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part in four dimensions with a two—dimensional integral representation show good
large momentum expansions in closed form. Numerical comparisons for the finite
variables, namely Lauricella functions. These results represent previous small and
ever, that they can be described by generalized hypergeometric functions of several
integrals cannot be expressed in terms of polylogarithms. Here it is shown, how
propagators is studied in an arbitrary number of dimensions. As it is known these

In this paper the class of N loop massive scalar self·energy diagrams with N + 1
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sults in a three-particle cut. It will be shown that an evaluation of this diagram in OCR Output
In this so-called London transport diagram the only way to cut the diagram re

Figure l: The London transport diagram

massive propagators (fig. 1).
problem in its simplest form arises in the two-loop se1f—energy diagram with three
anymore. Since this phenomenon is related to the massive three particle cut, the
those cases where known functions like polylogarithms cannot represent the result

This paper aims at enlarging the analytical knowledge of the scalar diagrams in
analytical results and series expansions exist good agreement is obtained.
which are in general divergent. The numerical integration can be carried out. Where
now been extended [4] to the finite parts of all two-loop scalar self-energy diagrams,
with two loops and five propagators, the so-called master diagram. This method has
gral representation has been given [3] for the convergent scalar self-energy diagram

Another approach is a numerical one. Recently an elegant two—dimensional inte

been derived.

manipulation programs. General closed expressions for these coefficients have not
of the masses and can be derived with algorithms which are accessible via symbolic
series expansions have been given so far. The expansion coefficients are functions
large p2 expansions have been derived in [1] and For the intermediate region no
and possibly logarithms in pz, where p is the external momentum. Both small and

One of them is to find expansions of the self-energy diagrams in terms of powers

literature.

to the above problem. To circumvent it two approaches have been followed in the
that the diagrams in which three particle cuts arise, with all particles massive, lead
expressible in terms of known functions such as polylogarithms. It can be shown
encounters a serious problem: when no masses vanish the integrals are certainly not
Even at the simplest level, i.e. that of scalar two-loop self·energy diagrams, one
with massive propagators, where several combinations of different masses can arise.
experimental quantities. One then faces the problem of evaluating two-loop diagrams

Ideally, one would like to have two-loop and higher—order calculations for various
accuracy of 2 >< 10`
could reach a precision of about 5 >< 10"5 and the forward Bhabha measurement an
high and will even improve in the future. For instance, the Z mass measurements
The precision of the experiments testing the electroweak theory is at this moment

1 Introduction



two vertices, N + 1 propagators, N —loops, can be treated in the same way. OCR Output
self-energy diagram with three propagators. The generalization of this diagram, i.e.
applied to two-loop integrals in [1, 7]. The method will be illustrated for the two-loop
raised to an arbitrary power. This technique has been advocated in [6] and already
grams can be related to integrals over massless diagrams, where the propagators are
Mellin-Barnes representation for a massive propagator. In this way, massive dia
sive propagators. The details can be found in The second method uses the
Feynman diagrams will be evaluated. One method uses a:—space techniques for mas
In this section two techniques are briefly described with which the N -loop massive

2 Method

the paper with concluding remarks.
two—dimensional integration of the finite part of the diagram. The last section closes
tion 4 derives the results near D = 4 and presents numerical comparisons with a
and the case of arbitrary powers of the propagators in the two-loop diagram. Sec
The next section summarizes the large pz result for two loops, the N loop formulae
tation. The small pz result for the two-loop London transport diagram is derived.
results for massive diagrams, the as-space method and the Mellin-Barnes represen

The outline of the paper is as follows. Section 2 describes two methods to obtain
multi-loop diagrams.
analytic regularization scheme. Integer powers sometimes occur directly in certain
arbitrary powers of the propagators is easily obtained. The latter are relevant for the
there are N + 1 ratios between the N + 1 masses and pz. Also the generalization to
again finds a sum of Lauricella functions which now depend on N + 1 variables since
will arise in gauge theories from a reduction of tensor integrals to scalar ones. One
that the N -loop generalization of this diagram can easily be derived. Those diagrams

From the way the London transport diagram is evaluated, it will become clear
series and their continuations converge.
evaluation for the finite parts. The expressions are valid in regions where Lauricella
to known series. Moreover, they are developed to the level of practical numerical
studied before The results in this paper differ in the sense that they are related
that multiple series for the evaluation of two-loop Feynman diagrams have been
series which can be read off explicitly from the Lauricella series. It should be remarked
of the large and small pz expansions referred to above. The coefficients are themselves

In a sense, the results of this paper provide an explicit formula for the coefficients
series which are easily evaluated numerically with adequate precision.
significant improvement on previous results. The finite parts in four dimensions are
logarithms they are at least expressible in this known type of functions which is a
continuation formulae. Although the results are of course not expressible in poly
mathematical apparatus is known, like convergence properties and a few analytic
mathematical literature. These are the Lauricella functions Fg for which quite some
a special class of generalized hypergeometric series, which has been studied in the
ables which are ratios of the three masses and pz. The series turn out to belong to
D dimensions is possible leading to a number of series, in fact triple series in vari
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that the N loop case has N + 1 McDonald functions
where :1: is the radial part of the D dimensional 5. At this point it should be noted

><(m1m2m3/q)" [ dx a:`2"`*`1J.,(qa:)K,,(m1z)K,(m2:c)K,(m3:c) ,

(8)2T123(*1»mi»mi»m§) :

dimensions. The resulting a:—space representation reads
where J,,(qz) is the Bessel function and da} denotes the angular integration in D

(7)di €XP(i*1’7) = 2vr”+‘(<1¤¤/2)'”J»(q<v),

McDonald function. Furthermore we need

where u = (D — 2)/2 and K ,,(m;z) is the modified Bessel function, sometimes called

(6)_V dk; = 2»~+*(4/2) m:1<t(mix>,[ D - ·ki

Now the Fourier transform of the propagators is introduced

dk —-—-[ dk *-— [ 4% —-— ( Wk? + me 2 04 + 44) 3 ck; + mz)-—`k x) exp(——ik2a:) exp(—ik3:r) D°""( ‘‘ D

. T123(P2» mi, m2» mg) = " 5dum °XP(“1$) (5)1 1 @Y/
One writes

integration variables and pz is considered to be spacelike and q= —p2 2

In order to present the z—space formalism one uses Euclidean momenta ki as

(i · mi) (im — miw,1);r,___N+1(p2,m2 ,..., m2 ):<<>>. (4) I NJ'] kk

and the N -loop self·energy diagram becomes

04 — mmz — mm; — me
T p2,m2,m2,m2 =<<>> (3) 1** I 2 3)

whereas the two·loop self-energy diagram reads

(2)T 1>,m,m) =< +-1 12( I 2 (ki — m%)(k% — mi)
222

denoted by
where p is an arbitrary mass. In this way the one—loop self-energy diagram will be

<...>= (...) zr221riD 4 °du q -/ 1(;)
D dimensional loop integration a bracket is introduced

For the notation we shall follow the conventions of [8], which means that for every



Now it is apparent that T123(p2, mg, mg, can be written as a combination of OCR Output

|z1|+...+z,,| <1(/,/| (15)

where (a)), = I`(a + lc)/I`(a). The defining multiple series converges for

h__=

, 14 ( )(")(¤k +...+k k +...+k.. F,b; ,..., ; ,..., ,, = -—+-—l‘—;—-——-—- C (G cl cn Z1 Z ) k§,g0 (¢1)k1 ··· (¢n)k,. kr! kn!)(blzZi! 5"

[10, 11, 12, 13] defined by
In the above series we recognize a special instance of the Lauricella functions

usual spacelike pz is made.
where z; = m?/mg, i = 1,2,2:3 = —q°/mg : pz/mg. In z3 the substitution to the

} I`(1—u+m)1`(1—u+n)1`(1+u+k) m!n!k!I`(1 -1/+m+n+k)l`(l —2u+m+n+k)z{”z§z§
I`(1 —u+m)l`(1+ u+n)I`(1+1/+k)

_z’
,,1"(1+m+n+k)1`(1—u+m+n+k)
I`(1+12-{-m)I`(1—u+n)I`(1+u+k)

zI
,,I`(1+m+n+k)P(1—v+m+n+k)

mvmkzc
{z,,z,,I`(1+m+n+k)I`(1+u+m+n+k) ‘ 2 1“(1 + V + m)I`(1+ V + n)1‘(1 + V + k)

(13)2 2 2 2 2 Tl23(p Vmpmpma) = ·m3 g (l`(V)I`(1 ·‘ "))mi m
2v—2

Applying this to (8) we find the following series

dz V*+V+’*1<,(mN+,z) : 2""'2'm]Q5_Q"”2' r(1 + V + ¢)r(1 + t). (12)

an integral
It is convenient to choose for the latter K ,,(m1x), . . ., K ,,(mN:n), so one is left with

2'° 2k+"

°° 1 mx “" 1 mx Q (ru - V + k)k! (T) ` r(1 + V + k)kz (T)

I` I` —

(10)°¤·n __ (-1) (ax) J"("“) ' Q, r(1 + V + V) V! 2
2n+v

the Bessel function J., and a number of K., functions, using
cases with up to two K ,, functions, see e.g For the other cases one should expand

In order to carry out the 2: integration one can find explicit expressions for the
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general massive case to the massless one, but with the propagators raised to powers
Tl23(p2, mg, mg, we apply (20) with cv = 1 to all propagators, thereby relating the
on the right from the series of poles of I`(s + a) on the left. In the expression for
where the integration contour in the s plane must separate the series of poles of I`(—.s)

·IOO

1 1 1 (-m)¤ I Q ds I-`(-.9)].-`(CI + S) ,
+ioo 2

for a massive propagator
All results may alternatively be derived by use of the Mellin-Barnes representation

The result for such a type of diagram will be given in the next section.

(—ik;£l2) I __ _ _ dDk_€Xp : 2 1/+1 2 1/ 1+11 1/+1 01K _ _ i 19

Fourier transform

In case we consider a propagator raised to a power 01 we need the corresponding
result is given in the next section.

The corresponding N -1oop integral can be solved in a similar way. The explicit
to the symmetry of the diagram.
convergence region (18), but may be interchanged freely with the other masses due

The mass mg plays a prominent role in expression (16) and consequently for the

the above reason.

required because of compensations between the coefficients, which are inevitable for
In the annulus (ml + mg — m3)2 g |p2| < (ml + ml + m3)2 some numerical care is

ml + mg < mg . (18)

provided that the coefficients themselves do exist, which is the case for

on the physical sheet given by the threshold condition
in pz, however, the total sum converges due to analyticity up to the next singularity
The individual series above converge for ml + ml + l/|p2| < m3. Collecting powers

I`(1/)I`(—1/)I`(1 - 21/) Fé(1 — 21/,1 — 1/; 1 - 1/,1 - 1/, 1 + 1/; zl,z2,z3)3)

2; I`2(—1/) Fé.(1,l — 1/;1 — 1/,1 + 1/, 1 + 1/; zl,z2,z3)3)

—"2—3)zf 1(1/) Fg(1,1 — 1/; 1 + 1/, 1 - 1/, 1 + 1/; zl,z2,z3)

23)z{’z§ I`(-1/) Fé·(1,1+ 1/; 1 + 1/, 1 + 1/, 1 + 1/; zl, z2,z3)

(16)
”Tm(1>,m¥»m€»m§) = —m§><

m
z 20/-1)

four Lauricella functions
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Lauricella functions. Finally the N —loop case is presented in terms of 2N Lauricella
trary powers of the propagators is considered for small pz, which leads again to four
diagram in the region |p2| > (ml + mz + m3)2. Then the same diagram with arbi
In this section we derive by analytic continuation the result for the London transport

3 General results

of the integral representation (22).
partial differential equations. This can also be demonstrated directly with the help
factor in front. Thus T l23(p2, mg, mg, as a. whole obeys the same system of three
possible eight solutions which are regular at p2 : 0, that is with no zydependent
all four Fé.—terms in (16) belong to the same system and are just those out of the3)
variables but with different parameters and prefactors. It is interesting to note that
independent solutions, all of them expressible in terms of Fgfunctions in the same)
system of n coupled partial differential equations in these variables [12]. It has 2"

)Associated with a Lauricella function Fgin the variables zl, . . .,2,, there is a
the Lauricella functions to the region |p2| > (ml + mz + m3)2
obtained is the same as the one we shall derive in section 3 by analytically continuing

Note that one may also close all of the contours to the right. The result thus
justified to close the contours in the specified manner [14].
governed by (15), serves, a posteriori, as a criterion as to whether it was really
again yields the same four Lauricella series. The convergence of these multiple series,

sg = -—sl -824-D—3—k3 fork3=0,1,.

$2 = k2,D/2-1-%-kg forkl»:0,1,...;

sl = kl, D/2-1+kl forkl=0,1,...;

left. Summation over the residua of the poles in the I`-functions at
We close the integration contours of sl and sz to the right and the one of sg to the

I`(3D/2—3—sl——.s2—s3)
l` 3 — D X ( +81+62+%)

l`(D/2 -1- sl)l`(D/2 — 1 — s2)l`(D/2 -1- $3)

—‘|OO

d81 d·92 dsa 1`(·$1)1`("82)1`(-$3)
1 ()()()m2sl m2sgm2a3

-{-{oo

(22)Tm(1¤’,m¥.m§,m§) = —(4r#2)"`D ><

Insertion of this expression leads to the following integral representation

l`(1+ 81)].-`(1 + $2)l`(l + — 3 ·- 81 — 82 ·· 83)
(21)

f"(·3 —— D + sl + sz + .s3)l`(D/2 -1- .sl)l`(D/2 -— 1 — .s2)l`(D/2 — 1 — sg)

T12a(1>2, 0, U, 0; 1+81, 1+82, 1+83) = — (41ru2)4'D 8`l”("‘+"+"*) (—p2)D“3"‘"""°

The corresponding result is well-known, see e.g.[2]



in the series should be the massless diagram. This series then corresponds to the last OCR Output
contributing series. For the subgraph representing the whole diagram the first term

Following the analysis of [2] one can easily find the first term of each of the

where two internal lines have been removed.

itself, the three diagrams where one internal line is removed and the three diagrams
two—loop London transport diagram one has the following subgraphs: the diagram
ing the momentum p over the propagators in all possible ways. In the case of the
obtained from the expansion of subgraphs. The subgraphs are obtained by distribut
that given in In the latter approach the various terms in the pz expansion are

One may wonder what the relation is between the large pz expansion of (24) and
of partial differential equations as the individual terms.

Again, T12;;(p2, mg, mg, obeys in the transformed variables the same system

(25)Ipzl > (mr + mz + ma)2

Now, this expression is valid for

3 F1—2 Fé·3)(1 - 31/,1 — 21/;1 - 1/,1 — 1/,1 - 1/;:z:l,z2,:1:3)
)+(—x;;)I(21/1"2 I` —— " Fé·3)(l - 1/, 1 — 21/; 1 — 1/,1 — 1/, 1 + 1/; xl, :1:2,:2:;;) `

+(-xg ul-`2(1/)I`(—-1/)l"(l — 1/) (3) ) FC (1- 1/,1- 21/, 1 — 1/,1+ 1/,1 — 1/,:v1,:z:2,:r:3)
)+(—2¤1l(21/1*2 1* - 1* 1 - )” Fé~3)(1 — 1/, 1 — 21/; 1 + 1/, 1 — 1/, 1 - 1/;:1:1,:11:%:1:;;) `

3)+(—:c1)"(-x2)"I`2(-1/)Fé.(1, 1 - 1/; 1 + 1/, 1 + 1/,1 -· 1/; :1:1,:2:;,:1:3)

l')+(—:c2)"(—a:3)"I`2(-1/) Fg(1,1 -— 1/; 1 — 1/, 1 + 1/, 1 + 1/;:1:1,:c;,ac3)

23)(-a:1)"(—a:3)"I"(—1/) Fé.(1,1— 1/; 1 + 1/, 1 — 1/, 1 + 1/;:11:],:11:2,:1:;;)

(24)l23(P21mi»mi»m?1) = " ("P2)
— 2

21/-2

Lauricella functions

Applied to (16) this yields, as one coefficient vanishes, a total of seven transformed

_ b
(-zn)Fé,(b, 1 -4- b - c,,_;c1, , , .,cn_1,1— a + b;:v1, . . .,2:,,) .I` l` — b g*"")

,, )_a (—z,,) Fg. (a, 1 + a — c,,;c1, . . .,c,,..1, 1 — b+ a;:v1, . . .,:2:,,)l` ,, I` b_ ;;
(23)

")Fé.(a,b;c1,...,c,,;z1,...,z,,) =

i: 1, . . .,n — 1 and 2:,, = 1/z,, by the following relation [11]
continued to a sum of two Lauricella functions in the arguments z; = z;/2,, for

A Lauricella function in the arguments z; for i = 1, . . .,n can be analytically



division into subgraphs which the method of [2] uses to derive the large pz expansion. OCR Output
and leads to 2N +1 — 1 Lauricella functions. Here again the series correspond to a
The analytic continuation to the region |p2| > (ml + . . .+ mN+1)2 is straightforward

Z] ,..., 2;, ,..., Zgk ,..., ZN , ZN+1).

¤1 U:

. . >< FC (1+1/-ku,1—ku,1+u,...,l-u,...,l—u,...,1+u,1+u,(N +1)

t;,>...>i;=l *1 Us~ »k:OI`1+u—kul`1-kv _ H z"···z" LW%_”lFk(")FN '°<·") Z

v>< (27)L-.N+1(P2» mi .---. mini) = (—1)+mmN‘g (in)N(v-I) N-1

now be 2N series again representing Lauricella functions in N + 1 variables.
implies that more K functions occur, which also have to be expanded. There will

Finally the London transport diagram is easily generalized to N loops. This
Wll€1`8 (1 = Ct] + (12 + G3.

3)>< Fé·(-21/-— 2 + a,—v— 1 + ol + 042;-11-{-a1,—u+ a2,u+ 1;z1,z2,z3)},
I`(u + 1)

l`(u + 1 — oq)l`(v + 1 —— a2)I`(-u — 1 + al + a2)1`(—2u — 2 + or)

3)>< Fé·(—v — 1 + ui + ¤:·.,¤1;—v + mw + 2 — new + 1;z1,Zz,Za)
l`(u + 1)

+z2
,,+1_a2 I`(u + 1 — u1)I`(-u — 1 + a2)I`(—u — 1 +_¢12;|;g;)E(¢£)

3)>< Fé(—v -1+ 02 + ¤s.¤z;v + 2 —¤1,—v + crew + 1; z1.zz,Zs)
l`(v + 1)

+z1
,,+1_m - 1+ o4})I`(v + 1 — a2)l`(—u — 1 + gz-l-_%;_)l"(a2)

3)>< Fé.(oz3,u+1;u+2 - 041,1/+ 2 - 02,1/+1;z1,z2,z;;)

z;’+1'°"z;+1`°"l`(—u - 1 + a1)I`(—u - l + a2)l`(a3)

4#w’ F(¤1)I`(¤2)i`(¤a). 1 20*-1) 1 -•1r(al+a;+oz3) < ) (m§)2u+2—a1—ag—c3
(26)°Tm.(p, mi, mE, m§;¤1,a¤, ve) =

an index like in (19). The result is a direct generalization of (16)
propagators one proceeds as in section 2, but now using McDonald K functions with

In order to derive the London transport diagram with arbitrary powers 0; of the
subgraphs which are required for the method of
sixth term in (24). Thus the seven series in (24) can be related directly to the seven
yields a series starting with a massive tadpole proportional to (m§)". This is the
remaining subgraphs are obtained by removing one internal line, e.g. line 3. This
contribute a factor (m¥m§)” which can be identified with the third term in (24). The
been removed, e.g. 1 and 2, starts with the product of two massive tadpoles. They
term in (24). The series which originates from the subgraph where two lines have
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+¢’(m+n+k)+¢’(m+n+k—1)

>< {¢(m+¤+k)+¢(m+¤+k- 1)- ¤l¢(¤)-¢(¤+1)+1¤g(zz)}

{¢(m+ n + k) + r/»(m+ n + k - 1)- Mm) —¢(m+ 1) +1¤g(z1)}

m ngho (m -1)!m!(n -1)1n!(k + mk! Z1 Z2 Z3
(m+n+k—2)l(m+n+k- l)! m n k

(31)Tm~(1¤Z,mi»mZ£,m§)/mi =

For small |pZ|, i.e. the region ]p2| < mg, one finds
this finite expression.
various multiple series remains. A good check is provided by the cancellation of ·y in

The 1/62 and 1/6 terms indeed drop out in the result and a finite combination of
with the Euler constant 7 and ((2) = 1rZ/6.

k=1

I - J. ¤/¤(¤+1) — C(2)—Zk2

Ic:].

(29)¤/¤(¤+1) = -7+2}

function occur at integer arguments
coefficients in 6, where the first and the second logarithmic derivatives of the I`

An analytic form is obtained by expansion of the Lauricella functions and their
It is this combination which will be calculated in two independent ways.

Tm(1>Z, 0, mg, m§) + Tm(pZ, 0, 0, m§)
T123N(P2» mi,m§, mg,) = Tm(pZ, mi, mi, mg,) - Tm(pZ,mi,0,m§) (28)

chosen in such a way that the infinite parts cancel
The following combination of the general massive case with massless cases is

two—dimensional integral.
[4], is an extension of Kreimer’s method [3] to represent a self-energy diagram by a
completely independent numerical calculation. The latter approach, as described in
large |pZ]. Then a numerical comparison for the finite part will be made with a
port diagram will be expanded in 6 = (4 — D)/2 = 1 — u, both for small and
In the following the general D dimensional expressions for the 2~loop London trans

for the finite part

4 Expansion in 6 and numerical comparisons

individual terms.

as a whole once again obeys the same system of partial differential equations as the
are easily extended to arbitrary powers of the propagators. Furthermore, the diagram

All results can equivalently be derived using the Mellin-Barnes representation and
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will be required.
diagrams related types of generalized hypergeometric functions of several variables
configurations in the small pz-domain, also. It is likely that for more complicated
become possible to obain explicit series expansions for the still outstanding mass
of analytic continuation, or partial differential equations. By this means it may
tion of established techniques, like contour integral representations, for the purpose
to some extend in the mathematical literature this opens the way for the applica
energy integrals and Lauricella functions. Since these functions have been studied
The results in this paper establish a connection, hitherto unknown, between self

5 Conclusions

some manipulation, to a result given in
summation formula for the hypergeometric series. Setting also mg = m leads, after
the triple sums of (16) and (24) can be reduced to double sums by means of Gauss’
reduces to a known result [15]. In the case of two equal masses, e.g. ml = mz = m,
[1]. For ml ·.·= my = 0 one has one Gauss 2Fl function, which after expansion in 6
diagram with pz = 0 one obtains four Appell F4 functions, which can be found in

Other checks on the result (16) are easily performed. For the massive vacuum
are given in tables 1 and 2.
Some representative numbers for the real and imaginary parts of Tl23(p2, mg, mg, mg)
reveals that already few terms of the series suflice to reach agreement up to four digits.

Numerical evaluation of both the series and the double integral representation

+3·//(m+n+k—2)+3l!»’(m+n+k— 1)—6§(2)

>< {¢(m+n+k—2)+ 1/¢(m+¤+ k- 1)- 1/¤(k)· 1/’(k+1)+1¤g(·¤>s)}

+¢(m+n+k— 2)+¢»(m+n+k— 1)-1/:(n)—¢»(n+ 1)+log(—x2)}

+{¢(m+n+k—2)+¢(m+¤+k— 1)- ¤l¤(m)-¤/¤(m+1)+1¤g(—¤¤1)

>< {·/¤(m+¤+k — 2)+ ¢(m+¤+k - 1)-·l>(¤)-¢(¤+ 1)+1¤s(—¤¤z)}

{¢(m+n+k·2)+¢(m+ n+k-1)-*/¢(m)—¢(m+1)+1<>s(-$1)}

mfg:] (m - l)!m!(n - 1)!n!(k - 1)zk! “1 ”’2””3
(m+n+k—3)!(m+n+k-2)! ,,, ,, k

+¢(m + *1 — 2) + 1/¤(m + *1 — 1)- $(*1) - ¢(¤ + 1)+ 1¤g(-$2)}
{¢(m + n — 2)+ ¢(m + n -1)- 1/2(m) —¢(m + 1) + log(—:z:l)

m+n>2

mg; (m - 1)m!(h.— 1)zn¤ xl *2
(m+ n- 3)!(m+ n—2)! m ,,

wm {-1 +1¤g(—¢1)}{-1+1¤s(—¢2)}
(32)

22T123N(P¤m·i» mimi)/P=

For large |p2|, i.e. the region [p2| > (m3 + ml + ml )2, one obtains
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