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Abstract

The close coupling equations for positron-alkali atom scattering are written as a set of
coupled momentum-space Lippmann-Schwinger equations. The alkali atom is represented by
a frozen-core model based upon the Hartree-Fock approximation. The interaction between the

positronium and the residual ion is modified by the inclusion of a core potential. Similarly, a
core term is present in the interaction describing the rearrangement process. Close coupling
calculations of positron scattering from sodium are performed in a model containing multiple
sodium (3s, 3p, 4s, 3d, 4p) and positronium (Is, 2s, 2p) states. Cross sections are reported
for an energy range from threshold to 50·eV; the total cross sections are in agreement with

experimental data.

1. Introduction

Only recently have calculations of positron-hydrogen scattering that explicitly

include the rearrangement channel of positronium formation been performed as

a matter of routine (Hewitt et ale 1990; Higgins and Burke 1993; Mitroy 1993a,

1993b; Mitroy and Stelbovics 1994a, 1994b; Sarkar and Ghosh 1994). The
difficulties in computing the rearrangement matrix element make calculations on

the positron-hydrogen system much more difficult than those for the electron

hydrogen system. That the first above-ionisation-threshold resonance in the

positron-hydrogen system was not identified until 1991 (Higgins and Burke 1991)

gives an indication of the level of understanding of the positron-hydrogen system

compared with that of the electron-hydrogen system.. In this work, we extend a

method previously used to describe positron-hydrogen scattering (Mitroy 1993a)

so that positron-alkali atom interactions can be handled, and report the results
of pilot calculations on the sodium atom.

Some experimental information is available for positron-alkali systems. The
Detroit group has measured total cross sections for sodium, potassium, rubidium

and caesium (Stein et ale 1987; Kwan et ale 1989, 1991).

Calculations of positron-alkali atom scattering can be divided into two classes,

those excluding and those including the positronium (Ps) formation channels.

Calculations using the close coupling method, but excluding Ps formation channels,

have been performed at low and intermediate energies by Ward et ale (1988, 1989a,

1989b) and Sarkar et ale (1988). The justification for this class of calculation is

that of ease of implementation. However, given the strong interaction between
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the positronium and positron channels, the overall accuracy of this approach can

be questioned. Calculations which explicitly include the positronium channels,

within a restricted channel space (Abdel-Raouf 1988), or within the framework

of first-order perturbation theories (Guha and Mandal 1980; Mandal and Guha

1980; Nahar and Wadehra 1987) have been reported. There has also been a

calculation which included the influence of positronium formation by means of

an optical potential (McCarthy et ale 1993). Close coupling calculations with

realistic channel spaces that include the Ps channels have now been performed

on lithium, sodium and potassium (Hewitt et ale 1992, 1993). There are some

aspects of the calculations of the Daresbury group that need to be resolved.

First, they do not specify the actual form of the transition operator used in

the evaluation of the rearrangement matrix elements. Second,' in their initial

calculations on hydrogen (Hewitt et ale 1990) an incorrect expression was used to

evaluate the interaction between the positronium and residual ion. It is unclear

whether this error has also carried over to their calculations on the alkali atoms.

The present work represents a straightforward generalisation of the close coupling

theory originally applied to positron-hydrogen scattering (Mitroy 1993a). In

this method, the close coupling equations are written in terms of a set of

coupled Lippmann-Schwinger equations and the basic numerical computation

is the evaluation of the first Born matrix element. Some complications occur

when generalising the method to alkali targets. The functional form of .the

transition operator for the rearrangement process has to be modified to include

the interaction between the positron and the core. The matrix element for the

positronium-residual ion interaction also becomes. more complicated.

2. Details of Close Coupling Equations

The derivation of the close coupling equations for positron-alkali atom scattering

is more complicated than that for positron-hydrogen atom scattering. In this

work TO is the coordinate of the positron centred with respect to the proton. The

set of N electron coordinates will be designated Ti, where i E {I, ..., N}. The

distances between the electrons (or between the electrons and the positron) will

be written Tij, where Tij == ITi - Tjl. It is also necessary to introduce relative,

Pi, and centre of mass, R i , coordinates for the outgoing positronium species.

These are defined by

or

Pi Ti - TO, R i !(Ti + TO) (la)

Ti == R; + ~Pi' TO == R; oJ- ~ Pi . (lb)

(2)

With these definitions the Jacobian of the transformation between the two

coordinate systems gives

Jd3ri Jd3ro = Jd
3pi Jd3~.

The Schrodinger equation can now be written

(He + Hatom - E)tJt(Ti, TO) == 0, (3)
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where He is the Hamiltonian operator containing the positron coordinate,

H e = - ! V ' ~ + Z - 2:.2.-,
ro i riO

H atom is the N -electron Hamiltonian of the target atom,

Hat om = L ( - ~ V'r - ~) + ~ L ~ '
i r, i:l=i r~J

723

(4)

(5)

and E is the total energy of the (N+l)-body system. Since positronium formation
is being considered in this work, an alternative partitioning of the Hamiltonian

is possible, viz.

H == Hps(m) + Hion(m) + Hint(m) m€{l, ... , N}, (6)

where Hion(m) is the Hamiltonian of the residual ion with the mth electron
removed,

Hion == L (- !V'r - Z) + ! 2: -.!
i:l=m ri i,j rij

i :1= i,
i,j:l= m

(7)

Hps(m) is the interaction of the positronium molecule containing the mth electron

with the residual ion,

12 Z Z ",,(11)Hps(m) == -4\7R + - - -. - L....J - - -..- ,
ro r m i:l=m riO rim

(8)

and Hint (m) is the internal Hamiltonian for a positronium molecule containing
the mth electron,

2 1
Hint(m) == - \7Pm + -.. .

rmo
(9)

The following conventions will be observed in this work. Bound states of

the alkali atom will be designated W, bound states of the positronium atom

will be denoted by qJ, and bound states of the residual ion will be denoted by
D. The individual orbital wavefunctions which constitute the alkali atom and

residual ion quantum states will be designated by 'if; and w respectively. The
subscripts a, (3 and, will also be used to distinguish between the manifolds of

atomic, positronium and ionic states. The i == 1 electron will be designated as

the electron which is removed from the atom and attached to the positron when

positronium is formed. Provided all wavefunctions are correctly antisymmetrised,

this can be done without any loss of generality. The subscript will now be

dropped from the positronium coordinates Pm and Rm and the notation ri' will

be used to designate that D( r i') is a function of all the electron coordinates

with the exception of the i == 1 electron. The notation ri'i=m will designate a

function of all the electron coordinates except the i == m electron.
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The wavefunction is expanded in an eigenfunction expansion of continuum

positron and positronium states which are coupled to atomic and ionic states,

!P(Ti' ro) == L !Pa(ri) Fa(ro) + L Sl,(ri') <P{3(p)G{3,(R) . (10)
a (3,

The bound atomic !Pa(ri), positronium <P{3(p) , and ionic Sl,(ri') states are all

stationary states satisfying

(!Pa(ri) IHat om - Ea l!Pa(Ti))

(q}{3 (p) IHint (1) - E{3Iq}{3(p))

(Sl,(ri' )IHion (l ) - E,ISl,(ri'))

The Schrodinger equation now becomes

0,

0,

o.

(11)

(12)

(13)

(E - H) ( L Wa(ri) Fa(ro) + L cP/3(p) il1'(ri') G/31'(R)) = o. (14)
a (3,

Multiplying on the left by !Pa' (ri) and integrating with respect to all the d3ri
yields the following equation:

(E + ~ \75 - Ea ' )Fa'(TO) == L (!Pa , I(Z/ro - L l/roi)l!Pa ) Fa(ro)
a

+ L (!Pa,I(H - E)ISl,<P{3G{3,(R)). (15a)
{3,

Similarly, a set of equations for G{3',' can also be derived

(E + ~V'~ - E(3' )G(3",(R) == L (rJJ(3' n,'I(H - E)lwoFa)
a

- L L (<p(3 Sl,,(ri' )I(H - E)I<p{3(Pi'#l)) G{3,(Rm )

m#l {3,

+L (<p(3' Sl,'I[Z/ro - zt-: - L (l/rio -l/ril)]I<P{3 Sl,)G(3,(R) (15b)
(3, i#O,l

by multiplying on the left by q}{3' (p) n,' (r«) and integrating with respect to

d3ri' and d3p. The second term is the exchange term that results from an

exchange interaction between the mth electron in the residual ion and the electron

in the positronium. In order to expedite matters, the following simplifying

approximations will now be made:
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(i) The wavefunctions for the atomic and residual ion states will be computed
in a fixed-core model. One example of a fixed-core model is the frozen-core

Hartree-Fock approximation. The atomic states are labelled by the orbital

occupied by the valence electron.

(ii) Only the electron occupying the valence orbital will be removed from

the atom when positronium is formed. Hence there will only be one
possible residual ion state, that of the relatively inert closed-shell core.
From now on, no explicit reference will be given to the ion core except

where it is needed in the calculation of a matrix element.

(iii) The exchange interaction between the electron in the positronium and
the electrons in the residual ion core will be neglected. These terms will

involve 9-dimensional integrals in r-space or 6-dimensional integrals in

p-space and their evaluation is expected to be very difficult.

The steps by which equations (15a) and (15b) are specialised to a particular
entrance channel and then transformed into a set of momentum-space Lippmann
Schwinger equations are standard and do not need to be repeated here. The
momentum-space Lippmann-Schwinger equations for a positron .with momentum
k incident on an alkali atom in state tJta are

(k'!Jia' ITlk!Jia) = (k'!JiallVlk!Jia) + L Jd3kIf (k'!JiallVlk"!Jia") (k"!Ji0" ITlk!Ji0)
a" E(+) - E " - !a 2

+ L Jd3k" (k'tJta,IVlkllq>,B") (k"4),6"ITlktJta)

,6" E(+) - E,6" - :lk
1l2

'

(k'4)t3,ITlktJta) = (k'4)t3,IVlkwa) + L Jd3k" (k'4),6,IVlk"tJta"ITlkwa)

a" E(+) --- Ea " - !"k,,2

+ L Jd3kll (k'p/3' IV/k
llp/3")

(k
llp/3"

ITlktJta)
fJlI E(+) - €fJlI - !k,,2 . (16)

The generic term V is used to label the interaction between the different

classes of channels. There are three different classes of V -matrix elements. There

are the interactions between the different positron channels, namely

(k'!Jio/lVlk!Jia) = (2rr)-3 Jd3ro Jd3ri !Ji~/(ri)exp(-ik' -ro)

x (ZIro - 2;: 1/rOi) !Jio(ri) exp(ik. ro) . (17)
't

The interactions of the positron with the valence and core electrons can be

treated separately. The core potential can be defined by

"Vc:ore(ro) = L(4f/, + 2) Jd3rl w;(rl)w/,(rl)(l/ro - 1/rO!), (18)
'Y
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where the sum over 'Y runs over all the fully occupied orbitals in the core and
therefore

(k'tPa,IVlktPa) (21f)-3 Jd3ro Jd3rlW",,(rl)exp(-ik' -rc)

X [~ore(rO) + 11ro - 1Irol]tPo(Tl)exp(ik. TO) . (19)

There are two classes of interactions between the positronium and residual
ion, a direct-type interaction and an exchange-type interaction involving the

positronium channels. The direct interaction is

(k'p,a,lVlkP,a) = (21f)-3 Jd3p Jd3RP~,(p)exp(-ik'.R)

x [~ore(rO) - ~ore(rl) + lira - 1Irl]~~(p) exp(ik. R) . (20)

The evaluation of this interaction in r-space requires a two-dimensional integration

or a partial wave expansion of V core (ro) - V core (rr) and 1I ro - 1I rl into the (p,
R) coordinate system. The expansion of 1/ro - 1/rl into the (p, R) coordinates

can be done by using standard results; however, the expansion of the core term

is more problematical. The core term is best handled in momentum space. As
mentioned earlier, the exchange interaction between the electron in the positron

and the core electrons will be neglected.

Finally, there are the rearrangement matrix elements

(k'P,a'IVlkW",) = (21f)-3Jd3ro Jd3ri' n(ri') p ~ , (p) exp(-ik' •R)

x (H-E)tPa(ri)exp(ik.ro). (21)

We make the approximation that H atom tJta(ri) == (Ecore + Ea)tJta(Ti), where Ecore
is the energy of the closed-shell core. The single-particle HF energy of the valence

electron is ta' and the single-electron orbital characterising the state is V;a(Tl)'

With these definitions, the interaction is

(k'p,alVlkw",) = (21f)-3 Jd3ro Jd3rl Jd3ri' n ( r i , ) p ~ ( p ) e x p ( - i k ' .R)

x (He + Ecore + Ea - E)Wa(Ti) exp(ik. TO) ,

which reduces to

(k'p,alVlkw",) = (21f)-3Jd3ro Jd3rl p ~ ( p ) exp(-ik' •R)

X [~k2 + ~ore(rO) +l/ro - 11rol + Ecore + Ea - E]

x V;a(Tl) exp(ik. TO) .

(22)

(23)
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The partitioning of the Hamiltonian into Hps + H ion + Hint gives an identical

answer:

(k'4>t3IVlkWa ) (271")-3 j d3ro j d3rl j d3ril n(ri/) p ~ ( p ) exp(-ik' •R)

x (Hps + Hint + Ecore - E)tf/a(Ti) exp(ik. TO) . (24)

Since Hion f"l(Ti') :::: Ecore f"l(ri') and Hint 4>{3(p) :::: E{34>{3(p), we get

(k'p.elVlk!lia ) = (271")-3 j d3ro j d3rl j d3ril n(ri/)p~(p)exp(-ik' .R)

x (Et3 + ~k,2 - Zir + L l/rli + ~ore(rO) + lira + Ecore - E)·
i=l=l

x '¢a(TI) exp(ik. TO) . (25)

Since 4>t3(p) is a positronium eigenstate, the -l/rol factor can be removed from
equation (24). In a similar manner, equation (25) can be simplified by replacing

(-Zlrl + 2:i=l=ll/rIi)Wa(rl). These substitutions yield

(k'p.elVlk!lia ) = (271")-3 j d3ro j d3ro j d3rl p ~ / ( p ) e x p ( - i k ' .R)

X [~k2 + \7~ + Ea + E{3 + Ecore + ~ore(rO) + lira - E]

or

(k'4>{3,IV\kWa )

x VJa(rl)exp(ik. TO)

(271")-3 j d3p j d3RP~/(p)exp(-ik'.R)

(26a)

X [~k,2 + ~ vi + Ea + E{3 + Ecore + ~ore(rO) + l/ro - E]

x '¢a(TI) exp(ik. TO) . (26b)

These different expressions are sometimes referred to as the post and prior forms

of the matrix element. In the present context, where the interaction Hamiltonian

is sandwiched between plane waves, it is irrelevant which form is adopted, since

the two forms yield equivalent matrix elements.

For purposes of practical computation, it is convenient to write these matrix

elements in a form amenable to calculations in momentum space. The direct

interaction for positron scattering, equation (19), becomes
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of the matrix element. In the present context, where the interaction Hamiltonian 

is sandwiched between plane waves, it is irrelevant which form is adopted, since 
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{k'lP'a' IVlklP'a} = " 2,. 1 ",2 (8a'a - .Id
3r

1/Ja' (r) 1/Ja(r) exp[i{k - k'). r])

+ 8a'a L 27f;1Z ~ ~'12 (1 -Jd
3
r w;(r) w-y(r) exp[i(k - k'). r]), (27),

which can be written in more detail as

(k'lP'a,lVlklP'a)= 21
1

'1 2 [8a'a8AO- LiA
(- l )1na

l + J.L

21r k - k AJ-L

x X~'a(lk-k'I)C~ (k-k')f f ,~2 (f.a A fa') (A fa
J-L aa 000 J.L rna

fa' )]
-rna'

+ 8a'a 8AO~ore(lk - k'l), (28)

where

X~'a(K) = 100
dr r

21/Ja,(r)
1/Ja(r) j>.(Kr) , (29)

C~J-L(k-k') is a spherical tensor, and A== (2A+l)~. The momentum-space core

potential is

V::ore(K) = (27f)-3 Jd3r V::ore(r) exp[-i(k - k'). r] ,

which reduces to

V::ore(K) = (27f2)- 1100
dr r2 V::ore(r)jo(Kr).

In practice, the core potential is evaluated using

(30)

(31)

V::ore(K) = L 4i\+; [1 - [00 dr r2 w-y(r) w-y(r)jo(Kr)] , (32)
21r K io,

The direct interaction for positronium proton scattering is

(k'4>fJ' IVlk4>fJ) = (V::ore(lk - k'D + 27f2 1k1_ k'I 2 )

x Jd3p 4 > ~ , ( p ) { e x p [ ~ i ( k ' - k) .p] - exp[-~i(k' - k) .p]}. (33)
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(k'tP'o:,lVlktP'o:) = 27r2Ik1_k'12 (00:'0:- J d3r,¢o:,(r),¢o:(r)exp[i(k-k,).rl) 

+80:'0: L27r;1~~!'12 (1- J d3rW;(r)w')'(r)eXP[i(k-k,).r1), (27) 
')' 

which can be written in more detail as 

where 

(29) 

C~J1.(k-k') is a spherical tensor, and>' = (2).+1)!. The momentum-space core 

potential is 

(30) 

which reduces to 

(31) 

In practice, the core potential is evaluated using 

The direct interaction for positronium proton scattering is 
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In more detail, we have

(k'4>{J/I"Vlk4>{J) == (v.:ore(K) + ---i-z) [1 - (_1)A]L i A (_l)mfjl+JL
211" K AJL
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x Y;'{J(K) C ~ J L ( k - k') f{J f{J1 ~2 (f{J A f{JI) (A f{J f{JI), (34)
o 0 0 J.l mfJ -m{J1

where

Y { 3 ~ { 3 ( K ) = 100

dpliP{3l(p)iP{3(p)j>.(!Kp). (35)

It is clear from equation (34) that the matrix element is non-zero only when A is

odd, hence the direct interaction of the positronium with the residual ion core

can only connect states of different parity. This matrix element is identical to

the positronium proton matrix element with the addition of the term V core (k).

The positronium formation interaction is most conveniently written in terms

of products of momentum-space wavefunctions. The hydrogen and positronium

momentum-space wavefunctions, '¢(p) and ¢(p), are defined by

'¢a(P) (21r)-~ j d3 r 7P",(r) exp(-ip. r) ,

¢{3(p) = (21r)-~ jd3p¢{3(p)exP(-iP.P).

The inverse Fourier transforms are just

7P",(r) = (21r)-~ j d3p w",(p)exp(ip.r),

¢{3(p) = (21r)-~ j d3p¢{3(p)exp(ip.p).

(36)

(37)

In terms of explicit quantities, the momentum-space wavefunction for 'l/Ja (p) is

'¢a(P) = ita (-1)£0 Y£amo (p) '¢a(P) , (38)

where the Y £m(P) in (38) is a spherical harmonic and the spherically symmetric

component of the wavefunction is defined by

7P", (p) = (2/1r) t 100

dr r2 7P",(r) k'(pr) .

With these definitions, the matrix element for Ps formation reduces to

(39)
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With these definitions, the matrix element for Ps formation reduces to 
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(k'4>t3IVlkwa) == (~k2 -Ik - ~k'12 + Ea + Eco re + Et3 - E) wa(k' - k) ¢~(~k' .- k)

+ Jd3
q 'l/Jo.(k' - q) ¢~(!k' - q) [v"ore(lq - kl) + Ij(21l"2 Iq - kI 2

) ] , (40a)

or

(k'q)t3IVlkWa) == (~Ik - k'12+ Ea + Ecore + Et3 - E) If/a(k' - k) ¢~(!k' - k)

+ Jd3
q Wo.(k' - q) ¢~(~k' - q)[Vcore(lq - kl) + Ij(21l"2 Iq - kI 2

) ] • (40b)

Equation (40), which is the most compact form of the interaction matrix

element, involves a three-dimensional integral. This is evaluated by using a slight
modification of the method developed by Mitroy (1993a) for positron-hydrogen

scattering.

The present method exploits the fact that the tPa (k' - q) ¢~ (!k' - q) product

is only a function of k' and q, while the Vcore(/q - k)+1/(21r 2 Iq- k1 2
) factor

is only a function of k and q. Therefore, even though the entire integrand is

a function of k, k' and q, it can be factorised into two parts and partial wave

expansions of each of the parts can be done separately. Doing this leads to

calculations which are manageable. The presence of the additional V core(lq - kl)

term in the kernel slows down the evaluation of the matrix elements, but does

not otherwise lead to any major modifications in the calculation. One comment

on the calculations of Hewitt et ale (1993) must be made: it is not clear whether

they include core terms in the evaluation of the equations (33) and (40).

3. Partial Wave Analysis

The matrix elements are reduced to partial wave form by

v~f2'aL(k', k) L Jdk Jdk' YLIM,(k') (L'M'f!o.,mo.,IJMJ )

ma,maMM'

x (k'o/IVlak) (LMfamaIJM) YLM(k) , (41)

where (LMfamaIJM) is a Clebsch-Gordan coefficient. In writing down equation

(41) all considerations of spin coupling have been ignored since the absence of

an exchange interaction leads to the singlet and triplet partial wave T-matrix

elements being identical. Performing the reductions, the following expressions

are realised:
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elements being identical. Performing the reductions, the following expressions 

are realised: 
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v~f2'aL(k', k) L i'\ (_1)7+,\'+,\+J ;\3 ;\,2 lala' ii:
,\'7

x [ (2,x)!] ! e..-Tk,TX>';>'(k' k)
(2r)! (2A - 2r)! a a ,

(
L' A' A - r) (A r L') (fa' A fa )

X 000 000 000

X { A L' L } { fa. I L' J } (42)
A' A - r T L fa A '

The X ~ : ~ ( k ' , k) is an angular integral defined by

X~;~(k', k) = 271" ill du PA'(u) [8>'0 8",,,,, - X~,,,,(K)]j271"2 KA+2

+ 8>'0 8",,,,, 271" i: duPA'(u)V';;ore(K), (43)

where P,\I ( u) is a Legendre polynomial, k = Ik - k'i and u = k.k'.
The interaction between the different positronium channels is non-zero only

when the levels have different parities. When this occurs, the matrix element is

very similar to the interaction between the different hydrogen channels,

vJf2'{3L(k',k) = L i>' (-1t+>'+>"+J,\3 ,\/
2 £{3£{3' it'

,\,\, 7

1

X [ (2,x)! ] 2" k>'-T k'T y,~' >'(k' k) [1 _ (-1)>']
(2r)! (2A - 2r)! (3 (3 ,

(
L' A' A - r) (A r L') (f(31 A f(3 )

X 000 000 000

{
A L' L } { f(31 f(3 J }

X A' A - r r L L' A '

where

,\' Xr t.t /

1

27f [ 1],\Y(3I(3 (k ,k) = du ---x ~ore(K) + -2-2 P,\/(U) Y(3I(3(K) ,
-1 K 27f K

(44)

(45)

and where the definitions of k and u are the same as those used for equation

(43). The numerical evaluation of the integrals of equations (43) and (45)

to yield X ~ : ~ ( k ' , k) and Y ~ ; ( k ' , k) is done using a composite Gauss-Legendre

quadrature mesh. This technique is highly reliable and has received extensive

use in numerous calculations of electron-atom scattering.

The matrix element for positronium formation is considerably more complicated,

involving as it does an additional integration. The specific form of this matrix

element that is most amenable to large-scale computation seems to be
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L e· (-1 yr+A' +MJ ~ 3 ~,2 fa fal i1/ 
A'T 

x [ (2'\)! ] ~ kA- T k'T XA;A(k' k) 
(2r)! (2,\ _ 27)! a a , 

N '\-7) (.\ 
o 0 0 

7 L') (fa l 

o 0 0 

L' L} {fa l 

.\-r r L 
L' J} 
fa .\ ' 

(42) 

The X~:~(k', k) is an angular integral defined by 

X~;~(k',k) = 2n ill dUPN(uHhooaal-X~/a(K)l/2n2KH2 
+ OAO oaa/2n i: du PN(U)Vcore(K) , (43) 

where P N ( u) is a Legendre polynomial, k = I k - k'i and u = k. k'. 
The interaction between the different positronium channels is non-zero only 

when the levels have different parities. When this occurs, the matrix element is 
very similar to the interaction between the different hydrogen channels, 

VJ!2'(3L(k',k) = L i A (_1r+A+A/+J ~3 ~,2 £(3£(31 it' 
ANT 

(
L' 

x 0 
N A-7) (A 
o 0 0 

r L') (f(j' A f(3 ) 
o 0 0 0 0 

L' L} {f(j' 
.\-7 7 L 

f(3 J} 
L' .\ ' 

(44) 

where 

A' A' 11 2n [ 1] A Y(3I(3 (k ,k) = du -X Vcore(K) + -2 -2 PN(U) Y(j'(3(K) , 
-1 K 2n K 

(45) 
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(43). The numerical evaluation of the integrals of equations (43) and (45) 
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use in numerous calculations of electron-atom scattering. 

The matrix element for positronium formation is considerably more complicated, 

involving as it does an additional integration. The specific form of this matrix 

element that is most amenable to large-scale computation seems to be 
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VJf)aL(k', k) == L i f a +f
{3 (_l)L+J+c+f a ~2 ~,2 fa f{3 ii.

AT aT{3Cjk

1

X [ (2fa)! (2f{3)! ] "2 (! )l/J-T/J k,l",H/J-T",
(2Ta)! (2T{3)! (2fa - 2Ta)!(2f{3 - 2T(3)! 2

(j A L') (k A L) (Aa - Ta j A{j - T{j )
X 000 000 a a a

( t; k T{j) {L C L'}
x a a 0 j A k

{ f{j L' ~} {~ C j }
x L fa

fa fa - Ta [Z~,:;a (k', k) + Z;,:;~ (k', k)] , (46)

T{3 f{3 f{3 - T{3

where T == Ta + T(3. This matrix element involves two separate integrals. The

first integral is over the angle between k and k', viz.

zt~a(k',k) == !k
T /1 du C!k

2 + !K; + Eco re + Ea + E{j - E)
-1

or x \J!a(K1 ) ¢(3(K2 ) P).. (u)

zt~a(k', k) = !k
T /1 du ( ~ k , 2 + !K~ + Ecore + Ea + E{j - E)

-1

x t¥a(K1 ) ¢(3(K2 ) PA(u) , (47)

with K 1 == Ik - k'i and k 2 = Ik - ~k'i. No problems are encountered in the
numerical evaluation of (47) since the integrations are similar to those encountered

previously, e.g. in (43) and (45). The second term in (46) is

Z~:;~(k', k) = 8:3 100

dq q2+T H~a(k', q) [v;,ore,LCk, q) + VLCk, q)], (48)

where V L(k,q) is just the partial wave component of the momentum-space form

of the Coulomb potential, i.e.

VL(k, q) 27f[11 du Iq - kl2PL(u);

27r 1
qk Qd"2(q/k + k/q}]

u==q.k (49a)

(49b)
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x (JO· A L') (k A L) (A'" - T '" j A{3 - T{3 ) 
00000 000 

x (7.0'" k T(3) {L C L'} 
o 0 j A k 

X {~ f~ ~} {~ f: f", ~ T", } [Z;,~",(k', k) + Z;,~;;(k', k)] , (46) 
T{3 f{3 f{3 - T{3 

where T = T", + T{3. This matrix element involves two separate integrals. The 

first integral is over the angle between k and k', viz. 

zt~",(k', k) = ~e 11 du (~k2 + ~K~ + Eeore + E", + E{3 - E) 
-1 

AT (') 1 T 11 d (1,2 1 2 ) Zl,{3", k , k = "2k u 4k + "2K2 + Eeore + E", + E{3 - E 
-1 

(47) 

with K 1 = Ik - k'i and k2 = Ik - ~k'i. No problems are encountered in the 
numerical evaluation of (47) since the integrations are similar to those encountered 

previously, e.g. in (43) and (45). The second term in (46) is 

Z;~;;(k',k) = ~ {'JO dq q2+T H~",(k',q) [Vcore,L(k,q) + Vdk,q)], (48) 
, 811" 10 

where V dk,q) is just the partial wave component of the momentum-space form 

of the Coulomb potential, i.e. 

u=ij.k (49a) 

211" 
qk Qd!(q/k + k/q}] (49b) 



u=q.k.

Close Coupling Theory

and Vcore,L(k,q) is the Legendre coefficient of Vcore(lq - kl),

Vcore,L(k, q) = 21r jl du 27r2 v;,ore(lq - kl) PL(U);
-1
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(50)

In expression (49b), QL[!(qjk+kj q)] is a Legendre function of the second kind.
The functions Vcore,L(k,q) are computed and stored for all combinations of k and
q prior to the evaluation of (48). The Legendre functions QL[!(qjk+kjq)] are

computed as they arise in the integrand. The H ~ ( X ( k ' , q ) are just projections of the
product of the spherically symmetric part of the momentum-space wavefunctions,
e.g.

Haa(k', q) = 27r[11 du ¢f3(l~k' - ql) wa(!k' - ql) P>.(u), (51)

with u = q.k' in this case. Care has to be taken to ensure that the numerical
computations involved in the evaluation of (48) are done reliably and efficiently.
That the functions H ~(X (k', q) are functions of k' but not of k is of crucial

importance. The functions H ~ O ' . ( k ' , q ) can be computed and stored for all possible
combinations of A, {3, Q and k' prior to performing the final integration over q.

This leads to a substantial decrease in the time needed to compute the matrix

elements for all combinations of k and k'.

An additional difficulty is associated with (48), namely the presence of the
Coulomb singularity. The argument of QL [~( qj k + k j q)] -+ 1 as q ---i- k and
so a logarithmic singularity occurs at q = k. This singularity is handled by a

subtraction technique. The basic integral that has to be done is of the type

h(k',k) = 100

d q H ( k ' , q ) { R ( k , q ) + Q d ~ ( q / k + k / q ) ] } .

This is rewritten as

(52)

h(k',k) = 100

dq (H(k',q)Qd~(q/k+k/q)] -F(q)Qo[~(q/k+k/q)])

+100

dq H(k', q) R(k, q) +100

dq F(q) Qo[~(q/k + k/q)] . (53)

By normalising F(q) so that

F(k) = H(k', k), (54)

the logarithmic singularity in the first term in (53) is removed because

QL(X) - Qo(x) -+ constant as x -+ 1. The second term is finite everywhere and
does not present a problem. The utility of this method depends on choosing a

form for F( q) that permits the analytic evaluation of the third term of (53). In

practice, F(q) is chosen to be a constant, and the subtraction is confined to the

particular element of the Gaussian mesh in which the singularity occurs. More

details can be found in Mitroy (1993a).
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(55)

All quantities in this calculation are evaluated in terms of the momentum-space

wavefunction or the momentum-space form of the potential. The momentum-space

wavefunctions are computed by taking the Fourier transforms of the coordinate

space potentials and wavefunctions. Given that the atomic and positronium

wavefunctions are expressed in terms of Slater-type orbitals, the conversion from

coordinate space to momentum space can be performed analytically.

To facilitate numerical calculations, the kernel matrix is converted into purely

real numbers by dividing each individual matrix element by iL
-

L
' . When this is

done, the partial wave form of the Lippmann-Schwinger equation is

T(J) (k' k) == V(J) (k' k) '" Jd 3 k" V~!2'aIlL,,(k', k") T ~ ~ ) L " a L ( k " , k)
a'L'aL' a'L'aL ., + L.....t (+) 1 ,,2

a" E - Ea " - 2"k

+ L Jd3k" V ~ ! 2 , ( 3 1 1 L" (k', k") Tf)LllcxL(k" ,k)
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Apart from the fact that energy denominators arising from intermediate positronium

states ((3") have a ~ k"? factor instead of the usual ~ k"? factor, these equations

are identical to those occurring in electron-atom scattering. Hence, techniques

introduced to solve these equations for electron-atom scattering (McCarthy and

Stelbovics 1983) can be adopted with minimal modification.

4. Calculation Details

The positron-sodium system has one unusual feature in that the ground state

of positronium has a larger binding energy than that of sodium. Consequently,

the transition to positronium in its ground state is a superelastic transition and

the cross section can be expected to diverge as E-! as E ~ o.
The valence states of the sodium atom are computed in a fixed-core model.

The core interaction consists of two parts. There is the static-exchange interaction

with the Na+ core. The Na+ wavefunction is obtained from a calculation of the

Na 3s 2se ground state. A semi-empirical core polarisation potential (Norcross

and Seaton 1974) is then added to the core Hamiltonian. The details of the

wavefunctions are identical to those used in a previous R-matrix calculation of

electron-sodium scattering at low energy (Zhou et ale 1990).

The following labelling convention is used in this work. The label CC(m,n)

represents a close coupling calculation in which m sodium states andn positronium

states are explicitly coupled together. A number of different sets of close coupling

calculations have been done.

CC(4,0). In this approximation the Na(3s), Na(3p), Na(4s) and Na(5p)

states are explicitly coupled. These calculations use the same channel space of
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All quantities in this calculation are evaluated in terms of the momentum-space 
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CC(4-,O). In this approximation the Na(3s), Na(3p), Na(4s) and Na(5p) 

states are explicitly coupled. These calculations use the same channel space of 
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Hewitt et ale (1993) and were done so that direct comparisons between the two

calculations could be made.
00(5,0). In this approximation the lowest five states of sodium, the Na(3s),

Na(3p), Na(4s), Na(3d) and Na(5p) states, are explicitly coupled. These
calculations are similar to the calculations of Ward et ale (1989a) and Sarkar et
ale (1988).

00(5,3). This includes the lowest five states of sodium, Na(3s), Na(3p),

Na(4s), Na(3d) and Na(4p), and the lowest three positronium states, Ps(ls),

Ps(2s) and Ps(2p).

UBA(5,3). This is an approximate solution of the Lippmann-Schwinger

equation with the real part of Green's function omitted.

Table 1. Elastic and excitation cross sections (in 7ra~ for e+ -Na) scattering

Model

3 5
Energy (eV)

7 10 20 50

CC(4,0)A
CC(4,0)B
CC(4,0)
CC(5,0)c
CC(5,0)
CC(4,3)A
CC(5,3)

CC(4,0)A
CC(4,0)B
CC(4,0)
CC(5,0)c
CC(5,0)
CC(4,3)A
CC(5,3)

CC(4,0)A
CC(4,0)
CC(5,0)c
CC(5,0)
CC(4,3)A
CC(5,3)

CC(4,0)B
CC(5,0)c
CC(5,0)
CC(5,3)

CC(4,0)A
CC(4,0)
CC(5,0)c
CC(5,0)
CC(4,3)A
CC(5,3)

74·6

77·2
110·2
111·4
82·0
72·8

36·3

32·7
66·11
65·7
9·09
7·08

43·6
54·24
45·3
54·13
56·1
50·3
48·6

64·9
72·4
62·4
69·99
69·9
24·9
23·5

2·41
2·32
9·61
9·72
1·54
1·43

7·18
7·49
7·40
2·46

0·711
0·828
3·49
3·82
1·89
0·576

3s-3s

30·1

29·8
33·04
33·9
31·2
25·4

3s-3p

70·5

69·3
65·91
66·5
34·0
32·7

3s-4s

1·66
1·89
5·42
5·51
1·97
2·16

3s-3d

10·64
10·63
5·60

3s-4p

1·97
1·81
6·55
6·67
1·62
1·02

18·5
19·78
18·9
19·84
20·0
21·2
18·6

68·4
65·8
67·2
59·21
59·4
38·2
36·8

1·28
1·34
2·48
2·49
1·13
0·576

11·53
11·04
11·2
5·41

2·43
2·33
6·24
6·34
1·91
1·98

8·41
8·84
8·93
8·98
9·04
7·50
8·24

50·7
46·5
50·2
44·61
45·1
42·0
40·2

0·993
0·805
0·81
0·794
0·566
0·421

6·81
6·27
6·50
3·72

1·64
1·86
3·11
3·11
0·630
1·19

4·15
4·75
4·60
4·67
4·58

4·70

27·5
26·5
27·4
25·67
26·1

25·5

0·601
0·517
0·47
0·501

0·462

2·09
1·81
1·88
1·76

0·784
0·810
0·99
0·987

0·859

A Hewitt et ale (1993). B Sarkar et al. (1988). c Ward et ale (1989a).

Close Coupling Theory 735 

Hewitt et ai. (1993) and were done so that direct comparisons between the two 

calculations could be made. 
CC(S,O). In this approximation the lowest five states of sodium, the Na(3s), 

Na(3p), Na(4s), Na(3d) and Na(5p) states, are explicitly coupled. These 
calculations are similar to the calculations of Ward et ai. (1989a) and Sarkar et 

ai. (1988). 

CC(S,3). This includes the lowest five states of sodium, Na(3s), Na(3p), 

Na(4s), Na(3d) and Na(4p), and the lowest three positronium states, Ps(ls), 

Ps(2s) and Ps(2p). 

UBA(S,3). This is an approximate solution of the Lippmann-Schwinger 

equation with the real part of Green's function omitted. 

Table 1. Elastic and excitation cross sections (in 7I"all for e+ -Na) scattering 

Model 

CC(4,0)A 
CC(4,0)B 
CC(4,0) 

CC(5,0)c 
CC(5,0) 
CC(4,3)A 
CC(5,3) 

CC(4,0)A 
CC(4,0)B 
CC(4,0) 
CC(5,0)c 
CC(5,0) 
CC(4,3)A 
CC(5,3) 

CC(4,0)A 
CC(4,0) 

CC(5,0)c 
CC(5,0) 
CC(4,3)A 

CC(5,3) 

CC(4,0)B 
CC(5,0)c 
CC(5,0) 
CC(5,3) 

CC(4,0)A 
CC(4,0) 

CC(5,0)c 
CC(5,0) 

CC(4,3)A 

CC(5,3) 

3 

74·6 

77·2 
110·2 
111·4 
82·0 
72·8 

36·3 

32·7 
66·11 
65·7 
9·09 
7·08 

A Hewitt et al. (1993). 

5 

43·6 
54·24 
45·3 
54·13 
56·1 
50·3 
48·6 

64·9 
72·4 
62·4 
69·99 
69·9 
24·9 
23·5 

2·41 
2·32 
9·61 
9·72 
1·54 
1·43 

7·18 
7·49 
7·40 
2·46 

0·711 
0·828 
3·49 
3·82 
1·89 
0·576 

Energy (eV) 

7 10 

3s-38 

30·1 

29·8 
33·04 
33·9 
31·2 
25·4 

38-3p 

70·5 

69·3 
65·91 
66·5 
34·0 
32·7 

38-48 

1·66 
1·89 
5·42 
5·51 
1·97 
2·16 

38-3d 

10·64 
10·63 
5·60 

38-4p 

1·97 
1·81 
6·55 
6·67 
1·62 
1·02 

18·5 
19·78 
18·9 
19·84 
20·0 
21·2 
18·6 

68·4 
65·8 
67·2 
59·21 
59·4 
38·2 
36·8 

1·28 
1·34 
2·48 
2·49 
1·13 
0·576 

11·53 
11·04 
11·2 
5·41 

2·43 
2·33 
6·24 
6·34 
1·91 
1·98 

20 

8·41 
8·84 
8·93 
8·98 
9·04 
7·50 
8·24 

50·7 
46·5 
50·2 
44·61 
45·1 
42·0 
40·2 

0·993 
0·805 
0·81 
0·794 
0·566 
0·421 

6·81 
6·27 
6·50 
3·72 

1·64 
1·86 
3·11 
3·11 
0·630 
1·19 

B Sarkar et al. (1988). c Ward et al. (1989a). 

50 

4·15 
4·75 
4·60 
4·67 
4·58 

4·70 

27·5 
26·5 
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The calculations of Hewitt et ale (1993) are similar to the present CC(5,3) with

the exception that they omit the Na(3d) state from the CC expansion. Since

the present method encounters no problems with 1 == 2 states, there is no point
in compromising the accuracy of the calculation by omitting the 3d orbital.

The numerical details of the calculation were as follows. At the lowest energy

(3 eV), a 40 point quadrature mesh was used to discretise the kernel. At higher

energies, 48 point meshes were used to discretise the kernel. We have done

calculations with different meshes at a few energies to assess the numerical precision

of the calculations. From these calculations, we would estimate that the elastic,

resonant Na(3s) ~ Na(3p) excitation and ground-state positronium formation

cross sections are generally accurate to better than 5%. The cross sections for the

weaker transitions have an accuracy of about 10%. The .rearrangement matrix

elements were explicitly included in the kernel for J ::; 18. The small contributions

to the· positronium formation cross section «5%) coming from higher partial

waves were included by extrapolating the partial wave sum, assuming that the

partial Gross sections scale like a power series. The T-matrices used in the

calculation of the cross sections correspond to full solutions of the CC equations

for J::; 40 except at the highest energy (50 eV) where the calculations were

extended to J == 50. At the higher energies, the partial wave sum for the inelastic

transitions had to be completed using the extrapolation procedure described

earlier.

5. Excitation of Sodium

Cross sections for elastic scattering and excitation of sodium are given in

Table 1. Comparison of the present 'CC(5,0) cross section with the cross sections

of Ward et ale (1989a) gives an estimate of the numerical accuracy of the present

calculations. For most transitions, and at most energies, the two calculations

agree to within a couple of per cent. The agreement between the two sets of

calculations is as good as can be expected, given that details of the sodium

wavefunctions are different for the two calculations.

Comparison with the notionally equivalent CC(4,0) calculation of Hewitt et
ale (1993) shows differences of the order of 10% in a number of cases. These

discrepancies are too numerous and too large to be attributed purely to differences

in the sodium wavefunctions. The most likely cause for the discrepancies is the

use of an integral equation numerical quadrature by Hewitt et ale (1993) that is

not sufficiently dense at the important parts of the kernel. The T-matrix elements

for weak transitions are often more sensitive to the details of the numerical

analysis.

It is apparent from the comparison of the CC(5,0) and CC(5,3) cross sections

that the rearrangement channels have a major effect on the collision dynamics.

At energies below 10 eV the elastic cross section undergoes a 10-20% decrease

when the positronium channels are included.

For the inelastic transitions to the excited sodium levels, the inclusion of

the positronium channels exerts an even larger effect. The cross sections for
excitation of the 3p, 4s, 3d and 4p levels are all greatly reduced, with the effect

being largest at low energies. For instance, the cross section for the 38 --7- 3p

resonant transition is reduced from 69·9 to 23·31ra5 at 5eV and from 65·7 to

7·25 1ra5 at 3 eV when the positronium channels are included in the calculation.
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We suspect that the suppression of excitation cross sections to the low-lying

atomic levels by the positronium channels may be a universal feature of positron

alkali atom collisions. This trend is also evident in positron excitation cross

sections reported by Hewitt et ale (1992, 1993) for lithium and potassium.

Table 2. Cross sections (in 7ra~) for positronium formation in the Psf ls}, Ps(2s) and Ps(2p)
states for e+-Na scattering

Model Energy (eV)
3 5 7 10 20 50

Ps(ls)

FBAA 49·1 15·2 2·82
FBA 119·3 60·3 33·2 14·8 1·40 0·0137

UBA(5,3) 33·1 12·0 7·20 4·47 0·787 0·0157
CC(4,3)B 49·0 19·7 10·9 5·01 0·924
CC(5,3) 26·8 20·0 12·8 5·34 0·819 0·0464

Ps(2s)

FBA 23·8 9·84 3·56 0·631 0·0057
UBA(5,3) 1·78 1·88 1·28 0·212 0·0042
CC(4,3)B 4·57 4·34 3·08 1·53
CC(5,3) 0·819 2·47 2·77 0·564 0·0106

Ps(2p)

FBA 43·8 49·9 23·9 2·37 0·0056
UBA(5,3) 6·00 6·27 4·54 0·795 0·0051
CC(4,3)B 5·03 10·2 9·42 2·42
CC(5,3) 2·49 5·86 7·10 1·56 0·0231
---
A Post form of FBA, Guha and MandaI (1980). B Hewitt et al. (1983).

6. Positronium Formation

Cross sections for positronium formation in the Ps(ls), Ps(2s) and Ps(2p) states

are given in Table 2. Cross sections are reported in the first Born approximation

(FBA), the unitarised Born approximation (DBA), the CC(4,3) (Hewitt et ale

1993) and CC(5,3) approximations.

The agreement between the present FBA cross section with the previous FBA

calculations is not good. This is not surprising since the transition operator used

in the two calculations is different. Guha and Mandal (1980) omitted the kinetic

energy terms from the interaction Hamiltonian.

Comparison of the FBA, DBA(5,3) and CC(5,3) reveals that the DBA(5,3)

is a reasonable approximation to the CC(5,3) cross section, and the FBA is a

poor approximation to the CC(5,3) cross section. The FBA overestimates the

positronium formation cross sections for the Ps(ls), Ps(2s) and Ps(2p) levels by

factors of 2 to 10 at energies below 10 eVe The DBA cross sections are generally

correct to within a factor of 2 in this energy range.

The most notable feature of Table 2 is the large size of the positronium

formation cross sections at low energies. At an incident energy of 3 eV, the

electron transfer cross section to the Ps( Is) state is 27·4 1r a5. Since this is

a superelastic transition, the J = 0 partial cross section can be expected to

increase like E-! as E :-+ O. As the S-wave cross section is only 0·524 1ra5, it

is clear that the energy has to decrease a lot more before the asymptotic region
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(56)

is reached. To keep the large size of the positronium formation cross section in
perspective, it should be recalled that the maximum .size of this cross section
for positron-hydrogen scattering is only about 4· 0 1ra5 (Mitroy and Stelbovics
1994b).

At higher energies the opposite is true. The positronium formation cross

section decreases rapidly and at the highest energy (50 eV), the net cross section

for positronium formation in all states is only o· 0811ra6. This is much smaller

than the net Ps formation cross section for positron-hydrogen scattering, which

is 0·55 1ra6 at 54·42 eV (Mitroy and Stelbovics 1994b).

At the qualitative level, the present CC(5,3) and the CC(4,3) calculations of
Hewitt et ale (1993) are in agreement. Both report large positronium formation

cross sections which decrease rapidly as the energy increases. However, the

detailed differences between the two calculations cannot be attributed to the

slightly different channel spaces. A CC(4,3) calculation, using the same channel

space as Hewitt et al., was performed at an incident energy of 5 eVe This gave

cross sections of 19·7,1·25 and 3·331ra6 for the Ps(ls), Ps(2s) and Ps(2p) cross
sections respectively. These cross sections are sufficiently close to the CC(5,3)

cross sections, and sufficiently different from the Hewitt et ale cross sections,
to indicate that the differences are due in large part to numerical aspects or

possibly to a different interaction Hamiltonian, and are not the result of a slightly
different channel space.

7. Total Cross Section

The only experimental information available on positron-sodium scattering is

that from the experiment of Kwan et ale (1991), who reported total cross sections

for sodium. This is an attenuation experiment, and so cannot discriminate against

elastic scattering in the forward direction. Consequently, the experimental data

will systematically underestimate the actual cross section by an amount equal to

bo(TT = 271" lcr. (TelCO) sinO dO,

where positrons undergoing elastic collisions up to an angle a are assumed to be

detected. At low energies, the large size of the elastic cross section in the forward

direction will make ~ a T a considerable fraction of the total cross section. For

a direct comparison between theory and experiment it is necessary to apply a

correction to the theoretical or experimental total cross sections. In this work, we

have chosen to add a correction to the experimental cross sections by using the

present CC(5,3) differential cross sections to evaluate ~ a T for the cutoff angles

listed in Table I of Kwan et ale (1991). At energies of 2·7, 7·7, 17·7, 27·7,

37·6,48·3 and 57·geV, ~ a T was 18·5, 8·4,4·0,2·8,1·7, 1·4 and 1·I1ra6.

Only at the low energies of 2·7 and 7·7 eV does the correction make a difference

of 10% or greater to the empirical cross section. It should be mentioned that

much larger corrections occur at low energies when the CC(5,0) differential cross

sections are used.

Total cross sections from the present CC(5,0) calculation, the CC(4,3) model

of Hewitt et ale (1993) and the present CC(5,3) calculation are depicted in Fig. 1.
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We have performed calculations at additional energies to supplement those given

in Tables land 2. The present CC(5,0) model and the earlier calculation of

Ward et ale (1989a) can be regarded as giving equivalent cross sections for all

practical purposes. Comparison of the CC(5,3) and CC(5,0) cross sections shows

that inclusion of the positronium formation channels leads to a large drop in

the total cross section at lower energies. This drop in the cross section improves

the agreement with the adjusted data of Kwan et ale (1989). At higher energies

the difference between the CC(5,3) and CC(5,0) cross sections becomes much

smaller. To summarise, the agreement between the CC(5,3) cross section and

the experimental data of Kwan et ale (1991) is almost perfect, although the large

size of the errors bars means this is not a very stringent test.
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Fig. 1. Total cross sections for positron-sodium scattering. The adjusted measurements of

Kwan et ale (1991) (.) are compared with the present CC(5,0) (x) and CC(5,3) (e) cross

sections. Also depicted are the cross sections (A) of Hewitt et ale (1993).

8. Conclusion

In this work we have generalised the theory of positron-hydrogen scattering to

positron scattering from alkali atoms. Treating the alkali atom as a single-electron

target simplifies the interaction kernel sufficiently to make calculations with

explicit coupling between the positronium and positron channels possible. In

making these simplifications, the exchange interaction between the electron in

the positronium and the electrons in the residual ion has been omitted from the
calculation.

Although the present calculations are different in detail from those of Hewitt et
ale (1993), both calculations report a suppression of the resonant Na(3s) -7 Na(3p)

transition when the positronium formation .channels are included in the channel

space. The cross sections for excitation to the Na(4s), Na(3d) and Na(4p) states
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are also reduced at low energies by the inclusion of the positronium channels.
This is contrary to the' speculation by Kwan et al. (1991) that inelastic cross

sections for positron impact excitation at low energies are larger than those for

electron impact excitation. The peak values of the positronium formation cross

sections for the Ps(ls), Ps(2s) and Ps(2p) states are found to be much larger at

low energy than the corresponding cross sections for positron-hydrogen scattering.

At higher energies however, the positronium formation cross sections are much
smaller than those for positron-hydrogen scattering. Given the small size of the

Ps formation cross sections, and the good agreement between the CC(5,0) and

CC(5,3) cross sections for sodium excitations at 50 eV, we would suggest that

for incident positron energies of 50 eV or greater it should be possible to omit

the positronium channels from the calculation.
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