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Abstract

We investigate the effectiveness of business shutdowns to contain the Covid-19 disease. In

March 2020, Italy shut down operations in selected sectors of its economy. Using a differ-

ence-in-differences approach, we find that municipalities with higher exposure to closed

sectors experienced subsequently lower mortality rates. The implied life savings exceed

9,400 people over a period of less than a month. We also find that business closures exhib-

ited rapidly diminishing returns and had large effects outside the closed businesses them-

selves, including spillovers to other municipalities. Overall, the results suggest business

shutdowns are effective, but should be selectively implemented and centrally coordinated.

Introduction

In attempts to contain pandemics, policy makers trade off public health benefits against eco-

nomic costs. Yet, little is known about how containment policies should be designed or how

they should be organized. Countries have varied widely in their responses to the outbreak of

the novel coronavirus (SARS-CoV-2). Some governments have closed almost their entire

economy for certain periods of time, while many others have chosen selective closures of vary-

ing breadth. In some countries, policies were predominantly decided upon at the regional

level, whereas in others policies were determined at the national level. However, containment

interventions were not necessarily instigated by public authorities. For example, drug gangs in

favelas in Rio de Janeiro imposed the first lockdowns in Brazil. As measures are selectively

reversed and reintroduced, there has been a recent tendency for more and more localized

approaches, often going hand-in-hand with decentralization of decision-making. At the

extreme end, laissez-faire-like approaches (such as the one followed by Sweden) fully decen-

tralize decisions by relying on individual businesses and households to curb the virus’s spread.

The empirical examination of containment policies is challenging for several reasons [1].

Containment measures are typically implemented in response to a rapidly evolving pandemic.

Therefore, there are no clear counterfactuals to these policies—the spread of the virus would

also have changed in the absence of such policies. Containment decisions are also often clus-

tered, making it difficult to isolate the impact of a specific policy. Policies tend to be introduced
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around the time the general public becomes acutely aware of the dangers of a virus, and takes

measures, often self-imposed, to reduce the risk of contracting the virus.

By exploiting within-country variation in exposure to a nationwide containment policy,

this paper examines the health impact of business shutdowns during the 2020 Covid-19 pan-

demic. Italy was the first European country to shut down parts of its economy. Specifically, on

March 11th the Italian Government first shut down sectors comprising 17.6% of the economy

(in terms of employment). On March 25th additional sectors comprising 32.5% of the economy

were closed. Importantly, this “one-size-fits-all” closure policy affected Italian municipalities

differently due to heterogeneity in sectoral exposures. Our empirical strategy is to study differ-

ential changes in mortality patterns across municipalities, allowing to control for confounding

factors taking place in Italy around the time of the policy.

The results suggest that business shutdowns are effective in saving human lives: municipali-

ties with higher exposures to the first shutdown see a decline in mortality rates relative to other

municipalities. Based on our estimates, we undertake a counterfactual analysis that shows

the first shutdown saved about 9,500 Italian lives over 24 days. Estimates of the Value of a Sta-

tistical Life (VSL) years imply a large societal benefit from business closures that exceed nine

billion Euros. Interestingly, we find the second shutdown is not as effective (per unit of

employment closed down) as the first one, supporting the notion that the first shutdown had

already reduced the spread of the virus.

Our analysis also shows that business shutdowns have important mortality spillovers. Man-

dated business closures might affect the spread of the virus outside a municipality because of

commuting (other forms of travel were fairly restricted during our sample period). Consistent

with this hypothesis, we find that shutdown exposure in business centres affects mortality rates

in neighbouring municipalities. The beneficial effect is large, and comparable in size to the

impact of a municipality’s own shutdown exposure. We also find that greater shutdown expo-

sure has a strong effect on parts of the population that is very unlikely to be working, e.g., the

elderly. This points to significant contagion effects that reach beyond the firms undertaking

economic activities. The existence of different forms of spillover suggests a need to coordinate

shutdown decisions at a central level.

Finally, our analysis points at rapidly declining benefits to scale from sectoral shutdowns.

We compare the marginal effectiveness of shutdowns across municipalities that differ with

respect to the proportion of their economy that was affected by the first shutdown. We find the

marginal effectiveness in municipalities with the lowest sector exposure to be about three

times higher than the average marginal effectiveness across all municipalities. Since the mar-

ginal effectiveness also varies across sectors (we find per-unit shutdowns in some sectors to be

more effective than in others), our evidence points broadly in favour of targeted closures of a

select number of sectors, rather than more uniform shutdowns.

In the wake of the Covid-19 crisis, a significant theoretical literature is emerging that exam-

ines optimal policies during a pandemic. This literature emphasizes production externalities as

a rationale for public policies. Production externalities arise when the provision of goods and

services results in the spread of the virus to individuals not directly involved in the business

activities. As firms (and their workers) will not internalize the social cost of contagion, they

will make inefficient containment decisions, providing a need for government-imposed shut-

downs. To the best of our knowledge, our paper is the first to document empirical evidence

consistent with such production externalities. [2] study optimal taxation of business activities

(which can be interpreted as shutdown intensity) in an environment where the severity of the

production externalities varies with the spread of the virus. Our finding—of lower policy effec-

tiveness once the pandemic is more under control—is consistent with the theoretical premises

of their model. [3] show that individuals shifting activities to environments that pose less
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contagion risk mitigate production externalities. Our estimates—which are net of such miti-

gating behaviour—suggest that production externalities remain significant. Calibrating an

SIR-model to the US economy [4], show that the social cost of infections exceeds the private

cost by factor two, which is consistent with our results of large spillovers on individuals that

are unlikely to work. [5] analyse virus contagion across jurisdictions (countries, in their

model) and show that inter-jurisdictional externalities create a need to coordinate contain-

ment policies. Our findings of strong geographical spillovers provide empirical evidence for

the existence of such externalities.

The various government approaches taken in response to pandemics are spurring a rapidly

evolving literature that tries to understand their benefits, as well as their costs. Relative to the

benefits side, several papers have examined the impact on mobility, infections and/or ulti-

mately on mortality. Using predominantly time-series and/or cross-country variation, these

studies have generally concluded that government interventions are effective. See, for example,

[6] for France; [7] for Germany; [8] for China; [9–12] for the US; [13, 14] for a counterfactual

analysis for Sweden; [15, 16] for a cross-country study. For a collection of working papers, see

[17]. Our study, using within-country variation in exposure to national business shutdowns in

Italy, confirms and quantifies the effectiveness of containment measures. In addition, we show

that business shutdowns have first-order spillover effects as well as declining marginal returns.

These results provide valuable information for policymakers in their ongoing challenge of

devising and adapting containment policies.

Materials and methods

Main analysis

On March 11th 2020, the Italian Prime Minister mandated to shut down all food, retail and

personal-services activities. Businesses such as supermarkets, small grocery shops, pharmacies,

and newsstand kiosks were allowed to remain open. The national decree also introduced

restrictions on personal mobility. Two weeks later, on March 25th, the list of sectors included

in the shutdown policy was enlarged.

For reasons of identification, our study primarily focuses on the first policy. We study the

impact of this shutdown on mortality rates using a difference-in-differences (hereafter diff-in-

diff) approach with continuous treatment. Given the lag between a virus infection and a (possi-

ble) subsequent death, the “treatment” date does not coincide with the day the policy was

enacted. It is impossible for the policy to have any effect on mortality from its implementation

date. Estimates in the literature suggest a median of five days between exposure to the virus

and the occurrence of first symptoms [18] and about eight days between first symptoms and

death [19]. Thus, the median time to death across individuals is about 13 days. Due to variation

around this mean, any effective policy will arguably produce its effects two or three days before

this date; we therefore take the “treatment date” to be day 10.

Our empirical model takes the following form:

ym;t ¼ bym;t� 1 þ gd11t þ �ðd11t � Shutdown11mÞþ

þZd25t þ cðd25m � Shutdown25mÞ þ yðd11t � ControlsmÞ þ FEm;tsa;t þ εm;t
ð1Þ

where ym,t is the (Covid-related) mortality rate in municipality m on day t. We include the

lagged value, ym,t−1, as a determinant since epidemiological models (such as the SIR model,

[20, 21]) show that new infections condition highly on the prevalent share of infected people

in the population. We include two dummies, d11t and d25t, to indicate the treatment date

for the first and second shutdown, both taking value of one as of the tenth day after their
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respective announcements. The variables Shutdown11m and Shutdown25m measure the expo-

sure of a municipality to sectors that were incrementally shut down at the first and second

shutdown, respectively. Our variable of interest is the interaction coefficient ϕ, which captures

whether municipalities with a higher shutdown exposure experience lower daily mortality

rates as a consequence of the policy. If the policy shutdown is effective at reducing the spread

of the virus, and thus ultimately reduces mortality, then the prediction is that the coefficient ϕ
will enter with a negative sign. We saturate the model with municipality and day-fixed effects

as well as with proxies for a municipality’s stage in the pandemic (tsa; to be explained below).

Lastly, we include interactions of municipality-level variables with the policy dummy d11t to

control for heterogeneous patterns across municipalities following the policy that are unrelated

to business shutdown exposures (e.g., due to confounding policies).

We next describe the calculation of the variables. We construct measures of shutdown

exposure using granular data on employment and establishments of Italian firms made avail-

able by the Italian Statistical Agency (ISTAT). The dataset provides sectoral data at the munici-

pality-level from the year 2017 [22], including information on the number of employees and

business owners, revenues and number of establishments. We construct a continuous munici-

pality-level shutdown exposure Shutdown11m by dividing the number of employees and busi-

ness owners in sectors shut down on March 11th by the total number of all employees and

business owners in the municipality. Shutdown sectors correspond to the following European

classification of the economic activities (NACE) codes: “451”, “452”, “473”, “474”, “477”, “478”

for the retail industry; “561”, “563” for the food and beverages industry; “96” for the personal-

services industry. We exclude employment in schooling and sports (NACE codes “85” and

“931”) from the denominator, since these sectors were already shut down weeks before. Addi-

tionally, we exclude from the sample the eleven municipalities in northern Italy that were

quarantined as “red zone”, since the shutdown policies we focus on do not apply there. We

construct an equivalent measure of the second shutdown, Shutdown25m, using the employ-

ment ratio of sectors that were incrementally shut down on the 25th.

We next describe our measure of policy effectiveness, which is based on Covid-19 deaths

per 100,000 inhabitants. In early June 2020, ISTAT released death registry data for 7,272 Italian

municipalities (covering more than 93% of the entire population, see [23]). The dataset con-

tains the number of deaths per day, along with the residence location, gender, and age bracket

of the deceased, over the first quarter of 2020. Using mortality rates offers several advantages.

First, alternative measures of Covid-19 related outcomes based on infections or hospital

admissions suffer from biases. For example, a higher Covid-19 test intensity will inevitably

show higher infection rates. In addition, in regions with worse healthcare conditions and low

proximity of hospitals, the usage of hospitals per capita was (mechanically) lower. Many

deceased people who had shown no or mild symptoms (asymptomatics) were simply not

accounted in the official Covid-19 statistics because they were not hospitalized (e.g., due to the

limited capacity of hospitals). Second, the collection process for death registry records mini-

mizes reporting lags and subjectivity in recording information (e.g., residence at time of

death). [24] show there was also significant underreporting of official Covid-19 deaths in Italy.

Third, deaths also capture mortality cases that are indirectly attributable to Covid-19. For

example, evidence suggests that mortality resulting from heart attacks more than tripled dur-

ing the pandemic in Italy [25], likely because of hospital congestion or the unavailability of

ambulances.

A disadvantage of the death registry data, though, is the information missing on the cause

of death. We therefore use a statistical method to infer deaths related to Covid-19, based on

deviations from historical patterns. Specifically, we calculate excess mortality, i.e., attributable

to Covid-19, by deducting from a municipality’s (daily) number of deaths the average number
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of deaths over the previous five years in the same municipality, using an evenly-spaced-around

window of seven days. We scale excess deaths by the population to arrive at the following mea-

sure:

ExcDeathRatem;t ¼
Deathsm;t;2020 � avgDeathsm;7d;2019� 2015

Populationm
� 100; 000 ð2Þ

There is an important source of heterogeneity across municipalities: the virus reached dif-

ferent municipalities at different points in time. Failing to address this heterogeneity is likely

to lead to an inappropriate econometric specification. In particular, a municipality that was hit

early by the virus might likely display lower growth in contagion (as the curve has already lev-

elled off) compared to a region with low virus intensity. Due to the highly non-linear dynamics

of a pandemic, municipality-level fixed effects might not appropriately account for such het-

erogeneity. In our empirical analysis, we therefore account in our empirical analysis for the

“time of arrival” of the virus to compare municipalities that are at the same stage of the pan-

demic. We classify the time of arrival in a municipality based on two criteria: “anomaly” and

“persistence”. The former is measured by the day in which the cumulative excess deaths in a

municipality surpass one standard deviation of its distribution over the first four months of

2020. For the latter criterion we require that the cumulative mortality rate among residents of

a municipality m reaches a threshold of 100 deaths per 100,000 inhabitants at some point dur-

ing the same sample period. We classify the time of arrival of a virus as the day when the first

criterion is met for a municipality that fulfils the second criterion (which is time-invariant).

We have visually inspected our classifications for a number of municipalities, and have found

them to be reasonable. Studying the econometric properties, we find the arrival day of the

virus lies in between the first and second structural break of a municipality’s cumulative mor-

tality rate time series.

Note that according to our definition, some municipalities were not subjected to the virus

during the first four months of 2020 (about 500 municipalities). We exclude these from our

main dataset, but use them later in a placebo test. To limit noise in our measure of Covid-19

deaths per capita, we also require a municipality to have at least 4,500 inhabitants. This leaves

us with 2,145 municipalities, spanning 105 provinces and 20 regions. The sample covers the

period from February 22nd to April 13th.

Table 1 provides the summary statistics of our sample. The mean across time and munici-

palities of the variable ExcDeathRatem,t is about 4. That is, there are on average four Covid-

related deaths a day per 100,000 inhabitants. The average exposure to the first shutdown, Shut-
down11m, is about 17.6%, whereas the average exposure to the second policy, Shutdown25m is

larger (32.4%). There is also sizable cross-sectional variation in the exposure to both policies.

As explained, we will focus mostly on the first shutdown; the impact of the second shutdown

might be partly confounded by the first one and hence offers a less clean setting. The table also

contains information on the breakdown of sectors closed on the March 11th. We can see that

both the food and beverage sector and the retail sector on average are about 7%, whereas the

personal services sector is smaller (less than 3%).

The table also lists several other variables that are used in the analysis. To control for hetero-

geneity in characteristics that affect transmission, virulence, or the ability to comply with

movement restrictions, we collect data on population density (PopDensitym), education (High-
Schoolp), income inequality (IncIneqm), age structure (Elderlyp), and the degree of internal

commuting (IntMobm). The Hospitp variable is the hospital capacity in a province p, measured

as the sum of the number of beds available in hospitals, as a fraction of the total population

(source: Ministry of Health). To study spillovers, we include information on the shutdown
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exposures of the largest business centre of the province where the municipality is located.

Among the province’s larger municipalities (with at least 16,500 inhabitants), we identify the

business centre in three alternative ways: as the municipality with the highest relative share of

closed sectors, RelShutdown11n; the average shutdown exposure of these municipalities under

this method is 23.73%, which is by construction larger than the unconditional mean; next, as

the one with the highest absolute number of employees and business owners in the shut down

sectors, AbsShutdown11n; finally as the one with the largest population, PopShutdown11n.

Next, the variable WinterTouristsp measures tourist intensity in a province. It is calculated as

(foreign) tourists visits during January and February, scaled by population [26]. The top-10

provinces according to our tourist proxy contains skiing provinces (e.g., Trento, Bolzano, Son-

drio) and historical cities (e.g., Florence, Venice, Rome). The WeekArrivalm variable is the

number of weeks that elapsed between the arrival of the virus (calculated as described above)

and the effective date of the first policy (March 21st). We can see that, on average, a municipal-

ity starts experiencing the virus for the first time in early February, about one month before

the effective date of the first policy. Lastly, DaysArrivalm,t measures the time elapsed from the

day on which the pandemic begins in a municipality m. A comprehensive definition of the var-

iables can be found in S1 Table.

Table 1. Summary statistics.

Variable Mean Standard Dev. P5 Median P95 Observat.

ExcDeathRatem,t 3.570 7.429 0 0 17.379 101,794

ΔExcDeathRatem,t,t−1 -.0686 9.156 -15.113 0 14.892 101,794

gExcDeathRatem,t,t−1 1.841 5.431 -0.933 0 14.892 101,794

log(cExcDeathRatem,t + 1) 5.109 0.514 4.292 5.094 5.972 101,794

log(Popm) 9.237 .628 8.467 9.107 10.430 101,794

d11t .507 .499 0 0 1 101,794

d25t .190 .392 0 0 1 101,794

Shutdown11m 17.563 7.080 7.814 16.624 29.690 101,794

Shutdown25m 32.378 14.345 12.894 30.314 59.168 101,794

Food11m 7.174 4.265 2.563 6.141 15.370 101,794

Retail11m 7.490 3.489 2.891 7.058 13.748 101,794

Personal11m 2.898 1.605 1.128 2.659 5.266 101,794

IntMobm 40.621 12.250 24.19 38.52 62.53 101,794

PopDensm 5.845 1.077 4.101 5.804 7.685 101,794

HighSchoolp 56.37 8.22 41.93 56.52 69.66 101,713

IncIneqm 10.942 6.851 4.46 9.31 23.11 101,794

Elderlyp 36.24 4.28 29.6 35.7 43.9 98,738

Hospitalizp 0.183 0.0556 0.104 0.177 0.281 101,794

RelShutdown11n 23.731 5.645 16.538 23.925 32.235 97,958

AbsShutdown11n 17.265 2.824 12.808 17.023 21.549 99,958

PopShutdown11n 17.064 2.803 12.808 16.962 21.533 99,942

WinterTouristsp 5.838 2.708 .273 2.145 22.418 98,477

WeekArrivalm 5.713 2.78 1 6 10 101,689

DaysArrivalm,t 37.465 18.518 8 37 69 101,794

This table shows the mean, standard deviation, the 5th, 50th (median) and 95th percentile, and number of observations for each variable used in the empirical analysis.

Variable definitions are in S1 Table. Source: [23].

https://doi.org/10.1371/journal.pone.0251373.t001
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Results and discussion

We start with a graphical analysis of mortality rates across municipalities over the sample

period. Fig 1 shows excess mortality, comparing municipalities with above and below median

shutdown exposure.

As explained, an important source of heterogeneity in the dynamics among municipalities

is the stage at which they were first affected by the pandemic. To take this into account, for the

construction of the graph in Fig 1 we group municipalities according to the week when the

virus was first recorded according to our methodology. Within each of these cohorts, we calcu-

late the average excess mortality rates for municipalities above and below the median shut-

down exposure, and then average across cohorts. This ensures that the low and high exposure

groups have an equal composition in terms of the stage of the pandemic the municipalities are

in. Note that in our regressions, we also do control for the stage of the pandemic. Because such

effects are likely to be non-linear in measures of the stage of the pandemic, we do this using

granular pandemic stage fixed effects.

There are three takeaways from Fig 1. First, there is no visible difference among the “more

treated” and “less treated” groups before the policy is enacted (solid line) and before the policy

can become effective (dashed line), both in terms of trends but also in terms of their level. This

strengthens the premises of our diff-in-diff analysis. Second, the two groups diverge around

the effective date of the first policy. Third, following this effective date, excess mortality rates

decline more in high exposure municipalities relative to low exposure municipalities.

Table 2 compares both groups more formally during the pre-treatment period. Panel A

investigates the “parallel-trends”assumption, showing that mortality rates in the high and low

exposure group do not statistically differ—both in changes but also in levels—prior to the

effective date. Panel B of Table 2 does, however, show that treament and control groups ex
ante differ in terms of population density, income equality, and internal commuting character-

istics. Differences in these variables might potentially result in different responses to a com-

mon policy, thereby interfering with the diff-in-diff analysis [1]. In our empirical work, we

therefore include interactions terms between the post-treatment dummy d11 and these vari-

ables to control for such effects.

Fig 1. Mortality rates in high and low shutdown exposure municipalities. Average within-group excess mortality

rates over time. Vertical lines identify the first announcement (τ = 0 corresponds to 03/11; the solid line) and treatment

date (τ = 10, corresponding to 03/21; the dashed line). A group excess mortality rate is calculated by averaging excess

mortality rates across municipalities with above the median Shutdown11m (treated, N = 1,076) and those below the

median (control, N = 1,069), conditional on pre-sorting municipalities on the virus arrival week. Blue line:

HighShutdown. Red line: LowShutdown.

https://doi.org/10.1371/journal.pone.0251373.g001
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Table 3 contains the OLS estimates for our main empirical model (Eq (1)). The first column

reports the results including municipality and days-since-arrival fixed effects. The variable of

interest, the interaction term of the treatment dummy and the shutdown variable, obtains a

coefficient of -0.0279, which is significant. This indicates the shutdown was effective, as munic-

ipalities with a higher share of sectors that were shut down saw their mortality rates decline

more relative to other municipalities. The coefficient on the post-treatment time dummy d11t

obtains a positive sign. This is explained by the fact that the policy was initiated in response to

information about a rapidly spreading virus, thus around the time where contagion rates

where peaking. As previously discussed, this points to an endogeneity in adopting national

containment policies, and reinforces the need to use within-country variation for identifica-

tion. The lagged values of excess mortality rates positively predict next day excess mortality

rates, consistent with epidemiological models.

Column (2) also includes the exposure to the second shutdown. The coefficient on the

interaction term for the first shutdown increases in (absolute) size, to -0.0453. The dummy for

the second shutdown obtains a negative and significant value, consistent with the second shut-

down happening at a time of a nationwide decline in mortality rates. The interaction effect

with the second shutdown exposure, Shutdown25m, obtains a negative value of -0.0228, which

is significant. This suggests the second shutdown was also effective in reducing mortality rates.

It is interesting to compare the coefficients for the interaction effects on the first and second

shutdown. The first shutdown obtains a coefficient that is about twice as large as the second

one. This might indicate declining returns to shutting down sectors, which is an issue we will

return to below.

From column (3) onward, we include interactions of the post-treatment dummy d11t and

the variables that showed significant differences between the control and treatment samples in

Table 2. In this way, we control for potentially heterogeneous patterns across municipalities

unrelated to shutdown exposure. Only the interaction with population density shows up as sig-

nificant, indicating that mortality rates increase more rapidly in more densely populated areas

Table 2. Parallel trend analysis and balanced covariates test.

Panel A: Parallel Trend

Mean

Low Shut11m High Shut11m Difference T-test

ExcDeathRatem 3.521 3.499 0.022 0.122

ΔExcDeathRatem -0.373 -0.333 -0.04 -0.267

gExcDeathRatem 1.758 1.683 0.0756 1.095

Panel B: Municipality characteristics

Mean

Low Shut11m High Shut11m Difference T-test

WeekArrivalm 5.464 5.595 -0.131 -1.067

IntMobm 36.345 44.530 -7.985 -15.962���

PopDensm 6.055 5.691 0.364 7.952���

HighSchoolp 56.474 56.219 0.255 0.714

IncIneqm 10.418 11.202 -0.784 -2.712���

Elderlyp 36.314 36.09 0.224 1.203

Comparison of municipalities with high and low exposure to the first shutdown. Municipalities are first assigned into groups (above and below the median) conditional

on their virus arrival week. Values are averaged over the 10-days period surrounding the first policy announcement (03/07 to 03/15). Variable definitions are in S1

Table.

https://doi.org/10.1371/journal.pone.0251373.t002
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after the policy introduction, which we consider intuitive. Notably the coefficient on the inter-

action term of the post-treatment dummy and the first shutdown exposure, d11t × Shut-
down11m, is hardly affected by the inclusion of these controls.

In column (4), we also include day fixed effects and in column (5) we saturate the model

with days-since-virus-arrival times day fixed effects, with the latter controlling for any

(potentially non-linear) dynamics in mortality arising from municipalities being in different

stages of the pandemic. The coefficient on the interaction term of the treatment dummy and

the first shutdown exposure continues to be statistically significant. However, the inclusion

of days-since-virus-arrival times day fixed effects renders the effect of the second shutdown

insignificant.

Our regression results suggest the business shutdowns implemented in Italy reduced mor-

tality arising from Covid-19. The size of the coefficients also suggests the effect is substantial in

economic terms. We can obtain an estimate of the total effect of the first shutdown as follows.

Given an average shutdown exposure across municipalities of 17.6% and a coefficient estimate

of -0.0358 (last column of Table 3), the first shutdown reduced mortality by 15.64 per 100,000

inhabitants over our 24-day sample period. This number is slightly higher than the direct effect

obtained by 17.6 × 0.0358 × 24, due to an indirect effect through the lagged dependent variable.

Table 3. Main analysis.

LHS: DailyDeathRatem,t (1) (2) (3) (4) (5)

d11t × Shutdown11t -0.0279��� -0.0453��� -0.0437��� -0.0474��� -0.0358���

(-2.75) (-4.14) (-4.36) (-4.72) (-4.56)

d11t 1.129� 0.986�� -0.192

(1.93) (2.19) (-0.33)

d25t × Shutdown25m -0.0228��� -0.0231��� -0.0223��� -0.00527

(-3.45) (-3.45) (-3.37) (-1.08)

d25t -0.0924��� -0.0929���

(-3.01) (-3.02)

PopDensm × d11t 0.169�� 0.204��� 0.197���

(2.34) (2.79) (3.15)

IncIneqm × d11t -0.0100 -0.0144 -0.00837

(-1.10) (-1.58) (-1.36)

IntMobm × d11t 0.00643 0.00777 0.00978�

(1.30) (1.55) (1.75)

ym,t−1 0.0754��� 0.0703��� 0.0701��� 0.0659��� 0.0367���

(6.53) (6.42) (6.41) (6.14) (4.07)

Municipality FE ✓ ✓ ✓ ✓ ✓

ArrivalDay FE ✓ ✓ ✓ ✓ x

Time FE x x x ✓ x

ArrDay × Time FE x x x x ✓

Obs. 100,656 100,656 100,656 100,656 100,563

R2 0.213 0.216 0.216 0.220 0.269

Adj. R2 0.195 0.198 0.198 0.202 0.228

This table presents difference-in-differences estimates of municipality-level panel regressions of daily excess mortality rates (left-hand side). The lagged dependent

variable ym,t−1 is included in the model. d11t and d25t are dummy variables that take a respective value of one in the days after the first and second policy becoming

effective. Shutdown11m and Shutdown25m are employment exposures of municipality m to the shutdown policies of March 11th and March 25th, respectively. The

sample consists in ISTAT death registry data over the period 02/22/2020–04/13/2020. t statistics in parentheses. Standard Errors clustered at municipality- and day-level.

�, �� and ��� represent statistical significance at the 10%, 5% and 1% level respectively. Variable definitions are in S1 Table.

https://doi.org/10.1371/journal.pone.0251373.t003
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Given a population in Italy of 60.36 million, this totals to 9, 439 lives saved, with a 95% confi-

dence interval between 5,379 and 13,499 (see Fig 2).

Using estimates for the “Value of Statistical Life”, we can translate this into monetary terms.

A common estimate for the value of one year of life in Europe is €80,000 [27]. Considering 12

years of average remaining life of Covid-19 victims [28], we can calculate the monetary benefit

of the policy to be 9,439 × 80,000 × 12 = €9 billion.

Robustness

Table 4 contains the estimation results from various modifications of our baseline specification

(the last column of Table 3).

Our analysis has shown that high and low exposure municipalities do not display differ-

ences in the outcome variable (both in terms of level and trend) prior to the effective date.

Thus, the standard parallel-trend assumption on which identification in diff-in-diff models

relies is met. However, a potential concern is that municipalities with different shutdown

exposures might also differ among other dimensions, and that this might create heterogeneous

responses to confounding effects around the effective date. To some extent, we alleviate such

concerns by including interaction terms of the post treatment date dummy d11 and important

municipality-level characteristics (in columns 3, 4, and 5 of Table 3). In addition, we perform

an analysis in which we match “treated” (above median exposure) to “control” municipalities

(below median exposure). Using a two-step propensity score-matching algorithm, we first

match on the week of virus arrival and subsequently on the three characteristics that showed

up significantly in Table 2 (population density, income inequality, and mobility). We match

each treated municipality to a control with replacement, and discard treated municipalities for

which no good match is available. This procedure yields in total 873 treated and 444 control

municipalities. As expected, there are no longer significant differences between the treatment

and control sample when we perform the balance variables test of Table 2 on the matched

Fig 2. Economic effect comparison across models. Economic effects across models. For the back-of-the-envelope

calculation, the number of human lives saved (y-axis) is estimated using a 24-days treatment period, the mean

shutdown exposure (see Table 1) and a 60.36 million population (except for “Spillovers”, which is net of the population

in business centres). Segments centered at the top of each bar denote 95 percent confidence intervals of the regression

coefficient of interest (i.e., on d11 × Shutd11) of the respective model specification (x-axis). Models: Baseline;

PropScoreMatch; NoLag; GMM; Spillovers.

https://doi.org/10.1371/journal.pone.0251373.g002
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sample (results available on request). Fig 3 presents the propensity score-matched equivalent

of Fig 1, and show a graph very similar to the one in Fig 1.

The first column of Table 4 shows the baseline results (equivalent to column (5) of Table 3)

for the matched sample. The coefficient of interest is smaller (in absolute terms) but of similar

magnitude as in the baseline model (−0.03 versus −0.0358).

Another concern with our analysis is that our results might be driven by specific municipal-

ities, such as the ones in the epicentre of the outbreak in Lombardy or winter tourism hotspots.

To investigate this, we focus on subsamples from which we exclude municipalities in Lom-

bardy (column (2)) and winter tourist regions (column (3)). Results are similar to our baseline

specification in column (5) of Table 3.

In column (4), we shorten the post-treatment period to April 4th, that is, before the treat-

ment date for the second policy. This avoids any confounding effect stemming from the sec-

ond shutdown. The coefficient of interest remains at a similar level.

We also assess the robustness of our baseline result to a more restrictive classification of the

virus arrival time. In particular, we identify the onset of the pandemic in a municipality m
when the cumulative mortality rate surpasses two (rather than one) standard deviations of its

distribution. Column (5) shows that the coefficients on the interaction terms of both policies

are very similar compared to the baseline estimates. The results are also robust to changing the

“anomaly” threshold to the first decile of each municipality cumulative deaths distribution

(results available upon request).

Our main model specification in Eq (1) includes a lagged dependent variable, which is con-

sistent with the idea that new infections (and resulting new deaths) condition highly on

Table 4. Robustness tests.

PropScore

Matching

Exclude

Lombardy

Exclude

Touristic

Shorter

Window

Arrival

Time

No Lag System

GMM

Placebo

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

d11t × Shutd11m -0.0300��� -0.0242��� -0.320��� -0.0337��� -0.316��� -0.0375��� -0.0410��� -0.0154 -0.00020 -0.00713

(-3.26) (-2.87) (-3.69) (-4.28) (-3.31) (-4.65) (-4.54) (-1.33) (-0.02) (0.49)

d25t × Shutd25m -0.0066 0.0075� -0.00564 -0.00613 -0.0055 -0.0169��� 0.00051 0.0098

(-0.97) (1.72) (-0.98) (-1.15) (-1.09) (-2.88) (0.10) (1.50)

ym,t-1 0.0283��� 0.00225 0.0387��� 0.0225�� 0.0026 0.186��� -0.0378��� 0.364��� 0.0112

(3.24) (0.45) (3.92) (2.09) (0.27) (2.53) (-3.19) (3.97) (0.75)

Interact.

Controls

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Municipality FE ✓ ✓ ✓ ✓ ✓ ✓ x ✓ ✓ ✓

ArrD × Time FE ✓ ✓ ✓ ✓ ✓ ✓ x ✓ ✓ ✓

Observations 61,885 79,281 79,722 85,520 70,608 102,320 100,657 48,957 93,410 7,039

R2 0.188 0.141 0.341 0.300 0.264 0.268 x 0.291 0.278 0.273

Adj. R2 0.184 0.101 0.245 0.213 0.258 0.227 x 0.289 0.236 0.268

The table presents robustness checks of our baseline specification (last column of Table 3). First column reports OLS estimates on a propensity score matched sample.

The second and third column exclude the Lombardy region and winter-touristic areas, respectively. In column (4), the sample period is shortened to end on April 4th

2020. In column (5) the definition of “anomaly” in the virus arrival time definition is set to 2 (instead of 1) standard deviations of cumulative excess mortality rate. In

column (6) the lagged dependent variable is excluded, while column (7) shows the results of the system GMM estimator, collapsing the instruments matrix (lag2–lag4)

and using the two-step technique. Lastly, column (8) shifts the first policy treatment date backwards by ten days, column (9) swaps policy time dummies, and column

(10) considers only municipalities in which the virus never circulated during our sample period. Interactions of d11t with PopDensm, IncIneqm, and IntMobm are

included but suppressed for brevity. t statistics in parentheses. Standard Errors clustered at municipality- and day-level.

�, �� and ��� represent statistical significance at the 10%, 5% and, 1% level, respectively. Variable definitions are in S1 Table.

https://doi.org/10.1371/journal.pone.0251373.t004
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prevailing infections (and hence recent excess mortality). However, the inclusion of a lagged-

dependent variable in OLS regressions creates an econometric problem in small samples, by

causing a downward bias in the estimation of the coefficient on the lagged-dependent variable

[29]. To rule out any issues resulting from such a bias, we first exclude the lagged dependent

variable in column (6). Moreover, in column (7), we estimate a system GMM as in [15], instru-

menting the variables in levels with their first differences. We optimally collapse the number of

instruments and, to correct for the finite sample standard errors, use a two-step procedure

[30]. Both specifications give similar or even stronger results than our baseline specification.

Fig 2 confirms this, showing an average point estimate of lives saved exceeding 12,500 over a

period of 24 days using the system GMM.

Finally, we consider three falsification tests. First, we move the first policy treatment date to

10 days earlier (column (8)), terminating the sample period at March 20th. In column (9) we

cross-interact time dummies and sectoral exposures, that is, we run the regression with d25t ×
Shutd11m and d11t × Shutd25m. Third, we run the regression for the 477 municipalities in

which the virus never circulated at any point during our sample according to our statistical

methodology (column (10)). In all placebo tests, the coefficient on the policy interaction term

shrinks substantially in size and becomes statistically insignificant.

Contagion channels

Table 5 further explores the mechanisms behind our baseline results (column (5) of Table 3).

In column (1) we focus on mortality rates of people older than 65 years, that is, among a

group that is unlikely to work. Thereby, we effectively exclude employees and business own-

ers from the sample. Column (1) shows that the results – although a bit weaker—are very

similar to our baseline specification. We obtain comparable results (unreported) when we

focus on people with an age above 80, in which case direct involvement in business activities

becomes very unlikely. These results point to a contagion externality from business activities

[2], which is an important result from a policy perspective. If people within a firm were

predominantly infected, standard economic theory would suggest less of a need for policy

interventions as any utility loss due to contagion is then more likely to be internalized (in

Fig 3. Mortality rates in high and low shutdown matched municipalities. 2-step propensity score matched (first on

virus arrival week and then on PopDensm, IntMobm and IncIneqm) municipalities’ average within-group excess

mortality rates over time. Vertical lines identify the first announcement (τ = 0 corresponds to 03/11) and treatment

date (τ = 10 to 03/21). A group excess mortality rate is calculated by averaging values across treated municipalities

(above the median Shutdown11m, N = 873) and across control municipalities (those below the median, N = 444). Blue

line: HighShutdown. Red line: LowShutdown.

https://doi.org/10.1371/journal.pone.0251373.g003
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particular, workers might require higher wages to keep working during the pandemic, or

simply stop turning up at work). However, if production also considerably affects mortality

rates outside the firm, decentralized production decisions are likely to be sub-optimal, neces-

sitating policy interventions.

Next, column (2) explores the role of hospital capacity. We would expect policies to be

more effective in reducing mortality rates in areas with congested hospitals (as virus contagion

Table 5. Contagion channels.

Geographic Spillovers Decreasing Sectoral

Elderly Hospital Relative Absolute Residents Effectiveness Decompos.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

d11t × Shutd11m -0.0342��� -0.0826��� -0.0284��� -0.020�� -0.019�� -0.127��� -0.0673���

(-4.52) (-4.43) (-3.47) (-2.46) (-2.33) (-3.84) (-4.93)

d11t × Shutd11m × Hospitp 0.261���

(2.60)

d11t × Shutd11n -0.0276�� -0.109��� -0.122���

(-2.31) (-5.74) (-6.08)

d11t × Shutd112

m 0.0023���

(2.97)

d11t × Shutd11m × Q1m -0.085���

(-4.31)

d11t × Shutd11m × Q2m -0.071���

(-3.34)

d11t × Shutd11m × Q3m -0.007

(-0.41)

d11t × Food11m -0.0049

(-0.46)

d11t × Retail11m -0.0681���

(-3.97)

d11t × Personal11m -0.0682��

(-2.02)

d25t × Shutd25m -0.00495 -0.00534 -0.00397 0.00081 0.00011 -0.00652 -0.0069 -0.0095�� -0.00613

(-0.95) (-1.08) (-0.79) (0.19) (0.04) (-1.31) (-1.41) (-1.99) (-1.24)

ym,t−1 0.0383��� 0.0366��� 0.0366��� 0.0329��� 0.0330��� 0.0355��� 0.367��� 0.0306��� 0.0366���

(4.16) (4.07) (3.91) (3.68) (3.71) (4.06) (4.05) (2.83) (4.06)

Interaction Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Municipality FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ArrDay × Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Obs. 99,466 100,563 96,853 98,729 98,713 100,563 100,563 67,363 100,563

R2 0.267 0.270 0.270 0.272 0.231 0.270 0.269 0.270 0.270

Adj. R2 0.226 0.229 0.229 0.272 0.231 0.229 0.223 0.217 0.229

This table presents results on contagion channels, returns to scale, and other extensions. Hospitp measures the degree of hospitalization per capita in province p. In

columns 3, 4 and 5, Shutd11n are the 1st policy exposures of the largest hit municipality within p in relative, absolute and population terms. Q1 − Q3 are Shutd11m tercile

dummy variables. The sample in column (8) includes the first two terciles of Shutd11m. Food11m, Retail11m and Personal11m are the exposures of m to the food, retail,

and personal services, respectively. Interactions of d11t with PopDensm, IncIneqm, and IntMobm are included throughout but suppressed for brevity; likewise for pairwise

interaction terms in column (2) and (7). t-stats in parentheses. S.E. clustered at municipality- and day-level.

�, �� and ��� are significance at the 10%, 5% and, 1% level. Variable definitions are in S1 Table.

https://doi.org/10.1371/journal.pone.0251373.t005
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is then more likely to be fatal). Consistent with this conjecture, we find the triple interaction

coefficient of hospital capacity, the first policy exposure, and the post-treatment dummy to be

positive and significant.

So far we have examined the impact of the policy exposure on mortality rates in the

municipality itself. However, larger and more developed cities also attract workers from

other municipalities. We might therefore expect business shutdowns in large and/or inter-

connected municipalities to have positive spillovers on other municipalities. To investigate

this hypothesis, we also include in our baseline model an interaction effect of the largest

exposed municipality in a province (column (3)). In line with the idea that cities with a high

sector concentration attract people from neighbouring municipalities, the coefficient on the

interaction between Shutdown11n and the first shutdown date is negative and significant.

Interestingly, it is similar in magnitude as the main within-municipality effect. Similarly, we

find statistically significant negative coefficients under two alternative measures: the munici-

pality with the largest absolute number of employees in the shut down sectors (column 4)

and with the largest number of inhabitants (column 5). All in all, this points to important

spillovers from shutdowns across jurisdictions. [5] show that such cross-jurisdictional spill-

overs make uncoordinated lockdown decisions inefficient, and derive implications for inter-

national cooperation of lockdown policies. Our evidence suggests that coordination among

units or centralization of containment policies might be required to achieve optimal contain-

ment policies. Fig 2 (last bar) shows that, taking (relative) spillovers into account, the eco-

nomic effect increases to over 16,000 lives saved.

We also examine whether policy effectiveness exhibits decreasing or increasing returns to

scale. First, we include an interaction term with squared shutdown exposure (column (6)).

This squared term shows up significantly positive, indicating decreasing returns to scale for

business shutdowns. Second, we sort municipalities within each province into terciles accord-

ing to their exposure to the first policy, and then run a regression interacting our variable of

interest with each Shutdown11m tercile dummy (column (7)). Comparing the coefficients on

the shutdown exposure across the different terciles we see that they are consistently declining

(in absolute terms) as we move from low to high shutdown exposures. Once again, a marginal

unit of shutdown matters less in municipalities with higher shutdown exposure. These results

suggest there are declining returns to shutting down businesses. This evidence is consistent

with the non-linear nature of epidemiological dynamics. In particular, once the virus is suffi-

ciently contained, the marginal benefit of reducing the reproduction rate further declines. An

alternative explanation for the declining coefficients is that a high exposure municipality

might also be the largest exposed municipality of the province, in which case the coefficient

estimate underestimates the total effect due to the spillovers (as shown previously). However,

we still obtain declining coefficients once the largest exposed municipalities are dropped from

the sample (results available upon request). In column (8), we formally check whether the

declining marginal returns result partially explains the low effectiveness of the second shut-

down policy. If shutting down a large part of the economy has already contained the virus,

additional shutdowns (on the same day, or two weeks later) matter less. Noticeably, including

only the first two Shutdown11m terciles in the sample, the d25t × Shutdown25m coefficient

becomes significant (at 95% level). Therefore, the second shutdown is effective in the low first

shutdown exposure sample and hence, our result of a lower effectiveness of the second shut-

down is driven by decreasing returns to scale.

The last column of the table decomposes the first shutdown exposure into different sectors.

We create exposure variables for all three sectors (food, retail, and personal services) following

the same approach as for the total exposure (Shutdown11m) variable. The results show that all

individual exposures obtain a negative coefficient (the coefficient on food is insignificant,
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though). Retail and personal services obtain similar coefficients, which are negative and

strongly significant (both statistically and economically). These results inform policy makers

about the potential benefits of shutting down specific sectors of the economy. In particular, it

points to relatively high benefits of shutting down retail activities. In fact, on top of shutdowns

being fairly effective there, brick-and-mortar retail has a close substitute (online shopping)

and hence, its shutdown might cause a lower loss of consumer welfare.

Conclusion

This paper has examined the impact of national business shutdowns in Italy during the Covid-

19 crisis. Employing a difference-in-differences approach we have found that municipalities

more exposed to shutdowns experience subsequently lower mortality rates. This suggests that

business closures are effective in containing the spread of a virus and, ultimately, save lives.

The effects are economically large and point to significant benefits from business closure

orders during a pandemic. Our analysis suggests rapidly declining (marginal) benefits from

shutdowns and points to business decisions having important (contagion) spillovers, on indi-

viduals outside the business as well as individuals in other localities. Our findings provide valu-

able information to policy-makers involved in navigating the Covid-19 crisis, as well as for

managing future pandemics.

Supporting information

S1 Table. Variable definition. This table shows the definition of each variable used in the

empirical analysis.
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