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Abstract

Closed-form analytical solutions are derived for steady-state ground wa-
ter flow and solute transport phenomena when the ground water density
depends on the solute concentration. The flow and transport under con-
sideration are one dimensional vertical as they occur in a vertical soil
column. The soil column can be inhomogeneous, consisted of two lay-
ers where transport related properties are uniform within each layer, but
there can be jump discontinuities across the layer interface. Transport
mechanisms considered are advection, molecular diffusion, and velocity-
dependent mechanical dispersion. Therefore, all relevant transport mech-
anisms are accounted for. The closed-form solutions derived herein can
be used to assess accuracies of various numerical codes which simulate
density-dependent flow and transport.

1 Introduction

Predicting ground water flow and solute transport phenomena when ground
water density depends on the solute concentration is a challenging prob-
lem. Even a small density difference would cause significant changes in
the flow pattern.

Many numerical codes have been developed to simulate the phenom-
ena. Recent developments include Huyakorn and Taylor[l], Intera[2],
Kipp|[3], Voss and Souza[4], Herbert et al[5], and Oldenburg and Pruess|6].
Since no exact solutions were available, numerical codes were applied to
a few reference problems. These problems include the so-called Henry’s
problem|7], Elder’s experiments[8|, and the HYDROCOIN problems[9].
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The Henry’s problem is by far the most popular problem because an ap-
proximate solution is available. Numerical codes applied to these problems
resulted in solutions differing from other numerical solutions by a varying
degree. However, to date it was not possible to determine which code is
more accurate because exact solutions were unavailable.

Park([10] has developed exact solutions for the flow and transport phe-
nomena. His solutions are quite simple: steady state in the vertical direc-
tion. However, his solutions are general in that all transport mechanisms
such as advection, molecular diffusion and velocity-dependent mechanical
dispersion are accounted for. In this study his solutions are extended to
layered soil columns. For brevity we consider a soil column compossed of
two layers only. Lengths of layers are L] and Lj, respectively. However,
the methodology developed herein can be applied to a soil column of any
number of layers. Each layer is associated with constant flow and trans-
port related parameters, but there may be jump discontinuities across
layer interface.

2 Governing equations

The governing equations for general ground water flow and solute trans-
port are coupled nonlinear partial differential equations. However, for
the case considered herein, steady state in one dimension, the governing
equations reduce to a set of ordinary differential equations.
The conservation equation for the solute can be written as:
dm

o =0 1)

where z* is positive upward. The superscript * indicates that the quantity
is dimensional. Equation (1) states that the solute mass flux must be
constant throughout the column. The solute mass flux is due to advection

and dispersion.
*:0(**_D*fii* @)
m, vie e
where 0 is the effective porosity, v* is the pore water velocity, and c¢* is the
solute concentration expressed as mass of solute per volume of solution.
The dispersion is controlled by the dispersion coefficient, D*, consisted of
molecular diffusion and mechanical dispersion (Bear[11]):

D' =a'|v'| + D, (3)

where o* is the dispersivity and D;, is the molecular diffusion coefficient.
The conservation equation for ground water flow is:

dm, _

e (1)
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where the constant ground water mass flux is
m; = fp"v” (5)

in which p* is the ground water density which depends on the solute con-
centration. The following linear relationship is assumed between the den-
sity and the solute concentration.

p* = p} + &C* (6)

where p} is the density of freshwater and & is the dimensionless constant
of proportionality.
The pore water velocity is related to the pressure via the modified

Darcy’s law:
k* [ dp*
* [ * % 7
v W,(dzﬁﬂg) (7)

where p* is the coefficient of viscosity, k* is the intrinsic permeability, p*
is the ground water pressure, and g¢* is the gravitational acceleration.

Above dimensional equations are nondimensionalized using the follow-
ing set of normalization variables:

zr = L'z

v' = V'

¢ = clc

p= pip (8)
T = pyg’L’p

k= k'k

where L*(= L; + L3) is the total length of the column, V* is the reference
velocity, ¢; is the maximum solute concentration, and k is the reference
intrinsic permeability.

With these normalization variables the nondimensional solute trans-
port equation becomes:

d [v] 1) de

dz[ (Pa+Pm> dz ”J )
where P, = L*/a* and P,, = V*L*/D}, are Peclet numbers which repre-
sent relative magnitudes of mechanical dispersion and molecular diffusion,
respectively, with respect to the advection. The ground water flow equa-

tion becomes:

diz(pav) —o. (10)



@ Transactions on Ecology and the Environment vol 12, © 1996 WIT Press, www.witpress.com, ISSN 1743-3541

294  Hydraulic Engineering Software

The pore water velocity becomes:
1{dp
=—| = 11
o= (2 +) (11)
where the dimensionless density is:

p=1+ac (12)

in which the coefficient is
a = ac;/p;. (13)

Governing and supplementary equations contain various transport re-
lated parameters each of which may be a function of aquifer material.
Therefore, these parameters can be assumed constant within a layer of
uniform soil material. However, across a layer interface there may be
jump discontinuities in these values.

In this study we elect to set up a set of governing equations with con-
stant parameter values for each layer. Then, solutions are derived for each
layer along with boundary conditions specified independently. Clearly,
boundary conditions specified at the layer interface are intermediate and
can not be physical. These intermediate boundary conditions are removed
using compatibility conditions. The last step would combine solutions de-
rived independently into a complete solution for a layered soil column.

The first step is to write the governing equations with constant parame-
ter values for each layer. Parameters that depend on aquifer material are:
the Peclet number P,, the intrinsic permeability k£, and the porosity 6.
These parameters in the new set of governing equations for each layer will
have a subscript representing the layer number.

3 Boundary conditions

Solution procedures used herein requires a complete set of boundary con-
ditions for each layer. First, for the solute equation, concentrations are
specified at one end of a layer. More specifically, ¢ = ¢; at z = z; for the
first layer and ¢ = ¢; at z = 1 for the second layer. Secondly, solute mass
flux conditions are specified for both layers, i.e.,

|v] 1) de
0|+ —) = =m,. 14
[ (Pa+Pm PR (14)
Likewise, pressures are specified at one end of a layer for the flow

equation: p = p; at z = 2; and p = p; at z = 1. The fluid mass flux
conditions are specified for both layers:

plv = my. (15)
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Boundary conditions specified at the layer interface z; are the inter-
mediate conditions which are not known a priori. Therefore, ¢; and p;
must be determined from compatibility conditions of concentration and
pressure profiles. Furthermore, boundary conditions to be specified in ac-
tual problems at z = 1 may not be first types. If this is the case, ¢; and
p1 become additional intermediate boundary conditions that need to be
determined.

4 Closed-form solutions

The governing ordinary differential equations are coupled through the den-
sity and the velocity. The integration of the equations would be easier
when equations are decoupled. Decoupling is possible when unknown pa-
rameters can be expressed either with the spatial coordinate z or with the
primary unknown of the equation. More specifically, if the density can
be expressed with the primary unknown of the flow equation, namely the
pressure, the flow equation is decoupled from the solute equation. Like-
wise, if the velocity can be written in terms of the concentration only, the
solute equation can be separated from the flow equation.

Neither is possible for general multidimensional or unsteady state prob-
lems. However, for the case considered herein, the later is possible. The
ground water velocity can be written in terms of the concentration only

because
my

=0
where m; is a constant and p is a simple function of concentration as it is
given in (12).

v (16)

Once the dependency upon the flow equation is removed, the solute
equation can be integrated easily. For the layer 1,i.e.,0 < z < z(=Lj/L%)
the solute concentration profile becomes:

0, llnl—i—ﬂsc ( ) 1 ln1+ﬂsc
Z—zmo————— | —In——— —aqafc—¢) | -
Pm(ams kmf) ﬂf 1 +ﬂsci Palﬁ} 1 +ﬂsci

(17)
where 8, = (am, — my)/m,, B; = (am, — my)/m;, and By = (am, —
my)/|my|. Above equation displays clear dependence of the concentration
distribution on the molecular diffusion and the mechanical dispersion.

Having obtained the concentration distribution, the density, which cou-
ples the flow equation with the solute equation, can be written in terms of
the spatial coordinate, leaving the pressure the only unknown in the flow
equation. But, writing the concentration as an explicit function of the
spatial coordinate is possible only for special cases. For example, when
molecular diffusion is neglected, writing ¢ = ¢(z) is possible. However,
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it may not even be desired. The integration of the pressure equation be-
comes simpler when the independent variable is switched from 2 to ¢ via
the chain rule of differentiation dp/dz = (dp/dc)(dc/dz). The concentra-
tion gradient can be obtained directly from the solute transport equation
(9). Then the pressure profile, in terms of the concentration, is for the
first layer:

P =D
1 ams; — my 1 1+ B¢ ams—my 14 ac
—¢)—| ————+ — |1 1
* P, B} [a(c ) ( ki ﬁf) n1+ﬂ36i " ki ! 1+GC:]
0, [a(c - ) ( 1 afc+ c,-)) ( 1 1 ) 1+ ﬂsc]

+ - — )+ In . (18
FP,Bs| my By 2 ky  msB; 1+ B, (18)
For the second layer, i.e., z; < z < 1 the concentration profile becomes:

1 02 1 | 1+ ﬂsc (c ) 1 In 1+ ,BSC
z—-1=——————— | —In————afc—c —
Ppnlam, —myg) \ By 1+ Bsc1 ! Pa,B% 1+ B
(19)

and the pressure profile in terms of the concentration becomes

P =N
1 am, — my 1 1+ B.c am, — my 1+ ac
S lale —e) - | L+ — |1 1
i Fa.B% [a(c ) ( ks ,Bf) "1 + B.c1 ko " + acy
0, [a(c—cy) ( 1 ale+ cl)) ( 1 1 ) 1+ Bic]
sl (1l-—+—— )+ + In . (20
Pmﬁf[ my Bs 2 kr ' mgBE) 1+ Baey (20)

Equations (17) through (20) contain six parameters: ¢y, py, ¢;, p;, m,,
and my. Four of these can be determined from four boundary conditions
specified. Therefore, for closure we need two more conditions. The remain-
ing two parameters are determined from the compatibility conditions for
the pressure and concentration values at the layer interface. They can be
stated as follows:

li}gc(z +€) = lif’%c(z —€) (21)

and
lin&p(z +€) = lir%p(z —€). (22)

When actual boundary conditions specified for a particular problem differ
from the boundary conditions used in deriving the solution, some of c,, p;,
m,, and m; may become additional parameters to be determined. Since
equations are nonlinear, iterative methods are required to compute these
parameters.
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5 Hydrostatic pressure distribution

A hydrostatic pressure distribution is obtained when the ground water
flux in the vertical direction becomes zero. For this case the concentration
profile becomes for a uniform soil column:

_ P,m,
0

which depends only on the molecular diffusion. Note that the mechanical
dispersion is absent since the ground water velocity is zero.

c (1—2)+c; (23)

The corresponding hydrostatic pressure distribution becomes:

p=p+a(l—2)+ Z(coz;cl)z(l - 2) (24)
where ¢, is the concentration at z = 0 and g = 1 + ac is the average
ground water density in which ¢ = (co + ¢1)/2 is the average concentration
in the column. The first two terms in the right hand side of (24) represent
hydrostatic pressure distribution when the ground water density is uniform
at p. The last term is the parabolic correction term for nonuniform density
distributions.

6 Concluding remarks

Closed-form analytical solutions are derived for steady-state ground water
flow and solute transport phenomena in a layered soil column when the
ground water density depends on the solute concentration. For brevity
of presentation, only two layer systems was used. However, the method-
ology developed herein can be extended easily to a column of more than
three layers. Solutions derived herein can be used to assess accuracies of
numerical codes which simulate density-dependent ground water flow and
solute transport. Comparisons made with various numerical models will
be presented at the conference.
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