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Cloning of Dirac fermions in graphene superlattices
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Superlattices have attracted great interest because their use may
make it possible to modify the spectra of two-dimensional electron
systems and, ultimately, create materials with tailored electronic
properties1–8. In previous studies (see, for example, refs 1–8), it
proved difficult to realize superlattices with short periodicities
and weak disorder, and most of their observed features could be
explained in terms of cyclotron orbits commensurate with the
superlattice1–4. Evidence for the formation of superlattice mini-
bands (forming a fractal spectrumknownasHofstadter’s butterfly9)
has been limited to the observation of new low-field oscillations5

and an internal structure within Landau levels6–8. Here we report
transport properties of graphene placed on a boron nitride sub-
strate and accurately aligned along its crystallographic directions.
The substrate’s moiré potential10–12 acts as a superlattice and leads
to profound changes in the graphene’s electronic spectrum. Second-
generation Dirac points13–22 appear as pronounced peaks in resisti-
vity, accompanied by reversal of the Hall effect. The latter indicates
that the effective signof the charge carriers changeswithingraphene’s
conduction and valence bands. Strong magnetic fields lead to Zak-
type cloning23 of the third generation of Dirac points, which are
observed as numerousneutrality points in fieldswhereaunit fraction
of the flux quantum pierces the superlattice unit cell. Graphene
superlattices such as this one provide a way of studying the rich
physics expected in incommensurable quantum systems7–9,22–24 and
illustrate thepossibility of controllablymodifying the electronic spec-
tra of two-dimensional atomic crystals by varying their crystal-
lographic alignment within van der Waals heterostuctures25.
Since the first observation of Weiss oscillations1,2, two-dimensional

electronic systems subjected to a periodic potential have been studied in
great detail3–8. The advent of graphene rapidly sparked interest in gra-
phene superlattices13–22. The principal novelty of such superlattices is
the Dirac-like spectrum and the fact that charge carriers are not buried
deep under the surface, which allows a relatively strong superlattice
potential on the nanometre scale. One promising method of making
nanoscale graphene superlattices is the use of a potential induced by
another crystal. For example, graphene placed on top of graphite or
hexagonal boron nitride (hBN) exhibits a moiré pattern10–12,26, and the
graphene’s tunnelling density of states becomes strongly modified12,26,
indicating the formation of superlatticeminibands. This spectral recon-
struction occurs near the edges of the superlattice Brillouin zone (SBZ)
that are characterized12,22 by wavevector G5 4p/

ffiffiffi

3
p

D and energy
ES5 BvFG/2 (D is the superlattice period, vF is graphene’s Fermi velo-
city and B is Planck’s constant divided by 2p).
To observe moiré minibands in transport properties, graphene has

to be doped so that the Fermi energy reaches the reconstructed part of
the spectrum. This imposes severe constraints on the misalignment
angle, h, of the graphene relative to the hBN substrate. Indeed, D is
determined from h and the 1.8% difference between the two lattice
constants12. In the case of perfect alignment (h5 0),D has amaximum
value of ,136 1 nm (ref. 12), which yields ES< 0.2 eV. This energy

scale corresponds to a carrier density of n< 33 1012 cm22, which is
achievable by field-effect doping. However, misorientation by only 2u
decreases D by a factor of two12, and fourfold greater values of n are
necessary for the Fermi energy to reach the edges of the first SBZ. In
practice, studies of the superlattice spectrum in monolayer graphene
require h# 1u (Methods).
Herewe study high-mobility encapsulated graphene devices that are

similar to those reported previously27 butwhich involve a new element:
crystallographic alignment between the graphene and the hBN with a
precision of,1u. Figure 1 shows typical behaviour of longitudinal and
Hall resistivities (rxx and rxy, respectively) for our aligned devices.
There is the standard peak in rxx at n5 0, graphene’s main neutrality
point. In addition, twoother peaks appear symmetrically, one on either
side of the main neutrality point, at high doping, n56nS. At low
temperatures (T), the secondary peak on the hole side is stronger than
that at the main neutrality point, whereas that on the electron side is
,10 times weaker. The reversal in sign of rxy (Fig. 1b) cannot be
explained by additional scattering and proves that hole-like and elec-
tron-like carriers appear in the conduction and, respectively, valence
bands of graphene. We attribute the extra neutrality points to the
superlattice potential induced by the hBN, which results in minibands
featuring isolated secondary Dirac points (Fig. 1a, inset). This inter-
pretation agreeswith theory12–22 and the tunnelling features reported in
ref. 12, including the fact that those were stronger in the valence band.
Near the main neutrality point, the aligned devices have transport

characteristics typical for graphene on hBN27,28. The conductivity
s(n)5 1/rxx varies linearly with n and can therefore be described in
terms of constant mobility, m. For the reported devices, we find that
m< (20–80)3 103 cm2V21 s21 for jnj. 1011 cm22. Around the sec-
ondary neutrality points,s depends linearly onn2nS. At the hole-side
secondary neutrality point (hSNP), at low temperature m is practically
the same as at the main neutrality point, whereas near the electron-
side secondary neutrality point we find even higher values, m< (30–
100)3 103 cm2V21 s21. However, at themain and secondary neutrality
points theT dependences of bothm and theminimumconductivities are
very different. This is discussed in Supplementary Information, section
1, andherewenote only that the observed functionss(T) donot support
the idea of major energy gaps being induced by the superlattice at the
cloned secondary Dirac points19–22 (Fig. 1a, inset). Furthermore, follow-
ing the approach described in ref. 29, we analysed the thermal broad-
ening of the peaks in rxx (Supplementary Information, section 2). The
analysis proves that the spectrum at the secondary neutrality points is
linear, that is, Dirac-like, in agreement with theory13–22.
Figure 2 shows the evolution ofrxx(n) with increasing perpendicular

magnetic field, B. Near themainDirac point, we observe the standard30

quantumHall effect (QHE) for graphene,withplateaux inrxy and zeros
inrxx at filling factors n; nw0/B562,66,610,…wherew0 is the flux
quantum. Fan diagrams around the secondary Dirac points are dif-
ferent (Fig. 2). The resistance peak of the hSNP first broadens with
increasing B and then splits into twomaxima. Themaxima correspond
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to the superlattice filling factors nS562, where the carrier density is
counted from the hSNP. In the middle of each maximum, there is a
deepminimum (narrowwhite stripes in Fig. 2a). Theminima inrxx are
accompanied by positive and negative extrema in rxy (Fig. 2c, d). This
shows that electron-like cyclotron trajectories in graphene’s valence
band persist when B is quantizing (that is, when it quantizes the spec-
trum). With decreasing T, rxx inside the narrow minima tends to zero
and the corresponding extrema in rxy become increasingly more pro-
nounced, which is behaviour characteristic of the development of
Shubnikov–de Haas oscillations into QHE states (Fig. 2c, d). The T
dependence yields a QHE gap of ,20meV (Supplementary Fig. 6).

Unlike cyclotron gaps, this one is practically independent of B, as is
seen also from the fact that the white stripes in Fig. 2a do not widen.
With increasing T, the QHE states at nS562 gradually disappear
below 50K but the maxima in rxx persist up to 150K.
Another notable feature of the observed fan diagrams are the mul-

tiple peaks in rxx accompanied by zeros or deep minima in rxy. This is
seen most clearly for devices where doping sufficiently higher than nS
can be achieved (Fig. 3). Furthermore, in all our devices near the hSNP,
rxy repeatedly changes its sign with increasing B, indicating recurrent
appearance and disappearance of electron-like orbits within graphene’s
valence band (Fig. 3b, e and Supplementary Figs 4 and 5). This means
that, for a given n, the magnetic field alone can repeatedly generate new
neutrality points. Such ‘third-generation’ neutrality points occur peri-
odically as n and 1/B vary, and form distinct groups characterized by
particular values of 1/B (Fig. 3 and Supplementary Information, sec-
tion 3). Their periodicity in 1/B is accurately described by unit fractions,
w0/q, of the magnetic flux,W5BSfl, per superlattice unit cell area, Sfl,
where q is integer. In the conductionband, the fan diagrams also exhibit
Landau levels extending fromthe secondaryDirac point, andnumerous
third-generation neutrality points with the same 1/B periodicity are
visible in Figs 2b and 3a, b. These features are weaker than those in
the valence band. For example, the resistivity peak at the electron-side
neutrality point is no longer there for B< 1T (Fig. 2b) and we did not
observe the secondary QHE in the conduction band.
The observed superlattice behaviour suggests that complex spectral

changes are induced by quantizing B. Theoretically, the problem is
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Figure 1 | Transport properties of Dirac fermions in moiré superlattices.
a, Longitudinal resistivity,rxx, as a functionofn. Positive andnegative valuesofn
correspond to electrons and holes, respectively. The hole-side neutrality point
shows a strongTdependence (Supplementary Information, section 1). Inset, one
of the possible scenarios for the reconstruction of graphene’s spectrum22. The
band structure is plotted only for the first and second SBZ (shown in brown and
green, respectively). Secondary Dirac cones appear in both conduction and
valence bands at the edges of the SBZ, shown by the black hexagon. Where the
cones merge, van Hove singularities appear in the density of states (for details,
see ref. 22). b, The Hall resistivity, rxy, changes sign at high electron and hole
doping, revealingwell-isolated secondaryDiracpoints.Thedata are for deviceA,
for which nS< 3.03 1012 cm22, yielding D< 12nm. We fabricated 11 aligned
devices, six of which had essentially the same behaviour as shown here. The only
difference was in nS, which varied between 3.03 1012 and 3.83 1012 cm22

(D< 116 1 nm). One other device had nS< 7.13 1012 cm22, which implies12

that h< 1.2u and required gate voltages close to dielectric breakdown. Inset,
conductive atomic force microscope image of the moiré pattern for one of our
devices. The centre-to-centre separation between thewhite spots is,11nm.We
note that, in measurements of rxy, both positive and negative values of B were
always used to symmetrize the data and subtract a small contribution due torxx.
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Figure 2 | Quantization in graphene superlattices. a, Longitudinal resistivity,
rxx(n,B), at 20K. Grey scale: white, 0 kV; black, 8.5 kV. b, Magnified view near
the electron-side secondary neutrality point. Grey scale: white, 0 kV; black,
1.1 kV. Blue numbers denote n for the QHE states extending from the main
Dirac point. The red arrows inamark the superlattice quantumstates that evolve
along nS562 (the arrows are shifted so as not to obscure the white stripes). In
b, the red arrows indicate nS for the electron-side neutrality point. It is difficult to
associate the electron-side superlattice Landau levels decisively with any
particular value of nS, although the strongest peak in rxx corresponds closely to
nS512. c, d, Detailed behaviour near the hSNP in fields marked by the dashed
purple and green lines in a. Data are for deviceA but the same quantization
behaviourwas found in all devices that exhibited the secondaryneutrality points.
An exception is the white stripes at nS562, which were often smeared by
inhomogeneity such that only broader maxima in rxx remained (similar to the
curves at 50K).However, the narrowextrema inrxy, associatedwith theminima
in rxx (d), were always present. h, Planck’s constant; e, electron charge.
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somewhat similar to that originally discussed by Zak23 and Hofstadter9

and later considered for two-dimensional electron systems3 in semi-
conductor superlattices and for Dirac fermions in twisted bilayers24.
The most general, but not proven, prediction is that superlattice spectra
should be ‘self-similar’; that is, they should consist of multiple clones of
an original spectrum, which appear at values ofB such thatW5w0(p/q),
where both p and q are integer. Our case of graphene on hBN is analysed
in Supplementary Information, and the main theoretical results are
summarized in Fig. 3c, d.
Figure 3c shows that the superlattice potential results in additional

structure within each Landau level, which effectively broadens them
with increasingB. The structuredLandau levels extending fromthemain
and secondary Dirac points strongly mix at high doping, jEj$ES5
BvF(pnS)

1/2. The resulting pattern is different from that in semiconductor
superlattices with a parabolic spectrum and weak modulation3,7,8. In the
latter case, the fractal structure within each Landau level can be described
by the original Hofstadter butterfly9, which appears periodically as a
function of w0/W. In our case, in which there is a Dirac-like spectrum
and strong modulation, the fractal pattern depends on the Landau level
index, N, and B (Supplementary Information, section 5).
The calculated spectrum allows us to understand many features

observed experimentally. Indeed, Fig. 3c shows a self-similarity such
that magnetic states tend to entwine at W5w0p/q, forming the fractal
structure of the pattern. The strongest entwining occurs for unit fractions

(that is,p51), and this results in anoverall periodicity in1/Bwithaperiod
of Sfl/w0, in agreement with the experiment (Fig. 3a, b). The periodicity
can be traced to the fact that forW5w0/q the system can be considered a
newsuperlattice thathas aunit cellq times larger than theoriginal and that
is placed in zero effective magnetic field23. An example of the resulting
magneto-electronic (Zak) bands23 is given in Supplementary Fig. 8.
We find that in our case Zak bands feature slightly gapped Dirac

spectra. This finding is illustrated in Fig. 3d, which, as an example,
magnifies a part of Fig. 3c near the hSNP andW5w0/2. Using the Zak
spectrum calculated forW5w0/2, we can obtain its Landau quantiza-
tion in small reduced fields, dB5B2B2, where B25w0/2Sfl is the
zero effective field acting on the cloned Dirac spectrum. The shape

of the resulting Landau levels is given by+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NjdBjzD2
p

, where D is
the gap in the local Dirac-like spectrum (Fig. 3d, magenta curves).
Outside the empty horizontal region inaccessible in our numerical
calculations (Supplementary Information, section 5), the Landau
quantization of the Zak spectrum in dB yields practically the same
electronic states as shown by the calculated points (Fig. 3d, black dots).
Similar local Dirac spectra are found in other parts of the moiré
butterfly24 for all Bq5w0/qSfl, in agreement with the numerous
third-generation neutrality points seen in the experiment. Using the
calculated spectra, we have also determined the occupancy of Zak
minibands for the case of four holes per moiré supercell (that is, at
the hSNP) and found that forW5w0/q the Fermi energy lies inside the
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Figure 3 | Zak-type cloning of third-generation Dirac points.
a, Longitudinal conductivity, sxx5rxx/(rxx

2
1rxy

2), as a function of n and B
(device B). Grey scale: white, 0 kV; black, 2.2mS. The dashed lines indicate
Bq5 (1/q)w0/Sfl with q5 3–10, where Sfl is determined from the measured
nS< 3.83 1012 cm22 as Sfl5 4/nS, which corresponds to the complete filling
of the first SBZ22. b, Hall resistivity, rxy, for the same device as a function of n
and 1/B (the latter expressed as w0/W on the left axis). The dashed white lines
show the periodicity of Zak oscillations. Colour scale: navy,22 kV; white, 0 kV;
wine, 2 kV. In both plots, T5 2K. c, Hofstadter-like butterfly for the graphene-
on-hBN superlattice. The electronic states are calculated following the
approach in ref. 24 and are shown by black dots. For simple fractions p/q, we
plot energies of the states in red. The regions around W5w0p/q are empty

because the corresponding supercells are too large for us to do the necessary
calculations22,24. The blue curves show several low Landau levels for small B,
which were calculated analytically formain and secondaryDirac fermions with
parameters of the zero-B spectrum. The green dots indicate the position of the
Fermi level for n52nS (Supplementary Information). d, Section of c with
superimposed Landau levels calculated as functions of dB (magenta). e, Hall
resistivity, rxy(n, 1/B), for deviceC (nS< 3.63 1012 cm22) measured up to
29T. The left and right axes are as in b. The same oscillatory behaviour is found
for all our devices and is seenmost clearly near the hSNP, where new neutrality
points appear periodically for w0/W5 q, as shown by the arrows. Colour scale:
navy, 23 kV; white, 0 kV; wine, 3 kV. T5 20K. Full plots of rxy(n,B) for
devices B and C are provided in Supplementary Information, section 3.
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corresponding Zak minibands, whereas for W5w0/(q1 1/2) it lies
inside gaps. This explains the experimentally observed oscillations in
sxx(B).
Another experimental feature revealing Zak minibands and the

hierarchy of superlattice gaps are the prominent QHE gaps at
nS562 near the hSNP (Fig. 2). For small B, they can be considered
a result of Landau quantization for secondary Dirac fermions, and
their zero Landau levels become separate from the rest of the spectrum
(Fig. 3c). For higher B, the resulting gaps saturate, being limited in size
by the presence of van Hove singularities at the edges of the SBZ
(Fig. 1a). As Zak minibands become increasingly more pronounced
the secondary Landau levels intertwine with main Landau levels and,
at high doping, become indistinguishable from them (Fig. 3c).
Therefore, the complex pattern of Landau levels in Fig. 3 at high
doping can no longer be interpreted in terms of Landau quantization
of either main or secondary Dirac fermions. The pattern becomes a
‘Hofstadter–Landau’ butterfly, specific to our strong-modulation
regime and the linear spectrum. The largest fractal gaps near the
hole-side Dirac point in Fig. 3c are in agreement with the nS562
QHE states observed experimentally, which have activation energies
almost independent of B. This behaviour is different from the case of
weak modulation in semiconductor superlattices6–8, where Landau
levels become structured but do not intertwine. However, increasing
B such thatW.w0 can drive graphene superlattices into the regime of
weak modulation (Supplementary Fig. 9). This regime is outside the
range of B values available in our experiment. In addition to the large
fractal gaps, our experimental data also reveal reproducible small-scale
structure that cannot be traced back to either main or secondary neut-
rality points (see, for example, Fig. 3a, b near the hSNP at high B and
Supplementary Fig. 5a). We attribute these fine features to further
fractalization of the superlattice spectrum such that isolated Landau
levels for the third-generation Dirac clones start being resolved
(Fig. 3d). This is similar to the intra-Landau-level features reported
in semiconductor superlattices7,8 and warrants further investigation.
Graphene superlattices can be reliably fabricated for various types of

transportmeasurement. This opens new lines of enquiry; in particular,
the fractal quantization leads to such rich behaviour that its full
understanding will require much further work, both theoretical and
experimental. The demonstrated possibility of creating gaps at specif-
ically chosen energies by controllably rotating graphene or other two-
dimensional crystals within van der Waals heterostructures25 can be
used to design novel electronic and optoelectronic devices.

METHODS SUMMARY
Our devices were multiterminal Hall bars fabricated following the procedure
described in ref. 27. In brief, monolayer graphene was deposited on top of a rela-
tively thick (.30nm) hBN crystal28 and then covered with another hBN crystal.
The encapsulation protects the graphene from the environment and allows high m
values, little residual doping (,1011 cm22) and little charge inhomogeneity27. The
interfaces between the graphene and the hBNwere atomically clean over the entire
active device area25. The whole stack was assembled on top of an oxidized Si wafer
that served as a backgate. To align the crystal lattices, weused anopticalmicroscope
to choose straight edges of graphene and hBN crystallites, which indicate the
principal crystallographic directions (see, for example, figure 2 of ref. 30). During
the assembly, the graphenewas rotated relatively to the bottomhBNcrystal tomake
their edges parallel. We estimate our alignment precision to be,1u. The top hBN
crystal was then rotated by,15u with respect to the aligned edges, which ensured
no spectral reconstruction at ES, 1 eV due to the second graphene–hBN interface.
In practice, gate dielectric breakdown for oxidized silicon wafers occurs in

fields less than 0.4Vnm21, and this limits achievable values of n to less than
73 1012 cm22 (ES, 0.35 eV). Accordingly, the observation of secondary Dirac
points requires alignmentwithh# 1u (ref. 12). For randomdepositionof graphene
on hBN, the probability of finding transport devices with superlattice features can
be estimated to be only a few per cent, even if high gate voltages are used, which is
rare given the desire to avoid accidental breakdown. Previously, we investigated
more than 25 graphene-on-hBN devices27 and none of them exhibited any sign of
superlattice effects. This shows that careful alignment is essential for the obser-
vation of secondary Dirac spectra in transport measurements.
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#1 Transport properties of secondary Dirac fermions 

Near the main and secondary NPs, our devices exhibited surprisingly similar carrier mobilities µ (see the 

main text). They were within a range of 20–10010
3 

cm
2
V

-1
s

-1
 depending on sample. No short-range 

resistivity term that often yields a sublinear dependence (n) was noticeable in our devices.  

As usual for graphene on hBN [S1-S2], near the main NP we find  to be practically independent of T within 

our entire T range, which was limited to 150 K to avoid breakdown of the gate dielectric. Near the electron-

side secondary NP (eSNP),  also shows only a weak T dependence. In stark contrast, there is a strong T 

dependence near the hSNP (Fig. 1a of the main text) such that  falls below 10,000 cm
2
V

-1
s

-1
 at 150K. The 

behavior did not change significantly below 10 K. 

 

FIG. S1. T dependences of minimum conductivity at the main and secondary NPs. For the electron-side NP, 

NP is scaled by a factor of 20.  

Another notable difference between the three NPs is that they exhibit different T dependences of their 

minimum conductivities NP (Fig. S1). For the hSNP, NP increases by a factor of 10 between liquid-helium T 

and 150K. For the eSNP and main NP, changes in NP are small (<50%), similar to the standard behavior for 

graphene with similar µ [S1-S3]. Despite the strong T dependence at the hSNP, it does not follow the 

activation behavior but evolves linearly with T and then saturates below 20K (Fig. S1). We believe that this 

dependence is unlikely to be caused by a gap opening or localization effects because we have found NP 

insensitive to small magnetic fields B <0.1T [S4]. Similar NP(T) were reported for high- suspended devices 

and attributed to a combined effect of thermally excited carriers and T-dependent scattering [S5-S6]. The 

observed T dependences cast doubt that an hBN substrate can induce large energy gaps envisaged 

theoretically [S7-S8].  

In general, the observed transport properties and, especially, different T behavior for hole- and electron-

side Dirac fermions are puzzling and remain to be understood. 
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#2 Thermal broadening of secondary Dirac points 

Another important difference between the main and secondary NPs is their different thermal broadening. 

At low T, the main DP is broadened by charge inhomogeneity n, which is 10
11

cm
-2

 in our aligned devices. 

As expected for such n [S5-S6], we observe little additional broadening at the main NP with increasing T 

(Fig. 1a). In contrast, the hSNP becomes strongly and visibly broader with T despite high n (Figs. 1a and 

S2). This broadening can be analyzed in terms of the number nT of thermally excited charge carriers [S5-

S6]. If n is relatively small (n leads to residual broadening at low T), thermal carriers provide a dominant 

contribution to (n) at the NPs. Accordingly, the peak in xx becomes lower and broader with increasing T 

and its top gets rounder. The speed of this broadening as a function of T depends on the density of states 

(DoS) available for thermal excitations. It was shown theoretically and observed experimentally that nT 

varies as T
2
 and T for the linear and parabolic spectra in graphene and its bilayer, respectively [S5-S6].  

We have employed the same procedure as described in detail in ref. S6 to probe the DoS at the secondary 

DPs in our graphene superlattices. An example of this analysis is shown in Fig. S2 that plots the total 

number of carriers, nT+n, at the main and hole-side NPs for device A of the main text. The hSNP 

broadens >10 times faster than the main NP but both evolve as T
2
. Because the peak at the hSNP is large 

and broadens rapidly, our experimental accuracy is high and the observed square T dependence 

unequivocally proves that the spectrum near the hSNP is linear, that is, Dirac-like. The eSNP also exhibits 

rapid thermal broadening but, for the small xx, quantitative analysis is difficult in this case. 

 

Fig. S2. Number of thermal charge carriers at the main and secondary NPs. The ratio between slopes of the 

red and blue lines is 13. The T
2
 dependence proves that the spectrum at the new NPs is linear.  

For a Dirac spectrum with degeneracy N, nT is proportional to N/vF
2
 [S6]. The average Fermi velocity vF

S
 for 

the secondary Dirac spectra in graphene on hBN was estimated as 0.5vF [S9], in agreement with theory 

[S10-S11]. Therefore, the observed nT ratio of 13±3 (Fig. S2) points at a triple degeneracy for the hole-side 

secondary DPs, consistent with the models that assume only a scalar potential modulation [S9-S13]. We 
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also note that the main NP (blue curve) exhibits exactly the same speed nT/T
2
 of thermal broadening as 

previously reported for the NP in suspended graphene with little n [S5], which shows good consistency of 

employing this approach for different graphene systems.  

#3 Further examples of Landau fan diagrams  

Figure S3 shows another superlattice fan diagram observed in our experiments. The central panel plots the 

entire diagram whereas the left and right panels zoom-in on the secondary NPs. In the conduction band, 

the third generation of DPs is seen an oscillatory network emerging beyond the eSNP, similar to the case in 

Fig. 2b and 3a of the main text. Near the hSNP, individual peaks in xx due to third-generation DPs are not 

resolved as a function of n and merge into continuous bands, running parallel to the n-axis beyond the 

hSNP (see Figs. S3a and S4a). These bands can be referred to as Zak oscillations [S14] and are different from 

both Shubnikov-de Haas and Weiss oscillations.  

 

Fig. S3. Landau fan diagrams for device D. b – Complete diagrams xx(n,B) showing the main and secondary 

NPs. a, c – Zooming in near the hole- and electron-side DPs, respectively. The blue-to-red scale is from 0 to 

16, 8 and 1kOhm for plots a, b and c, respectively. The device exhibits somewhat higher charge 

inhomogeneity than device A of the main text and, accordingly, the hSNP is broader and its splitting occurs 

in higher B. The narrow minima in xx along S =±2 (such as in Fig. 2a of the main text) are not seen in this 

device, although the associated narrow extrema in xy survive the inhomogeneity (see below). The data are 

taken by sweeping gate voltage at every 0.25T. 

In xx measurements, maxima due to third-generation DPs can be difficult to resolve as they often merge 

into continuous bands for a given B (Fig. S4a). In this case, individual NPs are still seen clearly in Hall 

measurements. This is illustrated in Fig. S4a-b, which compares fan diagrams for xx and xy for the same 

range of n and B. The Zak oscillations seen in xx are split into separate spots in xy, similar to the case in Fig. 

3a-b of the main text. The white spots in Fig. S4b correspond to deep minima in xy and, near the hSNP, the 

Hall effect repeatedly changes its sign as a function of B. These minima are accompanied by maxima in xx. 

Zak oscillations as a function of B are well described by unit fractions of 0 per superlattice unit cell (Fig. 
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S4c-d). This behavior is in good agreement with that reported for devices B and C in Fig. 3 of the main text 

and, in fact, was found in all our devices. For different devices, the observed 1/B periodicities varied 

according to their S determined from the same fan diagrams as S = 4nS
-1

 [S11].  

 

Fig. S4. Zak oscillations. a – xx and b – xy as a function of n and B beyond the hSNP. Device D as in Fig. S3. 

Grey scale in (a): 1.5 (white) to 2.8 kOhm (black). Color scale in (b): blue to white to red correspond to -0.2 

to 0 to 0.2 kOhm. c,d – Same data replotted as a function of 1/B. The left y-axis is in units of B; the right one 

in units 0/B×S. It is clear that the oscillations are periodic in 1/B and correspond to unit fractions of 0 per 

superlattice unit cells. 

 

 

Fig. S5. High-B behavior of xy with numerous third-generation NPs. Scale: blue to white to red corresponds 

to -2 to 0 to 2 kOhm in (a) for device B and -6 to 0 to 6kOhm in (b) for device C. The data are taken by 

sweeping gate voltage at every 0.25T in (a) and 1T in (b) (this discreteness leads to the small-scale structure 

clearly visible at the lower-B parts). The slight shift of the main NP in (b) is specific to this device and 

probably due to suppression of remnant doping by high B. Note that the oscillations near the eSNP do not 

lead to the sign change in the Hall effect but xy still reaches very close to zero. 
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For completeness, Figure S5 shows the full Landau fan diagrams xy(n,B) measured for devices B and C. The 

data partially appeared in Figs. 3b,e of the main text where the full diagrams were cropped and presented 

in a scale linear in 1/B. Fig. S5 again shows repetitive reversals of the Hall effect with increasing B, a 

phenomenon that has never been observed in other systems.  

 

#4 Superlattice QHE states  

With reference to Fig. 2 of the main text, Figure S6 shows the QHE states running along S =±2 at various T 

in B =5T, just before the central peak at the hSNP splits into two. The minima in xx become deeper with 

decreasing T (Fig. S6a) but do not reach the zero resistance state even at 1K, being blurred by charge 

inhomogeneity that suppresses the perfect edge state transport in our relatively narrow devices.  

 

Fig. S6. Quantum Hall effect for secondary Dirac fermions. a – T dependence near the hSNP in constant B. b 
– Corresponding energy gaps and their field dependence. The gaps were evaluated by analyzing T 

dependences such as in (a) by using the Lifshitz-Kosevich formula (see, e.g., ref. [S3]). We did not 

investigate in detail the T dependence after the central peak split in higher B but, qualitatively, the gaps’ 

size does not change up to 14T (see the T dependence shown in Fig. 2d of the main text). 

 

 

Fig. S7. Detailed evolution of the QHE states emerging near S =±2 as a function of B as they cross the  =-

10 state originating from the main DP (Device A; T=20K). The curves are shifted vertically for clarity. The 

vertical line is to indicate little shift for the right (S =+2) state. The arrow marks a fractal slope  =-5/3.  
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By analyzing T dependences such as in Fig S6a, we have obtained the corresponding gaps in different B (Fig. 

S6b). Within our experimental accuracy, the gaps for S =-2 and +2 are equal and do not depend much on B 

(except for B where unit fractions of 0 pierce the superlattice unit cell), consistent with the fact that the 

width of the narrow white stripes in Fig. 2a of the main text does not change. 

Finally, we want to point out an intriguing behavior of the secondary QHE states running along S =±2 when 

they ‘hybridize’ with the QHE states coming from the main NP. This is seen as the step-like waving of the 

white lines in Fig. 2a of the main text, which change their slopes each time the S =±2 states cross the QHE 

states originating from the main DP. To examine this behavior further, Fig. S7 shows xx in the interval 

where the S =±2 states are intersected by the  =-10 state. One can see that the position of the right 

minimum changes little with B. The changes (if any) are consistent with a small negative slope n/B rather 

than running parallel to any positive S. The better developed minimum at n -3.510
12

cm
-2

 moves 

leftwards, as expected for this state that shows the general tendency to run along S =-2 (Fig. 2a). However, 

the speed at which the minimum’s position moves with B is lower than S =-2 necessitates. Furthermore, 

Fig. 2d of the main text shows that, as xx tends to zero, xy develops symmetrically with respect to the Hall 

plateaus originating from the main NP. We speculate that, if this particular development continues, new 

QHE plateaus may appear at h/e
2
(1/ +1/S) where h/e

2
 is the resistance quantum. For the case  =-10 in 

Fig. 2d, this would infer xy =-(3/5) and +(2/5)h/e
2
 and correspond to fractional fillings -5/3 and +5/2. To 

this end, we note that the best developed QHE state (deepest minimum in xx) runs parallel to =-5/3 in the 

corresponding B interval as shown by the arrow in Fig. S7. The overall behavior may indicate that our fractal 

quantum Hall system supports a single-particle fractional QHE by mixing different integer QHE states.  

#5 Spectral characteristics of graphene superlattices 

As shown in Refs. S7-S12, there exist 3 principal scenarios for the superlattice spectrum of graphene placed 

on a hexagonal substrate. All these scenarios lead to secondary DPs at the edges of the lowest-energy 

moiré minibands in zero B [S11]. However, detailed spectra depend on size and relative strength of the 

phenomenologically introduced moiré pattern parameters,        in the Dirac Hamiltonian for electrons in 

each of the two graphene valleys (    ),       ́     ⃗   ⃗                  ( ⃗     )   ⃗                (1) 

where        are the Pauli matrices acting on the sublattice components of the electronic wavefunction 

[(A,B) in the valley K and (B,-A) in K’],      for K and K’ valleys;    ∑    ⃗⃗   ⃗        and     ∑         ⃗⃗   ⃗      , where six vectors  ⃗⃗  (with   ⃗⃗    ) are obtained by consecutive 60° rotations;  ⃗⃗   ̂     ⃗ of the reciprocal lattice vector  ⃗         ̂      ⃗⃗  of the moiré pattern, and  ⃗⃗  and       ⃗⃗   are the principal reciprocal lattice vectors of aligned graphene and BN lattices, rotated by a 

small misalignment angle .  
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Three characteristic miniband spectra can be found [S11] for Dirac electrons described by the model in Eq. 

(1): (a) for small values of parameters       , strongly overlapping minibands without clearly separated band 

edges; (b) for particular relations between these parameters (for example,       ), a triplet of isolated 

secondary DPs with anisotropic Dirac velocities at the edge of the hexagonal mini Brillouin zone of moiré 

superlattice; and (c) more generically, one isolated secondary DP at a corner of the mini Brillouin zone (in 

each graphene valley) in either valence or conduction band, with a second-generation Dirac velocity of 

0.5vF. Except for special choice of moiré superlattice parameters, spectra of the Hamiltonian in Eq. (1) do 

not have electron-hole symmetry. Examples of the calculated characteristic miniband spectra for each of 

the three cases can be found in Ref. [S11].  

Figures S8-S10 show examples of the magneto-electronic spectra expected for our graphene superlattices. 

In Fig. S8, we limit the plotted values to fluxes 0.10 <  <0.60, which for our devices corresponds 

approximately to B between 3 and 20T, that is, our typical experimental range. The calculated data are 

similar to those presented in Fig. 3c,d of the main text and obtained by using the procedure described in 

Ref. [S11]. We use 3 exemplary sets of moiré parameters, which are chosen to illustrate possible scenarios 

for graphene-on-hBN superlattices, taking into account the electron-hole asymmetry with a stronger 

secondary DP in graphene’s valence band. Black dots in Fig. S8 present energies of states at the center of 

Zak’s magnetic minibands found for arbitrary fractional flux values  = BS = (2p/q)0 [S14-S18]. In Figure 

S8a, we also show so-called spectral support [S16], that is, the entire miniband for several even and odd 

values of q (blue intervals; p =1).  

In the lower-B part of the plots, one can see remnants of the original Dirac spectrum with its Landau levels 

(LL) progressively broadened by the superlattice potential. To illustrate this fact, the red curves in Fig. S8a 

show several original LLs, in the absence of a superlattice potential. The superlattice spectra also contain 

reminiscence of Dirac-like quantized levels originating from secondary DPs. This is illustrated in Fig. S8a by 

another set of red curves beginning from -0.5vFb. These LLs evolve as -0.51vFb ±0.5vF√      with N =0,1 

, …. The green dots in Fig. S8a (also, Fig. 3c of the main text) show positions of the Fermi energy for n = -nS 

-4/S, that is, for the complete filling of the first moiré miniband in the valance band. These calculations 

are done by counting the number of filled magnetic bands (whose capacity and degeneracy depend on p 

and q [S14-S15]). The reason for us to focus on this particular density is that it corresponds to the half-filled 

zero LL originating from the secondary DP at the edge of the first moiré miniband in zero B. Therefore, this 

is the state that exhibits the initial (zero-B) change in the sign of Hall conductivity. Moreover, at  where 

this LL (zero N for the secondary DP) splits into pairs of magnetic minibands, the Fermi level lies in a gap 

between them, which happens at  = 0/(q +1/2) (for example,  =2/3, 2/5 or 2/70). In this case, we also 

expect both xx to become zero and Hall conductivity to change sign. By counting filled states in magnetic 

minibands calculated for the flux  =0/q, we find that in the latter case the Fermi level lies in the middle of 

Zak’s magnetic bands and, although we have not find a way to determine the sign of xy in this case, we can 
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certainly state that Hall conductivity should once again change its sign and, therefore, take zero value 

somewhere in between two consecutive values of  = 0/(q +1/2).  

 
Fig. S8. Moiré butterflies spectra for characteristic superlattice potentials [S11]. a – u0 = -0.031, u1 = -0.015, 

u3 = 0.054; b – u0 = -0.072, u1 = u3 = 0.014 and c – u0 = -0.1, u1= u3 = 0 where   are in units of vFb. The energy 

scale is such that the secondary DPs appear at 1/2. The right inset in (a) shows the energy dispersion 

(Zak’s minibands [S14]) found in the energy range around the secondary DP for 0/ =2; the left inset 

demonstrates that Zak’s minibands are associated with a gapped Dirac-like spectrum and exhibit LLs 

characteristic of Dirac fermions (also, see ref. S11). 
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Furthermore, Fig. S8 shows that the zero-N LL is robust and the superlattice potential broadens it relatively 

weakly over the entire range of  for this figure. This level is isolated from the rest of the Hofstadter 

spectrum by the large cyclotron gap E1. For our superlattice modulation of 50meV [S9], the N =1 LLs are 

also reasonably well isolated. In contrast, LLs with higher N strongly overlap, especially at concentrations 

near and above the secondary DPs. Therefore, graphene superlattices in quantizing B of several tesla are 

typically in the regime of strong coupling [S19-S20]. Only for  >0, the superlattices are expected to enter 

again in the regime of weak coupling where individual LLs are well isolated from each other, and the 

superlattice potential results in an internal structure within each Landau band [S19-S21]. It would require B 

>30T to access this regime experimentally. For completeness, the corresponding spectra expected in such B 

are shown in Fig. S9.  

 

Fig. S9. Moiré butterfly for graphene superlattice in ultra-high B. Only the first LLs with |N| 3 are shown. 

Superlattice potential V =60meV, that corresponds to u0 = -0.1; u1 = u3 = 0. The original LLs (zero V) are 

shown in red. Black dots mark the superlattice states as in Fig. S8. The fractal structure with individual LLs 

(Hofstadter’s butterfly) was previously studied for semiconductor superlattices in refs. [S19-S20]. An intra-

LL structure is also noticeable in our Fig. 3a-b. However, the spectrum becomes particularly rich in the 

regime of strong coupling where the bands originating from different LLs overlap (Fig. S8). In our case, this 

condition is met for  <0, that is, in B <30T.  

The most striking feature of our moiré butterflies is self-similar sets of LLs that resemble those for Dirac 

fermions and repetitively appear over the entire superlattice spectrum (two circles in Fig. S8a point at 

characteristic regions). To understand the origin of these local quantized spectra, we have analyzed the 

miniband dispersion at fractional flux values 0/q and found that edges between pairs of consecutive 

minibands systematically display spectra N  (u
2
k

2
 + 2

)
1/2

, that is, correspond to gapped Dirac fermions. 

One such dispersion is shown as an inset in Fig. S8a.  
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If we treat B = (    ) as an effective magnetic field acting on electrons in Zak’s magnetic minibands that 

appear at Bq = (1/q)0/S [S14], the gapped Dirac fermions give rise to a Landau-level fan with             √            and                . Using        N + cB which takes into account an 

overall average shift of the parent Landau level, we have computed the corresponding spectrum and 

plotted it in the second inset in Fig. S8a (also, see Fig. 3d of the main text).  

Finally, we replot one of our moiré butterflies (Fig. S8a) as a function of 0/ (that is, 1/B) and the energy 

renormalized to the energy    of the 1st LL in the main spectrum. This is shown in Fig. S10 and allows easier 

comparison with the corresponding experimental plots in Figs. 3b,3e,S4c-d. The internal structure of LLs 

also becomes clearer in this presentation. One can see that the fractal spectra are different from the 

Hofstadter butterfly described by Harper’s equation [S16] as well as from the moiré butterfly expected in 

twisted graphene bilayers [S17]. Moreover, there is no recurrence of the same fractal pattern within each 

Landau band. Such repetition of the Hofstadter butterfly is characteristic of semiconductor superlattices 

where a perfect periodicity within isolated Landau bands is expected for each unit between 0/ = q and q 

+1 [S19-S21]. In our case, we notice a different periodicity: q-th unit of N-th Landau level closely resembles 

(q+1)-th unit for (N+1)-th LL (see Fig. S10). Further work is required to understand fractality and properties 

of the intra-LL structure in graphene superlattices even in the limit of weak coupling. 

 

Fig. S10. Hidden periodicity of moiré butterflies. The superlattice spectrum in Fig. 3c of the main text is 

replotted as a function of 0/ with the energy scale renormalized to E1. It is the presentation standard for 

research on semiconductor superlattices [S19-21]. There are obvious Zak’s oscillations with the energy gaps 

tending to close at integer 0/. There is no obvious periodicity within each Landau band that occurs in 

semiconductor superlattices [S19-S21]. Nevertheless, notice that the first pattern (0/ between 1 and 2) 

within, for example, the 1st LL is similar to the second pattern for the 2nd LL, and so on. This periodicity 

involving both 0/ and N also survives in part for the hole side of the spectrum where the mixing between 

different LLs is much stronger.  
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