returned
by the token-based clone detection that we use as rep-
resentative. An AST subtree is a complete clone if all
its tokens are completely contained in a cloned token
sequence. The test whether the tokens of an AST sub-
tree, rooted by N , are contained in the cloned token
sequence ts is simple: its root N must be contained
and the number of its arguments tokens(N)(number of
transitive successor AST nodes reachable from N ex-
cluding N itself) must not exceed the end of ts. More
precisely, let ts’first and ts’last denote the first and last
index in this sequence, respectively; then the following
condition must hold for a complete syntactic unit: n +
tokens (N) ≤ ts’last where n is the index of N in ts.

Listing 7 shows the basic algorithm. It traverses the
whole cloned token sequence ts. If a root is found to
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Figure 3. Example ASTs with sequences

be complete (lines 7–9), the search continues after the
last token of the rooted tree. The tokens in between
are part of the cloned rooted tree and we are interested
only in maximal clones. For this reason, they may be
skipped.

Variables le and ri indicate the range of tokens for
the current syntactic clone (the representative). If the
current rooted tree, indexed by le, is not completely
contained in the cloned token sequence, we continue
with its next child, which is the next token in the se-
quence (line 5 in Listing 7). This way, we descend into
subtrees of a root to identify additional clones con-
tained in an incomplete rooted tree. Descending into
subtrees is necessary only at the end of a cloned to-
ken sequence, but it may be necessary to descend re-
cursively. The recursion shows up in the traversal by
increasingly smaller steps in the traversal.
Handling Sequences The basic algorithm finds
syntactic units in the cloned token sequence. Yet, it
misses subsequences of subtrees that together form a
maximal clone. As an example, consider Listing 8 and
its corresponding AST in Figure 3. The example con-
sists of a statement sequence represented by a node
type seq with another nested sequence. The cloned to-
ken sequence representative for this example is shown
in Listing 9.

As you can see, the sequence runs into the nested
sequence without covering it completely. The basic al-
gorithm would, hence, find syntactic clone sequences as
follows: <=2 id0 id0> (x=1), once more <=2 id0 id0>
(y=2), and <call1 id0> (bar()). However, the two con-
secutive assignments together form a maximal clone se-
quence. The basic algorithm misses this maximal clone

procedure c u t a l l ( i s ) i s
os := ∅
for each c l a s s in i s loop

cut ( r e p r e s e n t a t i v e ( c l a s s ) , os )
end loop ;
emit ( os ) ;

Listing 6. Cutting out syntactic clones

1 procedure cut ( ts , os ) i s
2 l e := ts ’ f i r s t ;
3 while l e ≤ ts ’ l a s t loop
4 i f l e + tokens ( l e ) > ts ’ l a s t then
5 l e := l e + 1 ;
6 else
7 r i := l e + tokens ( l e ) + 1 ;
8 os := os ∪ { t s ( l e . . r i −1)} ;
9 l e := r i ;

10 end i f ;
11 end loop

Listing 7. Cutting out syntactic clones

sequence because only parts of the outer sequence are
part of the cloned token sequence. Whereas other AST
node types require that all parts are present to form a
complete clone, consecutive parts of a sequence may
together form a maximal clone.

The extended algorithm in Listing 10 considers se-
quences. The extension is found in lines 8–16. Pred-
icate if seq is true if an AST node represents a se-
quence. In that case, we collect all syntactic cloned
token subsequences (line 12) as long as they are com-
pletely contained in the cloned token sequence (line
13) and have the same parent (lines 14–15). Function
parent(N) returns the parent AST node of N.

4 Empirical Case Studies

In this section, we evaluate our new technique em-
pirically by comparing it to alternative techniques. We
first describe the experimental layout.
Bellon benchmark The basis for this comparison
is the Bellon benchmark that has been developed and
used for the most comprehensive quantitative compar-
ison of software clone detectors to date [26]. In that
study, six different research tools (cf. Fig. 4 above dou-
ble line) have been compared based on several Java
and C systems. For our study, we limit ourselves to
the systems in Figure 5, as the Bellon study has not
shown any significant difference in the performance of
these tools for C and Java.

The tools report their findings as clone pairs uni-
formly; clone pairs are two code snippets identified by
their filename, starting and ending line. Both code
snippets need to be at least 6 lines long to be consid-
ered. Stefan Bellon has validated the clone pairs of

f oo ( ) ; goto l ;
x = a ; x = a ;
y = b ; y = b ;
{ bar ( ) ; { bar ( ) ;

foo ( ) ; } z = j ; }

Listing 8. Example sequences in C
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the mentioned tools blindly and evenly; that is, an al-
gorithm presented him clone pairs in about the same
fraction of submitted clones without telling him which
tool has proposed the candidate.

Each clone pair suggested by a tool will be called
candidate and each clone pair of the reference corpus
will be called reference in the following. The candi-
dates seen but rejected by Bellon are used to measure
precision. Those accepted form the reference corpus
are used to measure recall.

At least two percents of each tool’s clone pairs have
been judged by him. Although 2% sounds like a small
fraction, one should be aware that it took him 77 hours
in total. Anticipating this problem in the design of the
experiment, one evaluation was done after 1 % of the
candidates had been “oracled”. Then another percent
was “oracled”. The interesting observation was that
the relative quantitative results are almost the same.

We oracled the candidates of our tools and added
them to the benchmark. All three authors of this paper
firstly oracled jointly to develop a comparable notion
of what constitutes a clone and then split to oracle in
parallel. We spent about 36 hours to oracle at least 2%
of each tool.
Metrics The Bellon benchmark comes with a set of
tools to oracle and evaluate the clone detectors, which
we reused. In order to compare candidates to refer-
ences, a two-step process is used. First, the evaluation
tools attempt to find a matching reference for each can-
didate. There are two types of matches. A good match
is one in which reference and candidate overlap to at
least 70% of their snippets. The snippets need not be
exactly the same because there were some off-by-one
differences in the way code lines are reported by the
tools. An OK match is one in which a candidate is
contained to at least 70% of its line in a reference or
vice versa. In this evaluation, we will focus on good
matches only due to reasons of space.

The match classifies candidates and references as fol-
lows. True negatives are references where no candidate
of a particular tool has a good match. Detected refer-
ences are those for which a good match exists.Rejected
candidates are candidates for which no good match ex-
ists for any reference.

After matches are found, percentages as well as re-
call and precision are measured as follows where T is a
variable denoting one of the participating tools, P is a
variable denoting one of the analyzed programs, and τ
is a variable denoting the clone type that is observed.
All three variables have a special value “all” referring

=2 id 0 id 0 =2 id 0 id 0 seq5 c a l l 1 id 0

Listing 9. Cloned sequence

1 procedure cut ( ts , os ) i s
2 l e := ts ’ f i r s t ;
3 while l e ≤ ts ’ l a s t loop
4 i f l e + tokens ( l e ) > ts ’ l a s t
5 then
6 l e := l e + 1 ;
7 else
8 i f i s s e q ( parent ( t s ( l e ) ) ) then
9 r i := l e ;

10 −− a s s e r t : r i + tokens ( r i ) ≤ t s ’ l a s t
11 loop
12 r i := r i + tokens ( r i ) + 1 ;
13 exit when r i + tokens ( r i ) > ts ’ l a s t
14 or else parent ( t s ( l e ) )
15 6= parent ( t s ( r i ) ) ;
16 end loop ;
17 else
18 r i := l e + tokens ( l e ) + 1 ;
19 end i f ;
20 os := os ∪ { t s ( l e . . r i −1)} ;
21 l e := r i ;
22 end i f ;
23 end loop ;

Listing 10. Cutting out syntactic sequence
clones

to all tools, programs, and clone types, respectively.
τ furthermore has a special value “unknown” as some
tools cannot categorize clone types.

Recall(P, T, τ) =
|DetectedRefs(P, T, τ)|

|Refs(P, τ)|

Rejected(P, T, τ) =
|RejectedCands(P, T, τ)|
|SeenCands(P, T, τ)|

TrueNegatives(P, T, τ) =
|TrueNegativeRefs(P, T, τ)|

|Refs(P, τ)|
Additional Tools In order to compare the tools not
only in terms of precision and recall but also in run-
time, we implemented three additional variations of the
evaluated tools (cf. Fig. 4 below double line). Because
these tools are built on a common infrastructure of
ours, written in the same programming language and
executed on the same hardware, the runtime compari-
son is more meaningful than the reports in the Bellon
study.

cpdetector implements the technique that we de-
scribe in this paper. The closest techniques to our ap-
proach are the token-based and AST-based techniques.
That is why we chose these techniques as a point of
comparison. ccdiml is a variation of Baxter’s CloneDr
also based on ASTs. The main differences are the
avoidance of the similarity metric, the handling of se-
quences, the hashing, and the fact that CloneDr works
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concurrently. Yet, the overall approach is the same.
cpdetector and ccdiml share the same AST as inter-
mediate representation.

clones is a variation of Baker’s technique with the
difference that it is not based on lines but solely on
tokens and that it uses nonparameterized suffixes. The
advantage of nonparameterized suffixes is that clones
does not depend upon layout; the disadvantage is that
the distinction between type 1 and 2 must be made in
a postprocessing step. Another main difference is that
clones does currently not check whether identifiers in
type-2 clones are renamed consistently.

As already discussed in Section 2.3, token-based
techniques can be extended so that they attempt to
find syntactic clones as well by splitting cloned to-
ken sequences into subsequences with a balanced set of
opening and closing scope delimiters in a postprocess-
ing step. For this reason, we compare our new tech-
niques also to a token-based technique applying this
strategy. cscope implements this postprocessing step.
As a matter of fact, cscope is not a new tool but just an
additional feature built into clones that can be turned
on via a command line switch.

It is worth to note that our suffix tree implementa-
tion is generic and is used in cpdetector, clones and
cscope identically.

All our tools find type-1 and type-2 clones except
for ccdiml, which also finds type-3 clones.

Author Tool Comparison
Brenda S. Baker Dup Tokens
Ira D. Baxter CloneDr AST
Toshihiro Kamiya CCFinder Tokens
Jens Krinke Duplix PDG
Ettore Merlo CLAN Function Metrics

/Tokens
Matthias Rieger Duploc Text
Rainer Koschke cpdetector AST/Suffix
Stefan Bellon ccdiml AST
Rainer Koschke clones Tokens
Pierre Frenzel cscope Tokens

Figure 4. Compared tools

Program Domain Size
bison 1.32 parser generator 19K
wget 1.5.3 network downloader 16K
SNNS 4.2 neural network simulator 105K
postgreSQL 7.2 database 235K

Figure 5. Analyzed programs (size in SLOC)
Results Because of limited space, we present only
one system. We choose SNNS because some tools of
the earlier experiment had problems with the larger

postgreSQL system. The results for the other systems
are comparable, however.

Figure 6. Number of candidates
Figure 6 shows the number of candidates found by

the various tools for SNNS. Here, clones found 71%
more clones than CCFinder (the tool with the highest
number in the earlier experiment), while the number
for cscope is comparable to the numbers of the other
token-based tools. cpdetector yields a low number
of candidates and ccdiml compares to cscope. The
number of candidates of token-based approaches al-
most doubles those found by AST-based tools.

The rejected candidates are shown in Figure 7.
These are very high for clones and cscope. Other
token-based methods have a reject rate of 50% and
54% while clones and cscope have 90% and 82%. The
reason is that clones and cscope do not check for con-
sistent renaming of identifiers and literals.

Rejects for ccdiml and cpdetector are comparable
to CCFinder, Dup, and Duploc with respect to type-
2 clones. The reason is that ccdiml and cpdetector
neither check for consistent renaming. Given the fact
that ccdiml and cpdetector have much lesser rejected
type-1 clones, we conclude that they could perform bet-
ter than token-based techniques if they checked for con-
sistent renaming.

Figure 8 contains the true negatives. The tools
clones, cscope, and cpdetector find an average per-
centage of references of 30%, 33% and 26%, respec-
tively. ccdiml has the second best result (53%) after
CCFinder (61%). There is no substantial difference in
the overall percentage of true negatives for token-based
versus AST-based approaches.

In Figure 9, recall is shown. The recall of clones,
cscope, and cpdetector is with 30%, 33% and 26% at
average. The recall of ccdiml, however, is with 53% the
second best with a quite big advantage. The average
recall of the token-based tools (clones, cscope, Dup,
CCFinder) is higher (54%) than the AST-based tools
(30%).
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Figure 7. Percentage of rejected candidates

Figure 8. Percentage of true negatives

Runtime Comparision The runtime for each tool
is given in Figure 10, determined on a 64bit Intel dual-
processor architecture (3.0 GHz) with 16 GB RAM
running Linux (Fedora Core 5), where only one CPU
was used. The runtime for the AST-based tools con-
tains loading the AST from disk; that is, the time ex-
cludes parsing. The runtime for the token-based tools
contains reading and tokenizing source text.

Comparing cpdetector to ccdiml, we notice a dra-
matic performance difference. The non-linear behavior
of ccdiml is mainly caused by a quadratic tree compar-
ison necessary to compare each pair of AST subtrees
in the same bucket.

We note that ccdiml can be adjusted in various
ways which affect both precision and scalability. We
chose the setting of parameters which give the most
precise results, but also require most resources. The
figures for ccdiml are comparable to those of CloneDR,
which required 10800 seconds for SNNS and 9780 sec-
onds for postgreSQL but on a weaker hardware (Pen-
tium Pro/200 MHz running Windows NT 4.0) in the
earlier experiment.

The extra effort of cscope compared to clones lies
in the postprocessing step to split clones into syntac-
tic units. As one can notice, this step is a consid-
erable factor. The effort of cscope, which also finds
syntactic clones, versus cpdetector is similar, in case

of postgreSQL even much lower. As the data for
postgreSQL suggest, splitting sequences into syntactic
clones using ASTs is more efficient for larger systems.
cpdetector skips all tokens subsumed by a rooted AST
tree in one step, whereas cscope traverses through a
sequence token by token because it does not have a
notion of syntactic containment.

System c
c
d
i
m
l

c
p
d
e
t
e
c
t
o
r

c
l
o
n
e
s

c
s
c
o
p
e

bison 68,20 3.76 1.82 3.72
wget 81.12 3.46 2.83 4.55
snns 7009.45 29.66 11.63 25.73
postgres 16942.38 62.61 74.02 113.08
Figure 10. Runtime comparison [seconds]

5 Conclusion

Our experiment has confirmed the earlier result that
token-based techniques tend to have higher recall but
also lower precision for type-1 clones. We noticed that
checking for consistent renaming is an important fea-
ture of a clone detector. The results for token-based
techniques that perform this check are much better
than those that do not. As a consequence, we could
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Figure 9. Recall

also have better precision for type-2 clones for our AST-
based tools if they made this check, too.

CloneDR cpdetector ccdiml
Rejection + ◦ ◦
Recall – ◦ +
True negatives – ◦ +
Runtime – + –

Figure 11. Comparision of AST based tools
Figure 11 shows a summarizing comparison for the

AST-based tools. cpdetector is a compromise be-
tween recall and precision, but offers better scalability
that compares to token-based techniques.

During oracling, we made additional observations.
Commonly, token-based tools proposed the end of one
function plus the beginning of the lexically next func-
tion as a clone. Here our cscope tool helped to in-
crease the quality of the results compared to clones.
A second observation is that tools report frequently oc-
curring patterns such as sequences of assignments, very
large initializer lists for arrays, and structurally equiv-
alent code with totally different identifiers of record
components. Such spurious clones could be filtered out
by syntactic property checks. Such a filtering in syntac-
tic terms, however, is possible only with an AST-based
approach.

Another point of improvement that relates to the
benchmark is to use token counts instead of lines as
a measure of clone size. We often found clones that
contained two statements separated by several blank
or commented lines. In addition, generated files (like
parsers) should be excluded from the benchmark since
such code tends to be regular and appear as spurious
clone candidates.
Acknowledgement We would like to thank Stefan
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paper.
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