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Abstract

Natural food biopreservatives have always’s remained the preference of health con-

scious consumers. This necessity has led to the studies exploring better alternatives 

which are more acceptable, economical and safer than chemical preservatives. Bac-

teriocins are one of such compounds produced by lactic acid bacteria which o�er 

a great potential to contribute in food, health and pharmaceutical industry. Present 

review focuses the complete biochemical, functional and molecular genetic char-

acterization of bacteriocins produced by Pediococcus spp. A great deal of diverse 

heterologous expression systems have been exploited for cloning, expression and 

puri�cation of pediocins at laboratory scale but data is lacking for industrial pro-

cesses. Thus, there is an urgent need to design low cost, industrially viable and con-

tinuous system in order to exploit these natural bioactive compounds in food and 

pharmaceutical industry. 
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Introduction

Lactic acid fermentations are deliberately exploited to pro-

duce various products such as pickled vegetables, bakery 

items, wine making, fermented meat, sausages and cultured 

milk products such as yogurts, cheeses, butter, buttermilk, ke-

�r, koumiss etc. Natural lactic acid fermentations are brought 

about by lactic acid bacteria (LAB) which includes a large group 

of relatively fastidious, heterotrophic Gram-positive bacteria 

that produce lactic acid as an end product of carbohydrate 

fermentation. Core microbial genera of LAB include Lactoba-

cillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus 

which are grouped together in the family lactobacillaceae. 

Their industrial importance is evidenced by their ubiquitous 

occurrence in natural food products, Genarally Recognized as 

Safe (GRAS) status, and ability to exert health bene�ts beyond 

basic nutrition. LAB display numerous antimicrobial activities 

which are mainly exhibited due to production of organic ac-

ids, bacteriocins and anti-fungal agents [1-6]. Highly promising 

results are obtained in the studies underlying the functional 

importance of bacteriocinogenic LAB as starter culture, con-

sortium members and bioprotective agents in food industry 

that improve food quality, safety and shelf life [7]. Applications 

of bacteriocin starter cultures and bacteriocin thereof in vari-

ous food systems are already addressed in a number of review 

articles [8-11]. LAB is commonly exploited in the dairy industry 

as producers of £avoring enzymes and metabolites that con-

tribute to naturally rich £avor and texture of foods. A variety of 

probiotic LAB species including Lactobacillus acidophilus, L. bul-

garicus, L. lactis, L. plantarum, L. rhamnosus, L. reuteri, L. fermen-

tum, Bi�dobacterium longum, B. breve, B. bi�dum, B. esselnsis, B. 

lactis, B. infantis are currently recommended for development 

of functional food products with health-promoting capacities 

[12]. Health claims of various LAB strains include normaliza-

tion of gastro-intestinal [13-14] and vaginal ecosystem [15-16], 

improvement of speci�c and non-speci�c immune responses 

[17], detoxi�cation of carcinogens and suppression of tumors 

and cancers [18-20], reduction of blood pressure in hyperten-

sive patients [21] and cholesterol [22]. Importance of LAB in 

treatment of milk allergies [23] and improvement of mineral 

absorption capacity of the intestine is also well documented 

in the literature [24]. 

Pediocins: The anti-microbial peptides 
(AMPs)

Pediococci as saprophytes were �rst isolated and characterized 

from plants by Mundt et al. [25] as catalase-negative, homo-

fermentative bacteria producing lactic acid as a result of sugar 

fermentation that can tolerate temperature as high as 50°C 
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[26]. These highly fastidious, non-motile, non-sporulating fac-

ultative anaerobes belong to family lactobacillaceae with P. aci-

dilactici, P. pentosaceus, P. damnosus, P. parvulus, P. inopinatus, P. 

halophilus, P. dextrinicus, P. cellicola, P. claussenii, P. ethanolidu-

rans and P. stilesii as the representative species. P. pentosaceus 

and P. acidilactici are commonly used in the fermentation of 

vegetables [27] and meats [28]. 

Anti-microbial peptides or bacteriocins are raised as an inte-

gral component of the bacterial defense mechanism and have 

been identi�ed and characterized in a number of prokaryotic 

organisms. Bacteriocins have long attracted the interest of 

food sector as potential natural food preservatives against 

spoilage and pathogenic bacteria. Pediocins produced by vari-

ous pediococcal species have gained considerable attention 

because of their remarkable heat stability, activity over a wide 

pH range, broader antimicrobial spectrum; higher speci�city 

and e�ectiveness in very low concentrations [1-3, 9, 10]. A large 

number of pediocins have been isolated and characterized till 

date. Table 1 describes production of pediocins by various 

Pediococcal strains, class they belong to, association of their 

genetic determinants with small cryptic plasmids, their bio-

chemical characteristics, mode of action and the antimicrobial 

spectrum. 

Bacterio-

cin

Producer  

organism
Class

MW 

(kDa)

MW of 

Bac+ 

plasmid

Degraded by

Ther-

mosta-

blity 

(100-

120°C)

pH 

range

Polypeptide 

nature

Mode of 

action
Antimicrobial range

Refe-

rences

Bacteriocins produced by Pediococcus acidilactici

Pedio-

cin AcH

P. acidilac-

tici H, E, 

F, M

IIa 4.6
8.9 kb

pSMB74

Trypsin, papain, 

a-chymotrypsin, 

protease K, �cin, 

protease IV, XIV 

& XXIV

yes 2.5-9.0

net +ve charge; 

pI 9.6; sequence  

is KYYGNGVTC-

GKHSCSVD-

WGKATTCI-

INNGAMAWAT-

GGHQGNHKC

Bacteri-

cidal & 

Bacte-

riolytic

Aeromonas hydrophila, Bacillus 

cereus, Brochothrix, Clostridium 

perfringens, C. botulinum, En-

terococcus faecalis, E. faecium, E. 

hirae, Escherichia, Lactobacillus 

brevis, L. curvatus, L. leichmanni, 

L. plantarum, L. viridescens, Liste-

ria  monocytogenes, L. innocua, 

L. seeligeri, Lactococcus lactis, 

Leuconostoc mesenteroides,  Mi-

crococcus sedentarius, Pediococ-

cus  acidilactici, P. pentosaceus, 

Pseudomonas putida, Salmonella,  

Staphylococcus aureus, S. xylosus, 

Yersinia

1, 36-43

Pedio-

cin PA-1

P. acidilac-

tici PAC1.0 

NRRL-5627

IIa 4.6
9.3 kb

pRSQ11

Protease, papain, 

a-chymotrypsin

yes 2.0-

10.0

net +ve charge; 

pI 8.65; se-

quence is KYYG-

NGVTCGKHSC-

SVDWGKATTCI-

INNGAMAWAT-

GGHQGNHKC

Bacteri-

cidal & 

Bacte-

riolytic

B. cereus, L. bifermentans, L. 

brevis, L.  plantarum, L. lactis, L. 

dextranicum, L. mesenteroides, L. 

monocytogenes, P. acidilactici, P. 

pentosaceus

1, 26, 

40, 44

Pedio-

cin PO2

P. acidilac-

tici PO2

IIa 4.6 5.5 MD

b-chymotrypsin, 

protease I & XIV, 

trypsin, lysozyme

yes
- -

Bacteri-

cidal

B. coagulans, E. faecalis, L. curva-

tus,  L. monocytogenes, L. mesen-

teroides, S.  aureus, Streptococcus 

faecalis

45-49

Pedio-

cin JD

P. acidilac-

tici JD-123
IIa - - Trypsin

yes
- -

Bacteri-

cidal
L.  monocytogenes 50-51

TABLE 1. Bacteriocins of Pediococcus spp.: their classes, genetic and biochemical features, mode of action and antimicrobial spectrum.
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Pedio-

cin 

PC

P. acidilac-

tici 

PC

IIa - 8.47 kb

Chymotrypsin, 

�cin, protease,

trypsin

yes
4.0-8.0 -

Bacteri-

cidal

C. perfringens, Listeria, Leucono-

stoc, Pediococcus
52, 166

Pedio-

cin SJ-1

P. acidilac-

tici SJ-1
IIa 4.0 4.6 MD

a-amylase, a-

chymotrypsin, 

trypsin, protease 

XIV, papain, 

proteinase K

yes
3.0-9.0

basic polyep-

tide; pI in alka-

line range

Bacteri-

cidal

C. perfringens, L. brevis, L. plan-

tarum, L. leichmanni, L.  monocy-

togenes

53

Pedio-

cin L50

P. acidilac-

tici L50
IIa 5.25 -

Trypsin, papain, 

protease II, VI 

& XIV

yes 2.0-

11.0

net +ve 

charge; partial 

sequence is 

Bacteri-

cidal

B. cereus, C. botulinum, C. 

perfringens, E. faecalis, L.  mo-

nocytogenes, S. aureus, L. brevis, 

L. plantarum, L. sake 148, L. inno-

cua, L. lactis, L. mesenteroides,  P. 

acidilactici, P. pentosaceus

54

Pedio-

cin AcM

P. acidilac-

tici M
IIa 4.6 - Trypsin

yes 1.0-

12.0
- -

A. hydrophila, B. coagulans, B. 

cereus, C. perfringens, L. monocy-

togenes,  S. aureus

55

Pedio-

cin F 

P. acidilac-

tici F
- 4.46 9.1 Many proteases

yes
Wide

Resistant to or-

ganic solvents
- - 56-57

Pedio-

cin CP2

P. acidilac-

tici CP2
IIa 4.63

8.9 kb 

pCP289

a- chymotrypsin, 

pepsin, pa-

pain, proteinase K, 

trypsin

yes 2.0-9.0
pI 8.85; resistant 

to many organic 

solvents

Bacte-

ricidal, 

Bac-

terio-

static, 

Anti-

fungal 

and 

Spore 

inhibi-

tory

Aspergillus �avus, C.  sporogenes, 

E.  faecalis, L. brevis, L. bulgaricus, 

L. mesenteroides,  L.  monocytoge-

nes, Micrococcus �avus, Neisseria 

mucosa, P. acidilactici, P. pento-

saceus,   Pseudomonas  putida, P. 

aeruginosa, Staphylococcus albus, 

S. aureus, Streptococcus mutans, 

S. pyogenes

58-60

Pedio-

cin SA-1

P. acidilac-

tici NRRL 

B5627
IIa 3.66 -

proteinase K , 

but resistant 

to trypsin, 

α-chymotrypsin, 

pepsin and pa-

pain 

yes
-

N-terminal 

sequence: 

KYYGXNGVX-

TXGKHSXVDX

Bacteri-

cidal

B. cereus, C. sporogenes, C. thiami-

nolyticum, E. faecalis, L.  brevis, L. 

bulgaricus, L.  casei, L. curvatus, 

L.  jensenii, L. plantarum, L.  sakei, 

L. lactis, L. monocytogenes, L. 

innocua, L.  mesenteroides, M.  

�avus, M. luteus, P. acidilactici, P. 

pentosaceus,  S. carnosus

61

Bacteriocins produced by Pediococci other than P. acidilactici

Pedio-

cin A

P. pentosa-

ceus ATCC 

43200, 

ATCC 

43201

? 80.0

13.6 MD

pFBB61,

10.5 MD

pFBB63

Trypsin, pronase, 

proteinase K

Heat 

labile
- -

Bacteri-

cidal

B. cereus, C.  botulinum, C.  

perfringens, C. sporogenes, C. 

tyrobutyricum, E. faecalis, E. coli, 

L. monocytogenes, L. innocua, 

L. sake, L. brevis, L. plantarum, L. 

lactis, L. mesenteroides, P. acidi-

lactici, P. pentosaceus,  Salmonella 

typhimurium, S.  aureus

1, 62-66
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Pedio-

cin N5p

P. pentosa-

ceus
- - -

Acid protease, 

a- chymotrypsin, 

pepsin, �cin, 

papain

yes
2.0-8.0 -

Bacteri-

cidal

Lactobacillus hilgardii, Leuconos-

toc oenos, P. pentosaceus E5p
67-68

Pedio-

cin PD-1

P. damno-

sus NCFB-

1832

- @ 3.5 - proteinase K
yes 2.0-

10.0
pI 3.5 

Bacteri-

cidal

Oenococcus oeni,  several food 

spoilage and pathogenic bac-

teria

69

Pedio-

cin ISK-

1 (nu-

kacin 

ISK-1)

Pediococ-

cus sp. 

ISK-1

- - -

Acid protease, 

a- chymotrypsin, 

pepsin, �cin, 

papain

yes 3.0-8.0
-

Bacteri-

cidal

Bacillus subtilis, L. casei ssp. casei, 

L. lactis, M.  luteus, P. acidilactici
70-71

Pedio-

cin K1

Pediococ-

cus sp. 

KCA1303-

10

IIa 4.2 9.1 kb
Pronase, pepsin, 

trypsin, lipase

yes 2.0-

10.0
-

Bacteri-

cidal

E. faecalis,  E. faecium, L. monocy-

togenes
72

Pento-

cin L
P. pentosa-

ceus L
- 27 - -

yes
- - -

Broad inhibition spectrum, B. 

subtilis, B. cereus
73

Pento-

cin S
P. pentosa-

ceus S
- 25 - -

yes
- - -

Broad inhibition spectrum, B. 

subtilis, B. cereus
73

Pedio-

cin 

ACCEL

P. pen-

tosaceus 

ACCEL

IIa 17.5 -

a- chymotrypsin, 

pepsin, trypsin, 

papain, proteinase 

K, pronase, bro-

melain

yes
2.0-6.0

N-terminal 

sequence: 

KYYGNGVTXG-

KHSXXVDXG

Bacteri-

cidal

B. subtilis, B. cereus, C. perfringens, 

L. helveticus, L. plantarum, L. 

monocytogenes L. lactis, P. pento-

saceus, S.  faecalis, S. epidermidis

74

Pedio-

cin ST18 

P. pentosa-

ceus ST18

IIb
- - -

yes 2.0-

12.0

Resistant to 

detergents, 

EDTA and PMSF. 

It does not 

adhere to pro-

ducer cells

Bacte-

riostatic

L.  innocua, L. plantarum, Pedio-

coccus spp.
75
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Pedio-

cin 

SM-1

P. pentosa-

ceus SM-1
IIa 5.37 -

a- chymotrypsin, 

pepsin, trypsin, 

papain, protei-

nase K

yes
wide -

Bacteri-

cidal

C. thiaminolyticum, C. sporo-

genes, L. monocytogenes, L. in-

nocua, Pediococcus spp.,  several 

LAB species

61

Pedio-

cin 

pK23-2

P. pentosa-

ceus K23-2
IIa 5.0 - Many proteases

yes
-

Resistant to or-

ganic solvents
-

Gram-positive bacteria, espe-

cially L. monocytogenes
76

Pedio-

cin 

05-10

P. pentosa-

ceus 05-10
IIa <6.5 - Many proteases

yes 2.0-

10.0

It shows ad-

sorption to 

both resistant 

and sensitive 

cells but not to 

producer cells

Bacteri-

cidal

Enterococcus, Lactobacillus, Leu-

conostoc, Listeria, Pediococcus, 

Streptococcus

77

Bacte-

riocin 

ST44AM

P.  pen-

tosaceus 

ST44AM

IIa 6.5 - Many proteases
yes 2.0-

12.0

Resistant to 

detergents, 

urea, NaCl and 

EDTA

Bacteri-

cidal

E. coli, Klebsiella pneumoniae,  L.  

monocytogenes, L. innocua, L. 

ivanovii subsp. ivanovii, P.  aeru-

ginosa, other LAB

78

Classification of bacteriocins

Five classes of bacteriocins have been established based on the 

producing strains, common resistance mechanisms, mecha-

nisms of action, molecular weights and chemistry [29-31]. Class 

I includes post-translationally modi�ed, small lantibiotic pep-

tides containing a number of modi�ed amino acid residues, 

and it’s further divided in to two subclasses. Class Ia groups 

peptides with a net positive charge that exert their activity 

through the formation of pores in bacterial membranes (e.g. 

Nisin). They constitute pfam domains PF05500 and PF04369, in 

conjunction with F(ND)L(DEN)(LVI), SLCTPGC and SXXXCPTTX-

CXXXC motifs [32]. Class Ib mainly consists of post-translation-

ally modi�ed, small globular peptides with a negative or zero 

charge (e.g. Mersacidin) which’s antimicrobial activity is related 

to the inhibition of speci�c enzymes. F(ND)L(DEN)(LVI), FTCCS, 

GXXXTOBX-C motifs and PF05500 and PF04369 pfam domains 

have been identi�ed in class Ib bacteriocins. Class IIa speci�es 

small, strongly cationic, heat stable, non-lantibiotic, antiliste-

rial pediocin-like peptides with at least one disul�de bridge 

(e.g. Pediocin PA-I, Pediocin CP2, Pediocin AcH, Enterocin A). 

N-terminal YGNGVXC, LSXXELXXIXGG and double glycine mo-

tifs and PF04604, PF02052, PF01721 pfam domains characterize 

class IIa bacteriocins. Class IIb bacteriocins require two di�er-

ent peptides of 25 to 65 kDa, constituting domains PF02052, 

PF01721 and motifs P(RQ)GXXXTOBX-C, LSXXELXXIXGG and 

double GG for their activity (e.g. Lactococcin G). Class IIc in-

cludes remaining cationic bacteriocins of 30 to 65 kDa which 

are secretory signal-dependent bacteriocins (e.g. Acidocin B). 

Large heat labile bacteriocins are clustered together under 

class III (e.g. Helveticin). Fourth class comprises an unde�ned 

mixture proteins, lipids and carbohydrates usually more than 

10kDa in size. The existence of the fourth class was supported 

mainly by the observation that some bacteriocin activities 

obtained in cell free supernatant, exempli�ed by the activity 

of L. plantarum LPCO10, were abolished not only by protease 

treatments, but also by glycolytic and lipolytic enzymes [33]. 

Pediocin SJ-1, pediocin PO2 and pediocin K1 lost 50% or more 

acitivity upon treatment with alpha amylase, lysozyme and li-

pase respectively (Table 1). Thus, a situation of ambiguity arises 

whether to keep these heat-stable and anti-listerial bacterio-

cins in class IIa or class IV (Author’s own observation). One ad-

ditional group of circular bacteriocins of 49-108 kDa, carrying 

two trans-membrane segments were housed in class V and has 

been described in BAGEL database [31]. BAGEL is a web-based 

bacteriocin genome mining tool that helps to identify putative 

bacteriocin ORFs in microbial genomes by extending various in 

silico computational methods using novel, knowledge-based 

bacteriocin databases and motif databases. Many bacteriocins 

are encoded by small genes that are often omitted in the an-
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notation process of bacterial genomes. Gassericin A, circulatin 

A, and carnocyclin A are few examples of circular bacteriocins 

which may carry two trans-membrane segments that facilitate 

pore formation in sensitive cells [31, 34-35]. Their unique func-

tional activities as well as circular nature make them potential 

candidates for developing novel antimicrobial agents. Class I 

and II bacteriocins are produced as pre-bacteriocins and usu-

ally processed during their transport through the cytoplasmic 

membrane at G(SA) and P(RQ) sites and GG, GG P(RQ) and 

G(GSA) sites respectively. 

Mechanism of pediocin action

AMP’s are frequently enriched in cationic amino acid residues 

and interact very strongly with anionic bacterial membranes. 

They kill sensitive bacteria by punching holes in their cell mem-

branes, causing a disruption in their trans-membrane potential 

(PMF) and destroying the delicate balance of which the organ-

isms maintain between themselves and their environment [79]. 

In a study conducted on membrane vesicles derived from both 

sensitive and immune cells, liposome delivered pediocin PA-1 

elicited e¶ux of small ions in a concentration dependent man-

ner [79]. Higher concentration of pediocin e�ectively released, 

higher molecular weighted substances. They frequently adopt 

conformations where polar and non-polar residues are segre-

gated properly resulting in a typical amphipathic structure that 

exhibits more peptide internalization and membrane pertur-

bation. Trans-membrane potential (negative inside) in bacteria, 

acts as a potential driving force for insertion and internaliza-

tion of the antimicrobial peptides promoting AMP interaction 

[80]. Pediocin PA-1 exerts bactericidal or bacteriolytic e�ect de-

pending on the species of the sensitive cells [81]. Pediocins also 

act on some sensitive bacterial strains in bacteriostatic manner 

and thus retard further proliferation of the sensitive cells (e.g. 

Pediocin ST18, pediocin CP2). Antifungal and spore-inhibitory 

property of a broad spectrum pediocin CP2 has been explored 

in a study conducted at Department of Biotechnology, Punjabi 

University, Patiala, India. Antibacterial activity of bacteriocins 

produced by Pediococci is well documented in literature but, 

none of the earlier report indicates their antifungal property 

against A. niger isolates [82]. Currently scientists are focusing 

on these deadly workings of AMPs as a new approach to treat 

bacterial infections [12-17, 21, 83-85]. A study conducted using 

nisin indicated its e�ectiveness and e·ciency as alternative 

therapeutic to antibiotics for the treatment of Staphylococcal 

mastitis [83, 84]. In vitro and in vivo studies performed with ly-

sostaphin a class III bacteriocin have shown that this staphylo-

coccin has potential to be used, solely or in combination with 

other antibacterial agents, to prevent or treat bacterial staphy-

lococcal infectious diseases [83]. Nowadays, puri�ed bacterio-

cins are available and have shown to posssess anti-neoplastic 

activity. Pyocin, colicin, pediocin, and microcin are among bac-

teriocins reported to present such activity. Moreover, modi�ed 

bacteriocins proved to be e�ective in a glioblastoma xenograft 

mouse model [85].

Applications of bacteriocin producing 
LAB in food industry

Foodborne pathogens can multiply rapidly during extended 

storage at low temperature and under oxygen stress condi-

tions, which make food un�t for consumption. Aeromonas 

hydrophila, Bacillus, Clostridium botulinum types B and E, Esch-

erichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, 

Salmonella enterinais, Shigella, Yersinia enterocolitica have been 

isolated from refrigerated foods and implicated in outbreaks of 

foodborne illness [54,86-88]. Strains of mesophilic organisms 

such as Salmonella and Escherichia are capable of proliferation 

in temperature abused (10-12°C) refrigerated systems. B. cereus 

has been well established as a cause of foodborne illness in hu-

mans [89-90]. Pathogenicity of B. cereus is associated with tis-

sue destructive/ reactive exoenzyme production. It secretes a 

proteinaceous enterotoxin and induces a diarrheal syndrome. 

In addition to food poisoning, it causes a number of systemic 

and local infections in both immunologically compromised 

and immunocompetent individuals including aplstic anemia, 

brain abscesses, endophthalmitis, gas gangrene, meningitis, 

pneumonia and pseudomembranous tracheobronchitis [91]. 

Many pediocins are e�ective in controlling growth and mul-

tiplication of such foodborne pathogens and spoilage organ-

isms in various food systems (Table 1). Many studies have high-

lighted the resistance of Gram-negative species to LAB bacte-

riocins [89, 92]. Skytta et al. [93] reported that some selected 

strains of Pediococci: one of P. damnosus and two of P. pento-

saceus synthesize broad spectrum bacteriocins that e�ectively 

kill Gram-negative Y. enterocolitica, P. fragi and P. �uorescens in 

minced meat. Increased activity of bacteriocins was observed 

when they were used in combination with other antagonistics 

factors. A few reports indicated that sublethal injury due to 

heating, freezing, low pH exposure, ultrahigh pressure, elec-

troporation, presence of chemical bactericidal agents such 

as sodium acetate, detergents and chelating agents enhance 

susceptibility of Gram-negative bacteria such as A. hydrophila, 

S. typhimurium, Y. enterocolitica, E. coli, P. putida, P. �uorescens 

etc. against LAB bacteriocins [42-43, 94-101]. The presence of 

bacteriocin-producing LAB could act as a potential barrier to 

inhibit the growth of spoilage bacteria and foodborne patho-

gens. Bromberg et al. [102] tested 813 strains of LAB which were 

able to inhibit the growth of Staphylococcus aureus CTC33 and/

or Listeria innocua Lin11 invitro in meat and meat products 

against a range of Gram-positive (B. cereus, C. sporogenes, C. 

perfringens, E. faecalis, L. plantarum, S. aureus) and Gram-neg-

ative (E. coli, Pseudomonas sp., S. typhimurium) test organisms 

and found that, Of these 128 strains showed various inhibition 

frequencies. 

Today consumers’ preference for safe, fresh-tasting, ready-to-

eat, minimally-processed foods has created the necessity of ex-

ploration of novel and natural alternatives to chemical preser-

vatives, which are useful to control development of food spoil-

age and pathogenic microorganisms in food systems. Nisin is a 
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good example of food bio-preservative as well as an additional 

hurdle factor for increasing the shelf-life of minimal processed 

foods [103]. Antimicrobial substances produced by LAB o�er 

potential applications in food preservation, food safety as well 

as to develop “novel” foods, health care, and pharmaceutical 

products [9, 88]. Bacteriocins could be added to canned/pack-

aged food items in the form of concentrated preparations, 

or they could be produced in situ by bacteriocin producing 

starter cultures. Immobilized bacteriocins could be exploited 

to develop bioactive food packaging materials. Foods are con-

sidered as highly complex ecosystems where microbial inter-

actions may in£uence bacteriocin e·cacy and proliferation of 

harmful bacteria. There is a necessity to understand the global 

e�ects of bacteriocins in food ecosystems, to study bacterial 

genomes which may reveal new sources of bacteriocins and 

to develop genetically engineered food grade expression sys-

tems for development of commercial products. 

Therapeutic potential of LAB  
bacteriocins

In the past 4 to 5 decades, use of antibiotics to �ght against 

infectious diseases caused by microorganisms, has lead to dra-

matic rise of average life expectancy in humans. Unfortunately, 

the eventual appearance of strains resistant to multiple antibi-

otics in disease-causing microbes is an increasing public health 

problem in recent years. Urogenital problems such as bacterial 

vaginosis, gastrointestinal infections, pneumonia, septicemia 

and childhood ear infections are just a few of such diseases 

that have become hard to treat with antibiotics. Very often, 

bacteria develop several ways to resist antibiotics and other 

antimicrobial drugs. Other factors such as poor medical facili-

ties, increasing use and misuse of existing antibiotics in human 

and veterinary medicine and in agriculture has signi�cantly 

worsened the problem.

Bacterial vaginosis (BV) is one such problem where an in£am-

mation of vagina occurs when the natural microbial balance of 

vagina is disturbed. Gardner [104] indicated association of bac-

teria such as Gardnerella vaginalis, Prevotella bivia, Peptostrepto-

coccus spp. Mycoplasma hominis, Mobiluncus and a yeast strain 

Candida albicans with bacterial vaginosis. BV can have adverse 

outcomes of pregnancy [105-112] and enhances susceptibility 

to infection by HIV [113], HSV type 2 [114] and other sexually 

transmitted diseases. Goldstein et al. [115] had demonstrated 

that resistance of G. vaginalis to metronidazole increased to 

68% in year 2000. Recurrence rates of up to 30% within three 

months after treatment have been reported [116]. 

Helicobacter pylori infection is another problem that a�ects al-

most all patients with duodenal ulcers and 70% of cases with 

gastric ulcers [117]. Pathogen weakens the protective mucous 

coating of the stomach and duodenum by secreting urease, 

protease or phospholipases etc. as virulence traits helping col-

onization of the pathogen. Both acid and bacteria irritate the 

lining and cause a sore, or ulcer [118]. Peptic ulcers are usually 

treated by antibiotics, proton pump inhibitors, antiacids and 

H2 blockers [12, 119-120]. However, emergence of antibiotic 

resistance in H. pylori due to point mutations and decreased 

binding of the antibiotics to the ribosomes has raised the con-

cern [121-125]. 

Lactobacillus paracasei CRL1289 shows strong inhibition of S. 

aureus induced urinogenital infection as tested in a mouse 

model [126]. Probiotic LAB provides best alternative and at-

tractive proposition to get rid of these opportunistic patho-

gens of vaginal and gastrointestinal tract. Skarin and Sylwan 

[127] studied growth inhibitory properties of vaginal lactoba-

cilli against bacterial species associated with BV. Lactacin A164 

produced by L. lactis subsp. A164, lacticin BH5 produced by L. 

lactic subsp. BH5, bulgaricin BB18 produced by L. bulgaricus 

BB18 and enterocin MH3 produced by Enterococcus faecium 

MH3 have shown strong anti-Helicobacter pylori activity in 

laboratory experiments [128,129]. Thus, bacteriocin producing 

starter cultures are potential candidates for formulating health 

promoting functional food products or vaginal creams which 

might be used to contribute a bene�cial e�ect on the balance 

of intestinal and vaginal micro£ora respectively. 

Probiotics: Best alternative to antibiotic 
therapy

Prof. Metchniko� [130] the Nobel laureate of 1908, introduced 

the concept of probiotics in his book “The Prolongation of Life”. 

He argued that these friendly living bacteria normalize bowel 

habits, �ght against disease-carrying bacteria and extend nor-

mal life span. Term “Probiotic” was �rst introduced by Kollath 

[131]. Fuller [132] gave a widely accepted de�nition of probiot-

ics as “A live microbial feed supplement which bene�cially a�ects 

the host animal by improving its intestinal microbial balance”. 

Since their establishment in various food systems, they are 

widely recommended in rotavirus diarrhea, to get rid of antibi-

otic-associated side e�ects, food allergies, lactose intolerance, 

atopic eczema, irritable bowel syndrome, in£ammatory bowel 

disease, cystic �brosis, traveller’s diarrhea, dental caries, to en-

hance pro�ciency of oral vaccines and to reduce incidence of 

certain cancers [12, 133]. The protective role of probiotics was 

established in colon [20, 134] and cervical cancer [135]. 

The indigenous microbiota plays an important role in protect-

ing the host from colonization by opportunistic pathogens. 

Earlier studies have highlighted the inhibitory a�ects of the 

LAB towards BV associated pathogens [127, 136]. Lactobacillus 

is the predominant genus in the vaginal and endocervical mi-

crobial communities [137-139]. A number of studies explored 

the role of bacteriocin-like substances from vaginal isolates of 

Lactobacillus sps. to inhibit the growth of vaginal pathogens 

like E. coli, E. faecalis, E. faecium, G. vaginalis, Klebsiella spp., N. 

gonorrhoeae, S. aureus and Streptococcus agalactiae [140-142]. 

Lactocin 160, a bacteriocin produced by a probiotic vaginal L. 
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rhamnosus has been shown to target cytoplasmic membrane 

of G. vaginalis [143]. The potential use of human lactobacilli as 

probiotics assigned to restore and maintain a healthy urogen-

ital tract represents a promising alternative to conventional 

chemotherapy [12, 144-161]. 

Pediocin production: A plasmid linked 
trait in pediococci

In last two decades, there have been signi�cant advances in 

functional genomic analyzes of LAB and biochemical charac-

terization of bacteriocins produced by them. Considerable ef-

forts have been made to functionally characterize bacteriocin 

operons and to express them in heterologous systems [57, 170, 

178-195]. Whole genome sequence and sequences of several 

cryptic plasmids of Pediococci bearing genetic determinants 

for bacteriocin production can be retrieved from GenBank da-

tabase of NCBI. As far as genetic characterization is concerned, 

pediocin PA-1 produced by various P. acidilactici strains has 

been studied extensively. Gonzalez and Kunka [26] showed 

that pediocin PA-1 operon of P. acidilactici PAC1.0 NRRL-5627 

is located on 9.3 kb plasmid pRSQ11. Bhunia et al. [36] isolated 

a bacteriocin producing strain P. acidilactici H from fermented 

sausage. Subsequently, in their laboratory, they also identi�ed 

three more Bac+ strains; E, F and M, from di�erent sources ca-

pable of producing pediocin AcH. Pediocin production trait in 

all of these strains has been linked to 8.9 kb plasmid pSMB74 

[37, 162-164]. P. acidilactici strains harbour this high copy 

number plasmid which is generally lost from the cells under 

stress [1] and could be transferred to plasmidless P. acidilactici 

strains [163]. Plasmid pSMB74 has been completely sequenced, 

mapped and fragments have been cloned in a pUC119 vector 

[165]. In P. acidilactici SJ-1, only pediocin SJ-1 structural gene is 

associated with a 4.6 MDa plasmid, but not its immunity factor 

[53]. Bacteriocin production in P. acidilactici PC too is a plasmid 

linked feature [52, 166]. Few other reports also indicated the 

plasmid linkage of bacteriocin activity in Pediococcus species. 

Pediocins such as PO2, PC, SJ-1, L50, AcM, F, CP2, SA-1, PD-1, K1, 

ACCEL, SM-1, pK23-2, ST44AM, and 05-10 are other examples 

where association of bacteriocin production trait has been 

established with small cryptic plasmids [45, 52-58, 61, 69, 72, 

74, 76-78]. In P. pentosaceus, production of more than 10 bac-

teriocins has been reported (Table 1). Pediocin A operon in P. 

pentosaceus FBB61 and P. pentosaceus FBB63 has been linked to 

plasmids of 13.6 and 10.5 MDa sizes, respectively [62, 63, 66]. 

Pediocin A encoding plasmid pMD136 of P. pentosaceus ATCC 

43200 was characterized by restriction fragment analysis by 

Kantor et al. [167]. Genetic information regarding production of 

various bacteriocins in P. pentosaceus (N5P, PD-1, ISK-1, ACCEL, 

ST18, SM-1, pK23-2, 05-10, bacteriocin ST44AM and pentocins 

L and S) and their immunity factors is currently not available. 

Plasmid borne characters have a great potential for genetic 

manipulations and improvement of strains for conventional 

starter cultures used in biotechnology industry. Their ability 

to show antagonism against food spoilage and pathogenic mi-

crobes opens up scope for the development of food grade bio-

preservatives and novel therapeutics. At the same time, such 

plasmid encoded characters are of interest to food technolo-

gists as they could be transferred to selected strains of LAB to 

develop strongly competitive starter culture bacteria which are 

capable of predominating over natural £ora by direct antago-

nism along with their superior fermentation characteristics.

Genetic organization of pediocin  
operon

Pediocin PA-1 of P. acidilactici PAC1.0 and pediocin AcH of P. 

acidilactici H have been shown to contain a cluster of four 

genes with common promoter and terminator sequences [40, 

168-169]. PedA encodes a 62 amino acids long prepediocin 

PA-1. Eighteen residue long leader sequence from N-terminal 

of pre-pediocin is removed during processing and export of 

pediocin through producer cell membrane. Mature pedio-

cin carries 44 amino acid residues and two intra-molecular 

disulphide bridges at cys9-cys14 and cys24-cys44 positions 

[46, 170-171]. PedB immunity gene is located downstream to 

pedA and encodes a protein of 112 amino acid residues. PedC 

a 174 amino acid long amphiphilic protein involved along with 

pedD protein in facilitating/accelerating the trans-membrane 

export of prepediocin in P. acidilactici [168]. PedD gene speci-

�es a polypeptide of 724 amino acid residues. Deletion analysis 

and site speci�c mutagenesis of pedD resulted in complete loss 

of pediocin production, showing its essentiality for secretion 

in E. coli [40]. PedD sequence show a very high homology to 

members of ATP dependent transport proteins and also to a 

group of eukaryotic proteins involved in multidrug resistance 

[40]. Very high similarity of pedD was already established with 

HlyB, an E. coli membrane protein required for the export of 

hemolysin A [172]. ComA (required for competence induction 

in Streptococcus pneumonia) is another member of this fam-

ily of ATP binding protein with high degree of similarity [40]. 

These proteins carry an ATP binding motif (GMSGSGKTT) [40]. 

Pediocin AcH is another well characterized pediocin of P. aci-

dilactici H linked to papABCD operon involving pediocin AcH 

structural gene (papA), immunity function (papB), ABC trans-

port proteins (papC and papD) that play an important role 

in translocation and processing of active pediocin AcH [170]. 

Miller and coworker [172] provided experimental evidence by 

random mutagenesis that all four cysteine residues in pediocin 

AcH are necessary for its activity, as they play a vital role in 

stabilization of the secondary structure of this small peptide. 

His-kinase and C39-protease are other genes usually found as-

sociated with bacterioicn operon and are indirectly involved 

in production and secretion of active bacteriocins by producer 

organisms [31].

Cloning and heterologous expression  
of pediocins 

Since the establishment of pediocin production as a plasmid 

linked trait, studies on cloning these plasmids in heterologous 

systems have started. Table 2 summarizes all those e�orts 
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TABLE 2. Cloning and expression of pediocins in heterologous systems.

Pediocin
Producer 

Organism
Vector Expression Host Activity Comments References

Pediocin PA-1
P. acidilactici 

PAC 1.0

pSRQ11 and 

pVA891
E. coli + Linearized pRSQ11 ligated to linearized pVA891 40

Pediocin AcH P. acidilactici H
Shuttle vector 

pHPS9

E. coli χ925 and a 

ped- P. acidilactici 
+

Transformed minicells of E. coli chi 925 require 

papA and papD for pediocin AcH production and 

secretion

168

Pediocin PA-1
P. acidilactici 

PAC 1.0
- L.  lactis +

Expressed successfully under lactococcal 

promoter 
182

Pediocin P. acidilactici pMC117
L. lactis subsp. lactis 

MM210
+

Electro-transformed L. lactis subsp. lactis MM217 

got ped+ phenotype with no alterations in its 

cheese making properties 

194

Chimeric 

Pediocin AcH-

MBP proteins

P. acidilactici H
pPR682

pIH821

Periplasmic leaky E. 

coli E609L
+

> 90% reduction in viable cell counts after 24h 

IPTG induction in pIH821; whereas 10% viability 

loss reported in pPR682

170

Pediocin 

PA-1 with 

lactococcin 

A promoter 

and leader 

sequence

P. acidilactici pFI2058 L. lactis IL1403
+ 

Recombinant displayed 25% pediocin activity.

Additional copies of lcnC and lcnD introduced to 

raise activity.

Nisin and pediocin coexpressed in L. lactis IF5876

183-184

Pediocin P. acidilactici Shuttle vector  PST

S. thermophilus, E. 

coli, L. lactis ssp. 

lactis, E. faecalis

+

Expressed under p2201 and repA of S. 

thermophilus

Production stable up to 10 sub-culturing only

178

Pediocin PA-1
P. acidilactici 

PAC1.0

yT&A

Yeast expression 

vector

S. cerevisiae Y294
 

+

Expressed using yeast ADH1 promoter & MFa1S 

signal peptide and bactericidal yeast strain 

developed for wine, baking and brewing 

industries

192

Pediocin PA-1 
P. acidilactici 

347

pMG36c, 

pHB04 with P32 

promoters

L. lactis IL1403 +

pedA and pedB genes coexpressed successfully 

with enterocin A in L. lactis IL1403 though at very 

low levels

185

Pediocin F P. acidilactici F pQE32 E. coli +

T5 promoter based expression and over 

expressed upon induction with IPTG 

and puri�ed by Ni-NTA metal a·nity 

chromatography

57

Pediocin P
P. pentosaceus 

Pep1
pHD1.0 E. coli JM109 _

Successfully electro-transformed E. coli JM109 

but no activity in recombinant cells 
57

Pediocin P. acidilactici pPC418

L. lactis ssp. lactis, 

S. thermophilus, E. 

faecalis

+ Expressed successfully 186

Rec-pediocin 

with 

lactococcin 

A leader 

sequence

P. acidilactici pFI2391, pFI2436 L. lactis +
Nisin A inducible promoter and lactococcin A 

secretory apparatus
187
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Pediocin PA-1
P. acidilactici 

PAC 1.0

Yeast expression 

vector

Pichia pastoris 

KM71H
-

Rec-pediocin aggregated with “collagen-like” 

material, showed less hydrophobicity, an altered 

isoelectric point and no biological activity. 

193

Chimeras 

of pediocin 

PA-1, sakacin 

P, enterocin A, 

leucocin A and 

curvacin A.

P. acidilactici pMG36e L. sakei LB790 +

P32 promoter based expression, C-terminal 

domain of pediocin like bacteriocins is involved 

in speci�c recognition of the C-terminal part of 

cognate immunity protein and determines the 

antimicrobial spectrum.

190

Rec-pediocin 

PA-1 with 

Bi�dobacterial 

a-amylase 

signal peptide

P. acidilactici

pPSAB 

(E. coli); pPSAB1 

(B. longum)

Bi�dobacterium 

longum MG1
+

Strong antimicrobial activity in E. coli; approx. 

90% pPSAB1 stably maintained in B. longum MG1 

over 20 successive subculturings without an 

antibiotic stress

191

Pediocin PA-1 

fused with His 

tagged DHFR 

gene

P. acidilactici pQE40PED E. coli M15 +

Over expressed with IPTG and puri�ed by Ni-NTA 

metal a·nity chromatography and recovered by 

Factor Xa protease digestion

179

Trx-pediocin 

PA-1

P. acidilactici 

PAC1.0
E. coli +

Thioredoxin-pedA fusion protein lacked 

biological activity, but upon cleavage by an 

enterokinase gave biologically active pediocin 

PA-1 

180

6XHis-Xpress-

PedA
P. acidilactici K7

pTZ57R/T

subcloned in 

pRSET-A

E. coli BL21 (DE3) +

PT7 based expression, 8 to 10 times higher 

puri�cation e·ciency achieved with Ni-NTA 

a·nity beads; refolded invitro using 5mM 

b-mercaptoethanol and 1M  glycine

181

Chimeric 

pediocin PA-1, 

enterocin A 

and other 

class IIa 

bacteriocins

P. acidilactici
DNA shu¶ed 

library

++

Mutant B1 inhibited a pediocin resistant L. lactis. 

Sequence analysis revealed novel N-terminal 

sequence TKYYGNGVSCTKSGC in strain B1 as 

compared to KYYGNGVTCGKHSC of pediocin 

PA-1

195

Pediocin PA-1 P. acidilactici K7
Shuttle vector 

pAMJ 
L. lactis MG1363 + P170 promoter based expression 188

Pediocin PA-1 
P. acidilactici 

347

Lactococcin 

A secretory 

apparatus

Lactococci +

Co-produciton of nisin and rec-pediocin PA-1 

(lcnA leader, propediocin under the control of 

lcnA secretory machinery)

189

made to clone potentially useful pediocins and till date, a num-

ber of research groups have reviewed their sources, produc-

tion, properties, genetic features, food industry applications, 

antimicrobial properties etc. [2, 64, 101, 173-177]. Pediocin PA-1 

has been cloned and expressed in several bacterial strains in-

cluding E. coli [40, 57, 168, 170, 178-181], L. lactis [178, 182-189], 

L. sakei [190], S.thermophilus [178, 186], E. faecalis [178, 186], P. 

acidilactici [168], B. longum [191], in baker’s yeast Saccharomyces 

cerevisiae [192] and in methylotrophic yeast Pichia pastoris [193].

Cloning and expression of pediocin  
in E. coli

E. coli is the organism of choice for production of rec-proteins, 

enabling the FDA approval of Eli Lilly’s recombinant insulin 

under the trade name Humulin® in 1982. Afterwards the num-

ber of US and European biopharmaceutical companies grew 

tremendously with their ever increasing number of approved 

recombinant products which were cultivated in E. coli systems. 
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The expanding choice of E. coli expression systems for achiev-

ing high level production of rec-proteins is empowered by fac-

tors such as voluminous knowledge of their physiological and 

biochemical properties, availability of genetically engineered 

E. coli strains that facilitate formation of correct disulphide 

bonds in the reducing environment of cytoplasm and yield 

high product with least proteolytic degradation. A plethora of 

protease de�cient E. coli strains (all B strains including B834, 

BL21, BLR, OrigamiTM B, RosettaTM, TunerTM are de�cient in 

lon and ompT proteases) have been developed with their well 

known codon usage, as rare codons in the cloned genes can 

have adverse outcome on levels of protein synthesis. E. coli 

BL21(DE3) is most widely exploited for heterologous gene ex-

pression in E. coli. BLR(DE3) is a recA- mutant of E. coli BL21(DE3) 

which is commonly used to express genes carrying repetitive 

sequences [196]. E. coli C41(DE3) and E. coli C43(DE3) are more 

promising to deal with membrane proteins than native host E. 

coli BL21(DE3). OrigamiTM B, RosettaTM and TunerTM strains are 

de�cient in lacY permease which facilitates uniform entry of 

the IPTG inducer and allows a homogenous level of induction. 

E. coli strains AD494, AD494(DE3), BLRtrxB, BLRtrxB(DE3), Ori-

gami, OrigamiTM B and Rosetta-gamiTM have mutations in their 

glutathione reductase (gor) and thioredoxin reductase (trxB) 

genes and have been specially designed to support formation 

of correct disul�de bonds in rec-proteins [197, 198]. RosettaTM 

are engineered to supply rare tRNA for the codons AUA, AGA, 

AGG, CCC, CUA and GGA on a compatible chloramphenicol re-

sistant plasmid [199]. A very high-level expression is o�ered by 

a wide variety of tightly regulated prokaryotic promoters and 

expression systems (pT7Blue, pBlueStar, pRSFDuet, pSMART, 

pQE32, pQE40, pET32, pTZ57R/T, pRSET-A etc.). There has 

been a remarkable increase in the availability of fusion part-

ners (such as T7-tag, S-tag, His-tag, HSV-tag, Trx-tag, CBD-tag, 

GST-tag, Nus-tag, Dsb-tag etc.) with improved protein folding 

tools. Recombinant proteins could be secreted by tagging with 

highly speci�c sequence tags that facilitate their detection by 

a·nity puri�cation, immuno-£uorescence, immuno-precipita-

tion, western blotting. Extensive workout has been done on 

the mechanism of controlling gene expression and on obtain-

ing biological activity of the proteins in heterologous E. coli 

systems [200]. 

While designing the expression systems for pediocins, one 

should be very particular about the natural sensitivity of the 

LAB against bacteriocins produced by them. Producer organ-

isms have well developed defense machinery that protects the 

host from self secreted bacteriocins [40, 79, 201-204]. Thus, a 

need arises to co-express the pediocin immunity protein when 

production and secretion of the native pediocin is sought in 

heterologous strains. However, in some bacterial strains immu-

nity function of pedB is not required for expression of biologi-

cally active pediocin such examples are many strains of E. coli 

showing resistance to pediocins produced by Gram-positive 

Pediococcus species [40, 168]. Shuttle vector pHPS9 bearing 

pedA gene from P. acidilactici H has been introduced in E. coli 

χ925. In transformed minicells of E. coli χ925, only papA and 

papD are required for pediocin AcH production and secretion, 

as the recombinant cells are highly resistant to pediocin AcH. 

T5 promoter based expression system consisting of a Nova-

gen vector pQE32 has been used for expression of pediocin 

F of P. acidilactici F in E. coli. It was over expressed upon in-

duction with IPTG and his-tagged protein was extracted from 

cell lysates using Ni-NTA metal a·nity chromatography [57]. 

Thioredoxin-pediocin PA-1 fusion protein has been expressed 

in E. coli. Fusion protein itself did not show any biological activ-

ity, but upon cleavage by an enterokinase, biologically active 

pediocin PA-1 was obtained [180]. In addition, four to �ve fold 

increases in production yield was obtained in comparison to 

pediocin PA-1 produced naturally by P. acidilactici PAC 1.0.

Expression of biologically active form of recombinant pedio-

cin in non-native organisms in a soluble form remains a bottle 

neck. It depends upon survival tendency, propagation and 

copy number of recombinant plasmid in transformed host, in 

addition to half life of the rec-protein in an altered environ-

ment and osmotic condition of the cytosol. It has been ob-

served that integral membrane proteins of E. coli could inter-

fere with growth and viability of the recombinant cells, when 

pediocin was over expressed [170]. To overcome this problem, 

papA was fused in-frame to secretary maltose binding protein 

(MBP) of E. coli and coned in malE vectors pPR682 and pIH82, 

whose e·cient and powerful secretory signals directed very 

high level synthesis of MBP chimeric protein [170]. About one 

third of chimeric proteins were secreted into periplasm and 

released into the culture medium by periplasmic leaky E. coli 

E609L. However, a very high viability loss of >90% in recom-

binant E. coli E609L transformed with pIH821 and of 10% in E. 

coli E609L transformed with pPR682 was observed after 24h 

of IPTG induction.

Upon over-expression in heterologous systems, rec-proteins 

may tend to accumulate in inclusion bodies (IBs) of E. coli as 

a result of reducing conditions of the cytosol. To extract an 

intracellular protein it is necessary to disrupt the cells and sepa-

rate IBs [205]. IBs are subsequently washed and resolublized 

for proper folding of rec-proteins [206]. 6XHis-Xpress-pedA 

carrying pediocin structural gene from P. acidilactici K7 was 

cloned in pTZ57R/T [181]. It was further subcloned in pRSET-A 

for over expression in E. coli BL21(DE3). Recombinant pediocin 

was puri�ed using Ni-NTA beads and eluted with 0.5M imidaz-

ole. In vitro refolding of rec-pediocin was carried out in redox 

system consisting of 5mM b-mercaptoethanol and 1M glycine 

to achieve its biological activity. 

The antimicrobial activity of the heterologous expressed 

pediocin varied from 0 to 10 fold depending on the expression 

system used. Osmanagaoglu et al. [57] successfully electro-

transformed E. coli JM109 cells with pHD1.0 bearing pediocin 

P structural gene from P. pentosaceus Pep1, but none of the 

transformant was able to express and/or release pediocin P. To 

overcome this, rec-pediocin was fused inframe with alpha-am-

ylase signal peptide of Bi�dobacterium to construct plasmids 

pSAB and pSAB1 for transforming E. coli and B. longum MG1, 

respectively [191]. Recombinant E. coli showed strong antimi-

crobial activity, while 90% of pSAB1 was stably maintained in 

B. longum MG1 over 20 successive subculturings without an 
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antibiotic stress. Moon and coworkers [179] fused pedA with 

His-tagged DHFR in pQE40PED and transformed E. coli M15. 

Recombinants displayed very high pediocin activity upon 

overexpression with IPTG and subsequently fusion protein 

was puri�ed by Ni-NTA a·nity chromatography. Recovery of 

the native pediocin PA-1 from fusion product was achieved by 

digestion with Factor Xa protease. PT7 based expression sys-

tem o�ers 8 to 10 times higher yields with great puri�cation 

e·ciency achieved through Ni-NTA a·nity beads [181]. 

Cloning and expression of pediocin in 
other microbial systems

Heterologous hosts including S. thermophilus, L. lactis subsp. 

lactis and E. faecalis have been demonstrated for their ability 

to express pediocin under p2201 and repA of shuttle vector 

PST [178]. The major limitation of these expression systems 

is the decreased stability (upto 10 subculturings only) of the 

cloned genes. A chimeric stretch consisting of lactococcin A 

promoter, lactococcin A leader sequence and pediocin PA-1 

structural gene has been introduced in pFI2058 for construct-

ing a recombinant plasmid which was used to transform L. 

lactis IL1403. Recombinant lactococcal strains displayed only 

25% pediocin activity. Thus, in an attempt to raise pediocin 

yields, additional copies of lcnC and lcnD were co-introduced in 

recombinant L. lactis IL1403. Using same recombinant pFI2058, 

a nisin producing L. lactis IF5876 was also transformed, where 

nisin and pediocin PA-1 were coexpressed successfully [183-

184]. PedA and pedB genes of pediocin operon from P. acidi-

lactici 347 have been successfully coexpressed with enterocin 

A in L. lactis IL1403 using plasmids pMG36c, pHB04 carrying 

P32 promoters, but resulting pediocin activity detected in 

recombinant cells was very low [185]. Rec-pediocin with lac-

tococcin A leader sequence was secreted by recombinant L. 

lactis bearing plasmids pFI2391, pFI2436 under nisin inducible 

promoters and lactococcin A secretory apparatus [187]. P170 

promoter based expression system has also been exploited for 

over-expression of rec-pediocin in L. lactis MG1363 using the 

shuttle vector pAMJ [188]. 

DNA shu¶ing technique has enabled construction of chimeric 

gene sequences carrying desirable traits. Chimeras of pediocin 

PA-1, sakacin P, enterocin A, leucocin A and curvacin A were 

generated by shu¶ing the genes of �ve di�erent parental 

bacteriocins. Subsequent cloning of chimeric constructs in P32 

promoter based expression vector pMG36e was accomplished 

and recombinant L. sakei LB790 was generated [190]. Results 

indicated that some of the variants have dramatically more 

bacteriocin activity than their native bacteriocins. Results also 

highlighted the involvement of C-terminal domain of pediocin 

like bacteriocins in speci�c recognition of the cognate immu-

nity protein and determination of the antimicrobial spectrum 

of the secreted bacteriocin. 

Attempts have been made to express pediocin in yeast strains 

S. cerevisiae and P. pastoris, where active disulphide bond for-

mation can take place; however studies showed low levels of 

expression [192] and inhibition of its biological activity [193]. 

Aggregation of the rec-pediocin was observed in P. pastoris 

KM71H, due to its association with collagen-like material. These 

collagen-pediocin aggregates were less hydrophobic and be-

haved di�erently when subjected to isoelectric focusing. Rec-

pediocin lost its biological activity due to aggregation [193].

Conclusions

Though pediocin is an equally promising biopreservative as ni-

sin is, its indusrial scale production has not been taken up yet. 

The main reason is lack of a comparable scale of production. 

To improve its production heterologous systems have been 

studied which have used a variety of promoters for enhanced 

expression, secretory proteins for fusion and peptide tags to 

facilitate puri�cation. Present review compiled the information 

available to date, giving variety of production enhancing strat-

egies for improving heterologous pediocin production. Apart 

from its biopreservative potential in foods, pediocin is an at-

tractive antimicrobial agent against many pathogenic bacteria 

and hence has pharmaceutic application too. As an additive to 

cosmetics its property to modulate skin micro£ora needs to be 

explored. Its probiotic potential in modulating gut microbiota 

towards cholesterol lowering, antidiabetic and antihyperten-

sive state promises to make it an important component of 

neutraceutic and wellness products. For all these applications 

either GRAS grade whole cells, over secreting copious amounts 

of pediocin or puri�ed pediocin producted at industrial scale 

can be used. More research into production aspects is needed 

in near future.
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