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Abstract: 
A critical need in the evaluation of an UWB radio system is the calculation of the energy link 
loss between the source at the transmit antenna and the receiver load. While the rigorous 
calculation of link loss in a wideband pulsed system requires a full transient electromagnetic 
solution for the transmit and receive antennas, we show in this paper that accurate 
approximations for link loss can be obtained for the special cases of electrically small dipole or 
loop antennas, with gaussian or gaussian doublet (monocycle) generator waveforms. We also 
consider the error involved with applying the much simpler narrowband Friis transmission 
formula. It is found that the use of the basic Friis formula can result in link loss errors of more 
than 60 dB for an UWB system having severely (impedance) mismatched antennas, but may give 
results correct to within a few dB for well-matched narrowband antennas, or if the formula is 
augmented with an impedance mismatch correction factor. It appears that the dominant 
limitation of the Friis formula, when applied to UWB systems, is the broadband effect of 
mismatch between the transmit/receive antennas and their source or load impedances. Numerical 
examples are presented for electrically short dipoles, resonant dipoles, and broadband lossy 
dipoles, for both gaussian and monocycle input pulse waveforms. 
 
This work was supported by a MURI Project under Contract DAAD19-01-1-0477 from the US 
Army Research Laboratory. 
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Introduction: 
 
Ultra wideband (UWB) radio systems rely upon the radiation and propagation of baseband 
transient pulses. As described in [1]-[2], there are many features of UWB radio (e.g., the 
utilization of under-used spectrum segments, mitigation of indoor fading and multipath effects, 
low power densities, and high levels of multi-user scaling) that have led to intense interest in this 
new technology. A critical need in the design and evaluation of an UWB radio is the calculation 
of the energy link loss between the transmitting source and the receiver – a task made difficult by 
the fact that the absence of a sinusoidal carrier precludes the use of the Friis formula. The 
rigorous calculation of UWB link loss requires a complete transient electromagnetic solution 
(using numerical finite difference or integral equation techniques) for the transmit and receive 
antennas to account for the effects of impedance mismatch over a wide bandwidth, pulse 
distortion effects, and the effects of frequency dependent antenna gains and spreading factors. In 
this paper, however, we show that accurate approximations for link loss can be made for the 
special cases of electrically small dipole or loop antennas, with gaussian or gaussian doublet 
(monocycle) generator waveforms. We also find that the Friis formula may give reasonably good 
results when the antennas are relatively narrowband. 
 
We first summarize the calculation of UWB energy transmission based on the rigorous 
electromagnetic analysis of transient radiation and reception, including the effects of generator 
and receiver impedances, for an arbitrary input waveform. Next we derive closed-form 
approximations for the link loss in a UWB radio system using electrically small dipole or loop 
antennas, for either gaussian or monocycle input waveforms (the two UWB radio excitations 
most commonly used in practice). Numerical examples are presented for three types of antennas 
(an electrically short dipole, a resonant dipole, and a broadband lossy dipole), for both gaussian 
and monocycle input pulse waveforms.  
 
We also consider the much simpler technique of applying the narrowband Friis transmission 
formula, and compare with rigorous calculations and approximate closed-form results. It is found 
that the use of the basic Friis formula can result in link loss errors of more than 60 dB for an 
UWB system having severely (impedance) mismatched antennas, but may give results correct to 
within a few dB for well-matched narrowband antennas, or by augmenting the formula with an 
impedance mismatch correction factor. We conclude that the dominant limitation of the Friis 
formula when applied to UWB systems is not the frequency dependence of the spreading factor 
or antenna gain terms, but the broadband effect of mismatch between the transmit/receive 
antennas and their source or load impedance. Pulse distortion effects also limit the accuracy of 
the Friis approximation, but to a much lesser degree. 
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Link Loss Based on Rigorous Electromagnetic Analysis: 
 
We assume a canonical UWB radio configuration like that shown in Figure 1, where the transmit 
antenna is driven with a voltage source ( )GV ω  having an internal impedance ( )GZ ω , and the 

receive antenna is terminated with load impedance ( )LZ ω , and has a terminal voltage ( )LV ω . 

The input impedance of the transmit and receive antennas are ( )TZ ω and ( )RZ ω , respectively. 
The antennas are separated by a distance r, assumed to be large enough so that each antenna is in 
the far field region of the other over the operating bandwidth. 
 
Let ( )LGH ω  be the voltage transfer function that relates the receive antenna load voltage to the 
generator voltage at the transmit antenna [3]-[5]: 
 

( ) ( ) ( ) /j r c
L LG GV H V e ωω ω ω −= ,    (1) 

 
where c  is the speed of light. Note that the exponential factor representing the time delay 
between the transmit and receive antenna has been separated from the transfer function. 
Although not explicitly shown, it should be understood that this transfer function is dependent on 
range as well as the elevation and azimuth angles at each antenna. 
 
The time domain voltage waveform at the receive antenna is then found as, 
 

( ) ( ) ( )1
2

j t
L LG G

BW

v t H V e dωω ω ω
π

′′ = ∫ ,   (2) 

 
where /t t r c′ = −  is the retarded time variable. 
 
The following energy quantities can also be defined. The energy delivered to the transmit 
antenna is given by, 

( ) ( )
( ) ( )

2

2
1

2
G T

in

T GBW

V R
W d

Z Z

ω ω
ω

π ω ω
=

+∫ ,    (3) 

 
where ( )TR ω  is the real part of ( )TZ ω . The energy received by the load at the receive antenna 
is given by, 
 

( )
( )

2

*

1
2

L
rec

L
BW

V
W d

Z
ω

ω
π ω

= ∫ .     (4) 

 
The integrations in (2)-(4) are over the bandwidth of –B to B Hertz, where B is the effective 
bandwidth of the generator waveform. 
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To calculate link loss for a specific set of antennas and a given generator waveform, the transfer 
function of (1) is first computed over a range of frequencies that cover the system bandwidth (as 
determined by the spectrum of the generator waveform). This can be done using a numerical 
electromagnetic analysis (e.g., moment method or finite difference technique), as described in 
[3]-[5]. Next, the input energy is computed using (3), then the received energy using (4). The 
link loss is defined as the ratio of these two quantities. Note that this calculation includes 
polarization mismatch, propagation losses, antenna efficiency, impedance mismatches, and 
waveform distortion effects. 
 
For the results that follow, we define a gaussian generator waveform as, 
 

  ( ) 2 2/ 2
0

t T
Gv t V e−= ,     (5a) 

 
and a monocycle (gaussian doublet) generator waveform as, 
 

   ( ) 2 2/ 2
0

t T
G

tv t V e
T

−= .     (5b) 

 
Note that the gaussian pulse has non-zero DC content, although this does not contribute to either 
the input energy or receive energy. 
 
 
Closed-Form Approximations for UWB Link Loss for Short Dipoles: 
 
Using reasonable approximations it is possible to derive closed-form expressions for the link loss 
of a UWB radio system using electrically small dipoles or loops, and either a gaussian pulse or a 
monocycle generator waveform. These results appear to be the only special cases that can be 
expressed in closed form, and are therefore useful for showing the dependence of waveform 
shape, receiver impedance, and gain factors in more general situations. In the results to follow, 
we assume that both transmit and receive antennas are identical, are polarization matched, and 
are oriented so that each is in the main beam of the other. 
 
The input impedance of an electrically short lossless dipole of half-length / 2h L=  and radius a 
can be approximated as [3], [6]: 
 

 ( ) ( ) ( ) 2
0/in in inZ R jX j Cω ω ω αω ω= + − ,    (6) 

 

where 2 2
0 / 6h cα η π=  , 0

120 1 ln

hC
ac
h

−
=

 +  

, c is the speed of light, and 0 377η = Ω  is the 

impedance of free space. This approximation is accurate for frequencies up to where the dipole 
length is less than λ/20. Over this range the input resistance is less than 0.5 Ω, while the input 
reactance is at least several thousand ohms. 
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The input energy of (3), for the gaussian generator voltage of (5a), can be evaluated as, 
 

2 2
2 2 2 2 2

2 2 2 4 0 0 0 0 0
0 0 3 2 3

3 3
4 24

T
in

V C V h CW V T C e d
T c T

ω π α π ηα ω ω
π

∞
−

−∞

= = =∫ ,  (7a) 

 
while for the monocycle generator voltage of (5b), the input energy is, 
 

 
2 2

2 2 2 2 2
2 4 2 6 0 0 0 0 0

0 0 3 2 3

15 5
8 16

T
in

V C V h CW V T C e d
T c T

ω π α π ηα ω ω
π

∞
−

−∞

= = =∫ .  (7b) 

 
Observe that these input energies do not depend on the source resistance, GR . From [3], the 
transfer function defined in (1) for a UWB radio using short dipole antennas can be written as, 
 

  ( ) ( )
( ) ( ) ( ) ( )

2
0

4
L

LG
G in L in

j h Z
H

r Z Z Z Z
ωµ ω

ω
π ω ω ω ω

−
=

+ +      
,   (8) 

 
where ( ) ( ) ( )in T RZ Z Zω ω ω= =  is the input impedance of the transmit and receive dipoles 
(assumed to be identical). Thus, in (8) we can ignore inR  and GZ  in the denominator (it is 
generally desired to use relatively small values of GR  to maximize power transfer, while GX  
should be small to minimize resonance effects). There are then two cases of practical interest for 
the load resistance, depending on whether 01/LR Cω<< , or 01/LR Cω>> . For the first case, RL 
can be ignored in the denominator of (8), and the transfer function can be approximated as, 
 

( )
3 2 2

0 0

4
L

LG
j C h RH

r
ω µω

π
. (small LR )    (9) 

 
Then the receive energy of (4) can be evaluated as 
 

 
2 2

2 2 4 2 4 2 4 2 4
60 0 0 0 0 0

2 2 2 5 2

15
16 128

TL L
rec

V T C h R V C h RW e d
r T r

ωµ π µω ω
π π

∞
−

−∞

= =∫ ,   (10) 

 
and the resulting energy link loss is, 
 

 
2

0 015
16

rec L
link

in

W R C hL
W Tr

η
π

 = =  
 

.  (gaussian, small LR )  (11) 

 
When 01/LR Cω>> , inX can be ignored in the denominator of (8), and the transfer function can 
be approximated as, 
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   ( )
2 2

0 0

4LG
C hH

r
ω µω

π
.  (large LR )    (12) 

 
The receive energy of (4) can then be evaluated as, 
 

2 2
2 2 2 2 4 2 2 2 4

40 0 0 0 0 0
2 2 2 3 2

3
16 64

T
rec

L L

V T C h V C hW e d
r R T r R

ωµ π µω ω
π π

∞
−

−∞

= =∫ ,   (13) 

 
and the energy link loss is, 
 

2
0
2

3
8

rec
link

in L

W hL
W r R

η
π

= = . (gaussian, large LR )   (14) 

 
Figure 2 shows a comparison of the closed-form results of equations (11) and (14) with rigorous 
data from a moment method solution [7] for the short dipole example used above. For these 
parameters, it is seen that the “small RL” result of (11) works well for RL up to about 1000 Ω, 
while the “large RL” form works well down to about 20,000 Ω. In between there is a transition 
region where a closed-form result is not feasible. Interestingly, it appears that minimum link loss 
occurs in this region. 
 
Results for the monocycle waveform of (5b) can be similarly derived. For small LR , the receive 
energy of (4) is evaluated with the transfer function of (9) to give, 
 

2 2
2 4 4 2 4 2 4 2 4

80 0 0 0 0 0
2 2 2 5 2

105
16 256

TL L
rec

V T C h R V C h RW e d
r T r

ωµ π µω ω
π π

∞
−

−∞

= =∫ ,   (15) 

 
and the resulting energy link loss is, 
 

2
0 021

16
rec L

link
in

W R C hL
W Tr

η
π

 = =  
 

.  (monocycle, small LR ) (16) 

 
For large LR , the receive energy of (4) is evaluated with the transfer function of (12) to give, 
 

   
2 2

2 4 2 2 4 2 2 2 4
60 0 0 0 0 0

2 2 2 3 2

15
16 128

T
rec

L L

V T C h V C hW e d
r R T r R

ωµ π µω ω
π π

∞
−

−∞

= =∫ .  (17) 

 
Then the energy link loss is, 
 

   
2

0
2

3
8

rec
link

in L

W hL
W r R

η
π

= = . (monocycle, large LR )   (18) 
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Figure 3 shows a comparison of the closed-form results of equations (16) and (18) with rigorous 
data from a moment method solution [7] for the short dipole example used above. For these 
parameters, it is seen that the “small RL” result of (16) works well for LR up to about 1000 Ω, 
while the “large RL” form works well down to about 20,000 Ω. Again, the optimum link loss 
occurs between these values. 
 
 
Link Loss Using the Narrowband Friis Transmission Formula: 
 
The Friis link equation that applies to CW radio systems is given by [6], 
 

( ) ( ) ( ) ( )
( )

2

24
t r

r t

G G
P P

r
ω ω λ

ω ω
π

= ,    (19) 

 
where rP and tP  are the received and transmitted powers, tG  and rG  are the transmit and receive 
antenna gains, and λ is the wavelength at the operating frequency. Note that this result does not 
include propagation losses, polarization mismatch, or impedance mismatch at either the transmit 
or receive antenna. Also note that the Friis formula, since it applies only to CW (sinusoidal) 
signals, does not account for pulse distortion effects at either antenna, or even the type of 
waveform used at the generator. 
 
If the transmitted signal consists of digital data at a bit rate bR  bits/s, then the energy per bit on 
transmit and receive is /bt t bE P R=  and /br r bE P R= . Then (19) can be written in terms of the 
transmit and receive bit energies as 
 

( ) ( ) ( ) ( )
( )

2

24
t r

br bt

G G
E E

r
ω ω λ

ω ω
π

= .    (20) 

 
The frequency dependence of each term is explicitly shown in (19)-(20). Note that the factor 
( )2/r λ  has a frequency dependence of 6 db per octave, but this is reduced to a maximum error 
of 3 dB at either end of the octave for a single frequency chosen at midband. Similarly, the 
frequency variation of the antenna gains is typically small over a wide frequency range for many 
practical antenna elements. An electrically short dipole antenna, for example, has a gain of about 
1.8 dB for all frequencies below resonance. The effect of impedance mismatch can be included 

(at a particular frequency, ω) by multiplying (20) by the factor ( )( )2
1 ω− Γ , where ( )ωΓ  is the 

reflection coefficient at the receive antenna given by 
 

   ( ) R L

R L

Z Z
Z Z

ω −
Γ =

+
.     (21) 
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Note that the effect of mismatch at the generator is not included – this is because we have chosen 
to use inW , the energy delivered to the transmit antenna, as opposed to the energy available from 
the generator. 
 
 
Examples and Discussion: 
 
To compare specific numerical results, we consider the link loss for three different 
transmit/receive antenna pairs. We choose T = 4.42×10-10 s for both the gaussian pulse and the 
monocycle waveforms of (5), resulting in a 10 dB bandwidth of 550 MHz for the gaussian pulse, 
and a 10 dB bandwidth of 70 MHz to 790 MHz for the monocycle pulse. The gaussian waveform 
contains power at very low frequencies (and DC), which is not radiated by any of the antennas 
considered here. The parameters for each of the three antennas are given below: 
 
An electrically short dipole: Dipole length = 1.0 cm, dipole radius = 0.02 cm, 50L GZ Z= = Ω . 
The 10 dB bandwidth for the magnitude of the resulting transfer function is 10.2 GHz to 18.9 
GHz. This element is severely mismatched over the bandwidth of either input signal. 
 
A resonant dipole:  Dipole length = 30.0 cm, dipole radius = 0.02 cm, 72L GZ Z= = Ω . The 10 
dB bandwidth for the magnitude of the resulting transfer function is 410 MHz to 580 MHz. This 
is a relatively narrowband element, but is well-matched to the source and load impedances at its 
resonant frequency of 500 MHz. 
 
A lossy resonant dipole: Dipole length = 30.0 cm, dipole radius = 0.02 cm, dipole conductivity = 
100 S/m, 800L GZ Z= = Ω . The 10 dB bandwidth for the magnitude of the resulting transfer 
function is 190 MHz to 990 MHz. This is a broadband element, and is reasonably well-matched 
to the source and load impedances over the bandwidth of the input signals. Due to the lossy 
loading, the efficiency of this element is about 10%. 
 
A plot of the transfer function magnitude (as defined in (1)) versus frequency for 
transmit/receive pairs of these antennas is shown in Figure 4. The resulting energy link losses are 
shown in Table 1. 
 
 

Table 1. Normalized (r = 1) Energy Link Loss for Various Antennas and Excitations 
 
 

Antennas 

Gaussian 
Rigorous 

(Eqs 1-4, 5a) 

Monocycle 
Rigorous 

(Eqs 1-4, 5b) 

Midband 
Frequency 

Midband 
Friis (Eq 20) 

Midband Friis 
and 

Z-Mismatch 
Short Dipoles -85.5 -84.0 dB 430 MHz -20.8 dB -87.0 dB 

Resonant Dipoles -23.9 -23.9 dB 500 MHz -22.1 dB -22.4 dB 
Lossy Dipoles -43.1 -41.8 dB 500 MHz -22.1 dB -22.3 dB 

 
 
The first two columns of data refer to the rigorous calculation of link loss using the full 
electromagnetic solution summarized by equations (1)-(4), for the gaussian and monocycle input 
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pulses. These solutions include essentially all relevant effects, including impedance mismatch, 
pulse distortion, and frequency variation of gain and propagation factors. Observe that the link 
loss differs by a few dB for the two different input pulses when broadband elements are used 
(short dipoles or lossy dipoles). In contrast, waveform shape has little effect on link loss when 
the antennas are relatively narrowband (resonant dipoles), since the relatively narrow portion of 
the input spectrum that is passed by the antennas results in an essentially sinusoidal waveform. 
 
The remaining three columns present data associated with the Friis formula of (20). The midband 
frequency is the frequency at which the calculation is performed, and has been selected to be at 
the maximum response of the associated transfer function (for the resonant and lossy dipoles), or 
near the midband of the input waveform bandwidth (for the short dipoles). The gain for each 
antenna was assumed constant at 1.8 dB. Note that using the basic Friis formula of (20), without 
impedance mismatch correction, gives an error of more than 60 dB when the antennas are 
severely mismatch (short dipoles), but gives results within a few dB of the correct result for 
narrow band matched antennas (the resonant dipoles). If the efficiency of the lossy dipoles is 
included in the Friis calculation (10% efficiency, or 20 dB loss for combined transmit and 
receive antennas), reasonable results (-42.3 dB) are also obtained for this case. 
 
We conclude that for narrowband antennas, the Friis formula can give results within about 1 dB 
for UWB systems (of course, it is generally undesirable to use such narrowband antennas for a 
wideband system). For broadband elements, application of the Friis formula with the impedance 
mismatch factor can produce results that are accurate to about 3 dB. More complicated elements, 
such as arrays or traveling wave antennas, will likely lead to different conclusions. 
 
 
Closed-Form Approximations for UWB Link Loss for Small Loops: 
 
Closed-form approximations can also be derived for electrically small loops with gaussian or 
monocycle excitations. Since the procedure is the same as used above for electrically short 
dipoles, only the key results are presented here. 
 
Consider two circular wire loop transmit and receive antennas having loop radius a, and wire 
radius b. For frequencies where a < 0.03λ the input impedance of the loop can be approximated 
as [6], 
 

( ) ( ) ( ) 4
0in in inZ R jX j Lω ω ω βω ω= + = + ,    (22) 

 

where 4 4
0 / 6a cβ πη= , and 0 0

8ln 2aL a
b

µ  = −  
 is the loops self-inductance (the wire self-

inductance can also be included, if desired. 
 
Then the input energy for the gaussian generator voltage of (5a) can be evaluated as, 
 

2 2
2 4 2

20 0
2 2
0 04

T
in

V T VW e d
L TL

ωβ π βω ω
∞

−

−∞

= =∫ ,    (23a) 
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while for the monocycle generator voltage of (5b), the input energy is, 
 

 
2 2

2 4 2
40 0

2 2
0 0

3
4

T
in

V T VW e d
L TL

ωβ π βω ω
∞

−

−∞

= =∫ .    (23b) 

 
We assume that 0 GL Rω >> , and consider two cases of receiver load resistance. For 0LR Lω<< , 
the transfer function of (8) can be approximated as, 
 

( )
4

0
3 2

04
L

LG
j a RH

c L r
πωηω − , (small LR )   (24) 

 
while for 0LR Lω>>  the transfer function reduces to, 
 

( )
2 4

0
3

04LG
aH

c L r
πω ηω .  (large LR )   (25) 

 
Using these results in (4) gives the link loss for gaussian pulses as, 
 

 
4

0
2 2 2

0

3
8

rec L
link

in

W a RL
W c L r

πη
= = , (gaussian, small LR )  (26) 

 
and, 

4
0

2 2 2

9
8

rec
link

in L

W aL
W c T r R

πη
= = . (gaussian, large LR )  (27) 

 
The resulting link loss for the monocycle waveform is, 
 

4
0

2 2 2
0

3
8

rec L
link

in

W a RL
W c L r

πη
= = , (monocycle, small LR ) (28) 

 
and, 

   
4

0
2 2 2

15
16

rec
link

in L

W aL
W c T r R

πη
= = . (monocycle, large LR )  (29) 
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Conclusion: 
Closed-form approximations for the energy link loss in a UWB radio system using electrically 
small dipole or loop antennas have been presented for gaussian and gaussian monocycle 
excitations. The utility and limitations of the Friis formula has also been discussed, and examples 
presented for various types of antennas. The accessibility of these results should be useful for 
systems engineers working with UWB radio technology. 
 
In a general sense, the essential problem with short pulse radio transmission that differentiates it 
from a CW (or narrowband) system is the distortion introduced by practical transmit and receive 
antennas. These antennas, which form the interface between plane waves and circuitry at both 
the transmitter and receiver, are a direct cause of pulse distortion in a UWB radio system. 
Fundamentally, this is due to non-TEM (reactive) fields in the near zone of each antenna, which 
lead to the impedance mismatch terms noted above, as well as the radiation mechanism itself. In 
principle, it is possible to use pure TEM mode antennas (infinite biconical and TEM horns, for 
example) to achieve distortionless pulse transmission and reception, but this is of limited 
practicality because of the large sizes required for such antennas to avoid end reflections. 
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Figure Captions: 
 
Figure 1. Frequency domain model of transmit and receive antennas for a UWB radio system. 
 
Figure 2. Comparison of closed-form versus exact link loss (multiplied by 2r ) for an UWB 
system using two electrically short dipoles with a gaussian generator waveform, versus receive 
load resistance. Dipole length = 1.0 cm, dipole radius = 0.02 cm, 50GZ = Ω , T = 4.42×10-10 s. 
 
Figure 3. Comparison of closed-form versus exact link loss (multiplied by 2r ) for an UWB 
system using two electrically short dipoles with a monocycle generator waveform, versus receive 
load resistance. Dipole length = 1.0 cm, dipole radius = 0.02 cm, 50GZ = Ω , T = 4.42×10-10 s. 
 
Figure 4. Transfer function magnitudes versus frequency for an UWB radio system using three 
different transmit/receive antennas. (normalized by r) 
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