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Abstract—In this paper, we design a decentralized control
protocol for the collision avoidance of a multi-agent system,
which is comprised of 3D ellipsoidal agents that obey 2nd-order
uncertain Lagrangian dynamics. More specifically, we derive
a novel closed-form smooth barrier function that resembles
a distance metric between 3D ellipsoids and can be used by
feedback-based control laws to guarantee inter-agent collision
avoidance. Discontinuities and adaptation laws are incorporated
in the control protocol to deal with the uncertainties of the
dynamic model. The control laws are decentralized, in the sense
that each agent uses only local sensing information. Simulation
results verify the theoretical findings.

Index Terms—Cooperative control, Decentralized control,
Agents-based systems, Robust adaptive control

I. INTRODUCTION

C
OLLISION avoidance in systems comprised of multiple

robotic agents is a crucial safety property that needs

to be always achieved. Except for the single-agent case [1],

[2], multi-agent collision avoidance is tackled in a variety of

works (e.g., [3]–[8]), where the multi-agent system aims for

a primary objective (navigation, formation). The majority of

the related works considers spherical agents, which provide

a straightforward metric for the inter-agent or the agent-to-

obstacle distances. However, since the shapes of real robotic

vehicles can be far from spherical (e.g., robotic manipulators),

that approach can be too conservative and may prevent the

agents from fulfilling their primary objectives. Ellipsoids, on

the other hand, can approximate more accurately the volume

of autonomous agents (see Fig. 1).

The authors in [1], [9], [10] employ diffeomorphisms to

transform arbitrarily-shaped obstacles, including ellipsoids, to

points. This methodology, however, is not straightforwardly

extendable to the case of moving obstacles (i.e., multiple

autonomous agents). A point-world transformation of multi-

agent systems was taken into account in [11], [12]. As

described in [11] though, each agent’s transformation deforms

the other agents into shapes whose implicit closed-form equa-

tion (and hence a suitable distance metric) is not trivial to

obtain. The methodology of [9] provides useful insight, where
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the volume of each agent is “absorbed” to the other agents via

Minkowski sums. The closed-form implicit equation of the

resulting shapes, however, although possible to obtain [13],

cannot be used to derive an appropriate distance metric in a

straightforward way; [14] derives a conservative inter-ellipsoid

distance by employing ellipsoid-to-sphere transformations and

eigenvalue computations. An arithmetic algorithm that pro-

duces velocities for inter-agent elliptical agents is derived in

[15], without, however, theoretical guarantees. Optimization-

based techniques (e.g., Model Predictive Control), which can

be employed for collision avoidance of convex-shaped agents

[16], can be too complex to solve, especially in cases where

the control must be decentralized and/or complex dynamics are

considered. The latter property constitutes another important

issue regarding the related literature. In particular, most related

works consider simplified single- or double-integrator models,

which deviate from the actual dynamics and can lead to

performance decline and safety jeopardy.

Barrier functions constitute a suitable tool for expressing

objectives like collision avoidance. Originated in optimiza-

tion, they are continuous functions that diverge to infinity as

their argument approaches the boundary of a desired/feasibly

region. Barrier Lyapunov-like functions for general control

systems can be found in [17], [18], and in [3], [19], [20]

for multi-agent systems, for obstacle avoidance with spherical

obstacles/agents and time-dependent tasks.

According to the authors’s best knowledge, there are no

existing works addressing collision avoidance between 3D

ellipsoidal agents subject to dynamic uncertainties and external

disturbances under closed-form control protocols, which is the

focus of this work. In particular, we design smooth closed-

form barrier functions for the collision avoidance of ellipsoidal

agents. By employing results from the computer graphics field,

we derive a novel closed-form expression that represents a

distance metric1 of two ellipsoids in 3D space. Moreover,

we use the latter to design a control protocol that guarantees

the collision avoidance of a multi-agent system that aims to

achieve a primary objective, subject to uncertain 2nd-order

Lagrangian dynamics. The derived control law is (i) decentral-

ized, in the sense that each agent calculates its control signal

based on local information, (ii) discontinuous and adaptive,

in order to compensate for the uncertainties and external

disturbances. We note that the derived barrier functions have

1By distance metric we mean that it is zero in a collision between the
ellipsoids and positive otherwise.



appeared in our preliminary results [21], incorporated how-

ever with simpler dynamics. This work provides significant

improvements, also from a practical viewpoint, by considering

external disturbances and more general uncertainties in the

agents’ dynamics. Moreover, in contrast to [21], we present

here an important symmetric property of the derived barrier

functions (Proposition 3) that plays a key role in the multi-

agent control design procedure.

The rest of the paper is organized as follows. Section II pro-

vides preliminary background and the used notation. Section

III formulates the treated problem and Section IV illustrates

the main results. Section V is devoted to a simulation example

and Section VI concludes the paper.

Fig. 1. Ellipsoid approximation of (a) the rigid links of a robotic manipulator,
(b) a mobile robot (top and front view).

II. NOTATION AND PRELIMINARIES

A. Notation

The sets of natural and real numbers are denoted by N, and

R, respectively, and R≥0, R>0 are the sets of nonnegative and

positive real numbers, respectively; ‖x‖1 and ‖x‖ denote the

1- and 2-norm, respectively, of a vector x ∈ R
n; SE(3) is the

special Euclidean group and Sn−1 is the n-dimensional sphere.

Given a set A, its interior is denoted by
◦

A. The identity matrix

is In ∈ R
n×n. The open and closed balls with radius δ, cen-

tered at x ∈ R
n, are denoted by B(x, δ) and B̄(x, δ), respec-

tively. The sign function is defined as sgn(x) = −1, if x < 0,

sgn(x) = 0, if x = 0, and sgn(x) = 1, if x > 0; its vector

counterpart is defined as sgn(x) = [sgn(x1), . . . , sgn(xn)]
⊤ ∈

R
n, for x = [x1, . . . , xn]

⊤ ∈ R
n. Given a discontinuous

function f : R
n → R

k, its Filippov regularization [22] is

defined as K[f ](x) :=
⋂

δ>0

⋂
µ(N̄)=0 co(f(B(x, δ)\N̄), t),

where
⋂

µ(N̄)=0 is the intersection over all sets N̄ of Lebesgue

measure zero, and co(E) is the convex closure of the set

E. The Filippov regularization of sgn(x) ∈ R is denoted

by K[sgn](x) = SGN(x) where SGN(x) := −1, if x < 0,

SGN(x) := 1, if x > 0, and SGN(x) ∈ [−1, 1], if x = 0.

B. Cubic Equations and Ellipsoid Collision

Proposition 1: Consider the cubic equation f(λ) = c3λ
3 +

c2λ
2 + c1λ + c0 = 0 with cℓ ∈ R, ∀ℓ ∈ {0, . . . , 3} and

roots λ1, λ2, λ3, with f(λ1) = f(λ2) = f(λ3) = 0. Then,

given its discriminant ∆ := (c3)
4
∏

i∈{1,2}
j∈{i+1,...,3}

(λi−λj)
2, the

following hold:

(i) ∆ = 0 ⇔ ∃i, j ∈ {1, 2, 3}, with i 6= j, such that λi =
λj , i.e., at least two roots are equal,

(ii) ∆ > 0 ⇔ λi ∈ R, ∀i ∈ {1, 2, 3}, and λi 6= λj , ∀i, j ∈
{1, 2, 3}, with i 6= j, i.e., all roots are real and distinct.

Proposition 2: [23] Consider two planar ellipsoids A =
{z ∈ R

3 s.t. z⊤A(t)z ≤ 0}, B = {z ∈ R
3 s.t. z⊤B(t)z ≤ 0},

with z = [p⊤1]⊤, p ∈ R
2, and A,B : R≥0 → R

3×3 terms that

describe their motion in 2D space. Given their characteristic

polynomial f(λ) = det(λA − B), which has degree 3, the

following hold:

(i) ∃λ∗ > 0 s.t. f(λ∗) = 0, i.e, the polynomial f(λ) has

always one positive real root,

(ii) A ∩ B = ∅ if and only if the characteristic equation

f(λ) = 0 has two distinct negative roots, i.e., ∃λ∗
1, λ

∗
2 <

0, with λ∗
1 6= λ∗

2, and f(λ∗
1) = f(λ∗

2) = 0.

(iii) A∩B 6= ∅ and
◦

A∩
◦

B = ∅, i.e., A and B touch externally,

if and only if and only if f(λ) = 0 has a negative root

with multiplicity 2.

C. Nonsmooth Analysis

Consider the following differential equation with a discon-

tinuous right-hand side:

ẋ = f(x, t), (1)

where f : D × [t0,∞) → R
n, D ⊂ R

n, is Lebesgue

measurable and locally essentially bounded.

Definition 1 (Def. 1 of [24]): A function x : [t0, t1) → R
n,

with t1 > t0, is called a Filippov solution of (1) on [t0, t1) if

x(t) is absolutely continuous and if, for almost all t ∈ [t0, t1),
it satisfies ẋ ∈ K[f ](x, t).

Lemma 1 (Lemma 1 of [24]): Let x(t) be a Filippov

solution of (1) and V : D × [t0, t1) → R be a locally

Lipschitz, regular function2. Then V (x(t), t) is absolutely

continuous, ∂
∂t
V (x(t), t) exists almost everywhere (a.e.), i.e.,

for almost all t ∈ [t0, t1), and V̇ (x(t), t)
a.e
∈

˙̃
V (x(t), t) :=

∩ξ∈∂V (x,t)ξ
⊤[K[f ](x, t)⊤, 1]⊤, where ∂V (x, t) is the Clarke’s

generalized gradient [24].

Theorem 1 (Corollary 2 of [24]): For the system given in

(1), let D ⊂ R
n be an open and connected set containing

x = 0 and suppose that f is Lebesgue measurable and x 7→
f(x, t) is essentially locally bounded, uniformly in t. Let V :
D × [t0, t1) → R be locally Lipschitz and regular such that

W1(x) ≤ V (x, t) ≤ W2(x), ∀t ∈ [t0, t1), x ∈ D, and z ≤

−W (x(t)), ∀z ∈
˙̃
V (x(t), t), t ∈ [t0, t1), x ∈ D, where

W1 and W2 are continuous positive definite functions and W
is a continuous positive semi-definite on D. Choose r > 0
and c > 0 such that B̄(0, r) ⊂ D and c < min‖x‖=r W1(x).
Then for all Filippov solutions x : [t0, t1) → R

n of (1), with

x(t0) ∈ D̄ := {x ∈ B̄(0, r) : W2(x) ≤ c}, it holds that

t1 = ∞, x(t) ∈ D̄, ∀t ∈ [t0,∞), and limt→∞ W (x(t)) = 0.

III. PROBLEM FORMULATION

Consider N > 1 ellipsoidal autonomous agents, with
N := {1, . . . , N}, operating in SE(3), and described by
the ellipsoids Ai(xi) := {y ∈ R

4 : y⊤Ai(xi)y ≤ 0};
xi := [p⊤i , η

⊤
i ]

⊤ ∈ M := R
3 × S3 is the ith agent’s center

of mass pose, where pi ∈ R
3 is its inertial position and

2See [24] for a definition of regular functions.



ηi := [ϕi, ǫ
⊤
i ]

⊤ ∈ S3 its unit quaternion-based orientation,with
ϕi ∈ R, ǫi ∈ R

3 its scalar and vector parts, respectively,

subject to ‖ηi‖ = 1; Ai(xi) := T−⊤
i (xi)ÂiT

−1
i (xi), with

Âi := diag{l−2
x,i , l

−2
y,i , l

−2
z,i ,−1}, corresponding to the principal

axis lengths lx,i, ly,i, lz,i ∈ R>0 of agent i’s ellipsoid, and
Ti ∈ SE(3) is the transformation matrix describing the
translation and orientation of agent i’s center of mass, ∀i ∈ N .
The agents’ motion follows the 2nd-order dynamics:

ẋi = Ēη(ηi)vi (2a)

Mi(xi)v̇i + Ci(xi, vi)vi + gi(xi) + fi(vi) + di(t) = ui, (2b)

where vi := [ṗ⊤i , ω
⊤
i ]

⊤ is agent i’s velocity, with ωi ∈ R
3

being its angular velocity, Ēη : S3 → R
7×6 is the matrix map-

ping the quaternion rates to velocities [25], Mi : M → R
6×6

are positive definite inertia matrices, satisfying the property

m ≤ Mi(x) ≤ m̄, ∀x ∈ M, i ∈ N , for positive constants

m, m̄, Ci : M × R
6 → R

n×n are the Coriolis terms,

gi : M → R
6 are the gravity vectors, fi : R

6 → R
6 are

unknown vector fields that represent static friction-like terms,

di : R≥0 → R
6 are unknown external disturbances, and

ui ∈ R
6 are the robots’ control inputs, ∀i ∈ N . The terms

Mi, Ci and gi are continuous everywhere, the terms fi are

locally bounded and continuous almost everywhere, and di
are measurable and uniformly bounded. We also consider that

ui is decomposed as ui = uf,i+us,i, where ufi is a bounded

term that is responsible for some (potentially cooperative)

task, and us,i is a control term to be designed in order to

achieve multi-agent decentralized collision avoidance, ∀i ∈ N .

More specifically, we consider that φ(x) ∈ R≥0 is a term

that corresponds to the cooperative task dictated by uf,i,

with uf,i = Ēη(ηi)
⊤ ∂φ(x)

∂xi
, ∀i ∈ N , c1(x) ≤ φ(x) ≤

c2(x), for continuous positive definite functions c1, c2, and

nonempty sets {x ∈ X : x = φ−1(y)}, ∀y ∈ R≥0, where

x := [x⊤
1 , . . . , x

⊤
N ]⊤, and X := {x ∈ M

N : Ai(xi) ∩
Aj(xj) = ∅, ∀i, j ∈ N , i 6= j}; φ can be also a function of

x̃ := [p⊤1 − p⊤2 , . . . , p
⊤
N − p⊤N−1, η

⊤
1 , . . . , η

⊤
N ]⊤ that concerns

potential formation control objectives. Then X becomes {x̃ ∈

R
3N(N−1)

2 ×S3N : Ai(xi)∩Aj(xj) = ∅, ∀i, j ∈ N , i 6= j}. The

conditions for φ are satisfied by standard quadratic functions,

e.g., φ(x) =
∑

i∈N {‖pi − αi‖
2 + e2ηi

} (for multi-agent

navigation) or φ(x̃) =
∑

(i,j)∈F{‖pi − pj − αi,j‖
2 + e2ηi,j

}
(for formation) for sufficiently distant αi, αi,j , where F is

a potential formation set and eηi
, eηi,j

represent appropriate

quaternion errors [25]. Note that φ and uf,i are not responsible

for collision avoidance or compensating model uncertainties.

The dynamics (2) have the following properties [26]:

Property 1: The terms Ci can be chosen such that

Ṁi(x) − 2Ci(x, ẋ) are skew-symmetric, i.e., y⊤(Ṁi(x) −
2Ci(x, ẋ))y = 0, ∀x ∈ M, ẋ, y ∈ R

6, i ∈ N .

Property 2: The gravity terms of (2) can be written as

gi(x) = Yi(x)θi, ∀x ∈ M, i ∈ N , where Yi : M → R
6×ℓ are

known continuous matrices, and θi ∈ R
ℓ, ℓ ∈ N, are constant

but unknown dynamic parameters of the agents, ∀i ∈ N .

Property 3: [26] The friction terms are dissipative, i.e.,

v⊤i fi(vi) > 0, ∀vi 6= 0, i ∈ N .

Moreover, the following assumption is needed:

Assumption 1: It holds that ‖di(t)‖1 ≤ dbi , ∀t ∈ R≥0,

where dbi are unknown positive constants, i ∈ N .

Note that in our previous work [21] we imposed a growth

condition on the terms fi(·) and we did not consider any form

of external disturbances. In addition, we consider that each

robot has a limited sensing radius dcon,i ∈ R>0, with dcon,i >
max{lx,i, ly,i, lz,i} + maxj∈N

{
max{lx,j , ly,j , lz,j}

}
+ ε for

an arbitrarily small positive constant ε, which implies that the

agents can sense each other without colliding. Based on this,

we can model the topology of the multi-robot network through

the undirected time-varying graph G(p) := (N , E(p)), with

E(p) := {(i, j) ∈ N 2 : ‖pi − pj‖ ≤ min{dcon,i, dcon,j}}, p :=
[p⊤1 , . . . , p

⊤
N ]⊤, and we further define the agent time-varying

neighborhood Ni(p) := {j ∈ N : ‖pi−pj‖ < dcon,i}, ∀i ∈ N .

Moreover, we consider the complete graph Ḡ := (N , Ē), with

Ē := {(i, j), ∀i, j ∈ N , i < j}, M̄ := |Ē | = N(N−1)
2 and an

edge numbering set M̄ := {1, . . . , M̄}. Finally, given an edge

m ∈ M̄, we use the notation (m1,m2) ∈ N 2 for the robot

indices of edge m ∈ M̄. As discussed in Section I, the agents

need to avoid collisions with each other, while executing their

task, dictated by uf,i. To that end, we aim to design closed-

form barrier functions and decentralized feedback control laws

us,i that guarantee collision avoidance among the ellipsoidal

agents, while compensating appropriately for the model uncer-

tainties and the external disturbances. By “decentralized”, we

mean here that agents can use only local information, in view

of their limited sensing radius (i.e., only pj , ηj , j ∈ Ni(p)).
Formally, the treated problem is the following:

Problem 1: Given N 3D ellipsoidal autonomous agents with

the uncertain Lagrangian dynamics (2) executing tasks dictated

by uf,i, design

1) closed-form barrier functions that encode collision avoid-

ance of the agents,

2) decentralized control laws in us,i that guarantee inter-

agent collision avoidance, i.e., Ai(xi(t))∩Aj(xj(t)) = ∅,

∀i, j ∈ N , i 6= j, as well as boundedness of all closed

loop signals.

IV. MAIN RESULTS

This section describes the proposed solution to Problem

1. In order to deal with the ellipsoidal collision avoidance,

we employ results from computer graphics that are related

to detection of ellipsoid collision and we build appropriate

barrier functions whose boundedness implies the collision-

free trajectories. Moreover, we use adaptive and discontinuous

control laws to appropriately compensate for the uncertainties

and external disturbances of (2).

We employ first the results described in Proposition 2

to build an appropriate ellipsoidal barrier function. Note,

however, that these results concern planar ellipsoids and

cannot be straightforwardly extended to the 3D case, which

is the case of the considered multi-agent system. For that

reason, we consider the respective planar projections. For

an ellipsoid Ai, i ∈ N , we denote as Axy
i ,Axz

i ,Ayz
i its

projections on the planes x-y, x-z and y-z, respectively, with

corresponding matrix terms Axy
i , Axz

i , Ayz
i (i.e., As

i (xi) :=
{y ∈ R

3 : y⊤As
i (xi)y ≤ 0}, ∀s ∈ {xy, xz, yz}). Note

that in order for Ai,Aj to collide (touch externally), all

their projections on the three planes must also collide, i.e.,



Ai(xi) ∩ Aj(xj) 6= ∅ ∧
◦

Ai(xi) ∩
◦

Aj(xj) = ∅ ⇔ As
i (xi) ∩

As
j(xj) 6= ∅ ∧

◦

As
i (xi) ∩

◦

As
j(xj) = ∅, ∀s ∈ {xy, xz, yz},

i.e., Therefore, Ai and Aj do not collide if and only if

As
i (xi) ∩ As

j(xj) = ∅ for some s ∈ {xy, xz, yz}. In view

of Proposition 2, that means that the characteristic equations

fs
i,j(λ) := det(λAs

i (xi)−As
j(xj)) = 0 must always have one

positive real root and two negative distinct roots for at least

one s ∈ {xy, xz, yz}. Hence, by denoting the discriminant

of fs
i,j(λ) = 0 as ∆s

i,j(xi, xj), Proposition 1 suggests that

∆s
i,j(xi, xj) must remain always positive for at least one

s ∈ {xy, xz, yz}, since a collision would imply ∆s
i,j(xi, xj) =

0, ∀s ∈ {xy, xz, yz}. Therefore, by defining the smooth

function [9] σ(x) := exp(− 1
x
), if x > 0 and σ(x) := 0, if

x ≤ 0, we conclude that Ai and Aj do not collide if and

only if σ(∆xy
i,j(xi, xj)) + σ(∆xz

i,j(xi, xj)) + σ(∆yz
i,j(xi, xj)) >

0, since a collision would result in ∆s
i,j(xi, xj) = 0 ⇔

σ(∆s
i,j(xi, xj)) = 0, ∀s ∈ {xy, xz, yz}. We aim now at

defining a decentralized continuously differentiable function

for each edge m ∈ M̄ that incorporates the collision avoidance

property of agents m1,m2. We need first the following result

regarding the discriminant of fs
i,j(λ) = 0:

Proposition 3: Let ∆1, ∆2 be the discriminants of f1(λ) :=
det(λA − B) = 0, f2(λ) := det(λB − A) = 0, respectively,

where A,B ∈ R
3×3. Then ∆1 = ∆2.

Proof: Let det(λA − B) = 0 ⇔ f1(λ) := c3λ
3 +

c2λ
2 + c1λ + c0 = 0, with cℓ ∈ R, ∀ℓ ∈ {0, . . . , 3}.

It can be verified that det(λB − A) = 0 ⇔ f2(λ) =
−c0λ

3 − c1λ
2 − c2λ− c3 = 0. Let λ1, λ2, λ3 be the solutions

of f1(λ) = 0, i.e. f1(λ1) = f1(λ2) = f1(λ3) = 0, and

λ1λ2λ3 = − c0
c3

. By substituting 1
λℓ

in f2(λ), ℓ ∈ {1, 2, 3},

we obtain −c0λ
−3
ℓ − c1λ

−2
ℓ − c2λ

−1
ℓ − c3 = −(c3λ

3
ℓ +

c2λ
2
ℓ + c1λℓ + c0) = −f1(λℓ) = 0. Hence, 1

λ1
, 1
λ2
, 1
λ3

are the

solutions of f2(λ) = 0. The discriminants of f1(λ) = 0 and

f2(λ) = 0 are ∆1 = c43(λ1 − λ2)
2(λ1 − λ3)

2(λ2 − λ3)
2 and

∆2 = (−c0)
4
(
λ−1
1 − λ−1

2

)2 (
λ−1
1 − λ−1

3

)2 (
λ−1
2 − λ−1

3

)2
=

c40(λ1λ2λ3)
−4(λ2 − λ1)

2(λ3 − λ1)
2(λ3 − λ2)

2, which, by

substituting c0 = −c3λ1λ2λ3, becomes ∆2 = ∆1.

Therefore, we conclude that the discriminants ∆s
i,j(xi, xj)

and ∆s
j,i(xj , xi) of det(λAs

i (xi) − As
j(xj)) = 0 and

det(λAs
j(xj) − As

i (xi)) = 0, respectively, are the same, for

all s ∈ {xy, xz, yz}. Hence, we can define uniquely for

each edge m ∈ M̄ the continuously differentiable function

∆m : M2 → R≥0, with

∆m(xm1
, xm2

) := σ(∆xy
m1,m2

(xm1
, xm2

))+

σ(∆xz
m1,m2

(xm1 , xm2)) + σ(∆yz
m1,m2

(xm1 , xm2)), (3)

which needs to remain positive for all times in order to achieve

the collision avoidance property, i.e., ∆m(xm1(t), xm2(t)) >
0, ∀t ∈ R≥0,m ∈ M̄. Note that, in view of Propo-

sition 3, the agents m1 and m2 can calculate (3) based

on ∆s
m1,m2

(xm1
, xm2

) and ∆s
m2,m1

(xm2
, xm1

), respectively,

∀s ∈ {xy, xz, yz},m ∈ M̄.

We still need to incorporate the fact the that agents have

a limited sensing radius, and that agent i does not have

access to the functions ∆s
i,j(xi, xj), when j /∈ Ni(p). To

that end, we define first the greatest lower bound of ∆m

when both agents m1,m2 are in each other’s sensing radius,

i.e., ∆̃m := inf(xm1
,xm2

)∈M2{∆m(xm1 , xm2) s.t. ‖pm1 −
pm2

‖ ≤ min{dconm1
, dconm2

}}, ∀m ∈ M̄. Since dcon,i >

max{lx,i, ly,i, lz,i}+maxj∈N

{
max{lx,j , ly,j , lz,j}

}
+ε, ∀i ∈

N , it follows that there exists a positive constant ε∆ such

that ∆̃m ≥ ε∆ > 0, ∀m ∈ M̄. Next, we define the smooth

switching functions βm : R≥0 → [0, β̄m], with [9]

βm(x) = β̄m

σ(x)

σ(x) + σ
(
∆̄m − x

) , (4)

where ∆̄m is a positive constant satisfying ∆̄m < ∆̃m, ∀m ∈
M̄. Then, by choosing βm := βm(γσ∆m(xm1

, xm2
)), where

γσ is a positive scaling constant, we incorporate the limited

sensing radius of the agents in the collision avoidance scheme,

since
∂βm(x)

∂x
vanishes when m1 /∈ Nm2

(p) or m2 /∈ Nm1
(p),

i.e., when at least one of the agents that form edge m lies

outside the sensing range of the other agent. The terms β̄m

can be any positive constants, ∀m ∈ M̄. All the necessary

information for the construction of the functions βm, ∆m, i.e.,

the constants ∆̄m, β̄m and the lengths lx,i, ly,i, lz,i, i ∈ N ,

can be transmitted off-line to the agents.

We can now define a suitable barrier function for each

edge m ∈ M̄ as any continuously differentiable function

bm : R≥0 → R≥0 with the property limx→0 bm(x) = ∞,

e.g., bm(x) = 1
x

, m ∈ M̄. The barrier function for edge m is

then bm := bm(βm), ∀m ∈ M̄.

We propose now a decentralized feedback control law for

the solution of Problem 1. Firstly, we define the estimations

of the unknown terms θi ∈ R
ℓ and dbi ∈ R of Property 2 and

Assumption 1, respectively, as θ̂i ∈ R
ℓ and d̂bi ∈ R, with the

respective errors θ̃i := θ̂i−θi and d̃bi := d̂bi−dbi , ∀i ∈ N . By

using adaptive and discontinuous control techniques, we prove

in the following that these estimations compensate appropri-

ately for the unknown terms, without necessarily converging

to them. In particular, we design the feedback control laws for

us,i as

us,i =
∑

m∈M̄

α(i,m)κmĒη(ηi)
⊤ ∂∆m

∂xi

+ Yi(xi)θ̂i

− kvi
vi − d̂bisgn(vi), (5)

where α(i,m) = −1 if agent i is part of edge m, and

α(i,m) = 0 otherwise, ∀i ∈ N , m ∈ M̄, and κm :=
∂bm(βm)

∂βm

∂βm(∆m)
∂∆m

, ∀m ∈ M̄. Moreover, we design the as-

sociated adaptation laws

˙̂
θi := −γi,θYi(xi)

⊤vi
˙̂
dbi := γi,d‖vi‖1

}
∀i ∈ N , (6)

with arbitrary bounded initial conditions, where γθ,i and γd,i
are positive gains, ∀i ∈ N . The correctness of (5)-(6) is shown

in the following theorem:

Theorem 2: Consider a multi-agent system comprised

of 3D ellipsoidal agents and subject to the dynamics (2)

at a collision-free initial configuration, i.e., Ai(xi(0)) ∩
Aj(xj(0)) = ∅, ∀i, j ∈ N with i 6= j. Then, application of the

control and adaptation laws (5), (6) guarantees that the agents

avoid collisions for all times, i.e., Ai(xi(t))∩Aj(xj(t)) = ∅,



∀i, j ∈ N with i 6= j, t ∈ R≥0, with all closed loop signals

being bounded. Moreover, limt→∞ vi(t) = 0, ∀i ∈ N .

Proof: Consider the vector ζx :=
[
x⊤, v⊤, θ̃⊤, d̃⊤b

]⊤
∈ Zx := X × R

7N+ℓN , where X := {x ∈ M
N : Ai(xi) ∩

Aj(xj) = ∅, ∀i, j ∈ N , i 6= j} as defined in Section III,

v := [v⊤1 , . . . , v
⊤
N ]⊤ ∈ R

6N , d̃b := [d̃b1 , . . . , d̃bN ]⊤ ∈ R
N ,

θ̃ := [θ̃⊤1 , . . . , θ̃
⊤
N ] ∈ R

ℓN . Since the initial configuration is

collision-free, it holds that ζx(0) ∈ Zx. By combining (2),

(5), and (6), we obtain the closed-loop system dynamics ζ̇x =
Fζ(ζx, t). It can be verified that Fζ is measurable in t over R≥0

and measurable and locally bounded in ζx over Zx. Hence, by

invoking Prop. 3 of [27], we conclude that at least one Filippov

solution exists and any such solution satisfies ζx : [0, t1) → Zx

for a positive t1. Define ζ :=
[
φ, b1, . . . , bM̄ , v⊤, θ̃⊤, d̃⊤b

]⊤

∈ Z := R
M̄+7N+ℓN+1, where φ is the cooperative term

defined in Section III. Note that ζ(0) ∈ Z and, for any finite

r, ζ ∈ B̄(0, r) ⊂ Z ⇔ ζx ∈ Zx, which we prove in the

following. Define the function V (ζ) := φ(x) +
∑

m∈M̄ bm +∑
i∈N { 1

2v
⊤
i Mi(xi)vi +

1
2γi,d

d̃2bi +
1

2γi,θ
‖θ̃i‖

2}, for which it

holds that W1(ζ) ≤ V (ζ) ≤ W2(ζ) for positive definite

functions W1,W2 on Z . Since ζ(0) ∈ Z , we conclude that

V (ζ(0)) is well defined, and hence there exists a finite constant

V̄ such V (ζ(0)) ≤ V̄ and bm(0) ≤ V̄ , ∀m ∈ M̄. We aim to

show that V , given its initial boundedness, remains bounded

∀t ∈ R≥0, and so do the terms bm, ∀m ∈ M̄. By differen-

tiating V along the solutions of the closed loop system and

in view of Lemma 1 we obtain V̇ ∈
˙̃
V := ∩ξ∈∂V (ζ)ξ

⊤K[ζ̇].
Since V is continuously differentiable, the generalized gradient

reduces to the standard gradient and therefore, after using

Properties 1, 2, and grouping terms, we obtain

max
z∈

˙̃
V

{z} ≤
∑

i∈N

{
∑

m∈M̄

[
α(i,m)κm

∂∆m

∂xi

⊤

Ēη(ηi)

]
vi+

‖vi‖1‖di(t)‖1 + v⊤i

(
ui − Yi(xi)θi + Ēη(ηi)

⊤ ∂φ(x)

∂xi

)

−vifi(vi) +
1

γi,d
d̃bi

˙̂
dbi +

1

γi,θ
θ̃⊤i

˙̂
θi

}
,

By also using Property 3, Assumption 1, substituting ui =
uf,i + us,i with uf,i = Ēη(ηi)

⊤ ∂φ(x)
∂xi

and (5), the adaptation

laws (6), and using d̃bi = d̂bi − dbi , θ̃i = θ̂i − θi and

the property x⊤sign(x) = ‖x‖1, ∀x ∈ R
n, we obtain

max
z∈

˙̃
V
{z} ≤ −

∑
i∈N kvi

‖vi‖
2 =: W (ζ). Therefore, z ≤

−W (ζ(t)), ∀z ∈
˙̃
V (ζ(t)), t ∈ [0, t1), where W : Z → R≥0 is

a positive semi-definite function defined on Z . Hence, by ap-

plying Theorem 1, we conclude that t1 = ∞, ζ(t) is bounded

in the compact set {ζ ∈ B̄(0, r) : W2(ζ) ≤ c}, ∀t ∈ R≥0

for any r and c satisfying B̄(0, r) ⊂ Z , c < min‖x‖=r W1(ζ),
and limt→∞ W (ζ(t)) = 0 ⇒ limt→∞ v(t) = 0. Note that,

since the sets {x ∈ M
N : x = φ−1(y), x ∈ X} are

nonempty, r can be chosen arbitrarily large, corresponding

to all collision-free initial configurations. Therefore, inter-

agent collisions are avoided, and the adaptation signals θ̂i,
d̂bi , remain bounded, ∀i ∈ N , t ∈ R≥0. The continuity of

the terms Yi(·) implies also their boundedness and hence the

boundedness of the control signals (5), (6), t ∈ R≥0. Note that

convergence of θ̃i, d̃bi to zero is not needed, and hence we

do not require persistence of excitation or sufficient richness

of the respective signals, as is usually assumed in adaptive

control when parameter convergence is taken into account.

Remark 1: It can be verified that det(λAs
m1

(xm1) −
As

m2
(xm2

), and hence bm, are functions of pm1
− pm2

, ηm1
,

ηm2
. Therefore, if φ is a function of x̃, the aforementioned

analysis still holds by setting X = {x̃ ∈ R
3N(N−1)

2 × S3 :
Ai(xi) ∩ Aj(xj) = ∅, ∀i, j ∈ N , i 6= j}. Moreover, note that

achievement of the objectives expressed by φ is not pursued

in this paper and may not be necessarily guaranteed due to

the potentially counteracting terms of ui. The control scheme

could be extended, however, by appropriately designing the

terms φ(x) such that the resulting configuration of the agents

implies φ(x) = 0, like, e.g., [3], [4], [9].

Remark 2: Since ∆s
i,j = ∆s

j,i (due to Proposition 3),

∀i, j ∈ N , i 6= j, the control scheme can be ex-

tended to directed communication graphs, by setting for

the ith agent bi,j = bi,j(βij (∆i,j(xi, xj))), ∀j ∈ N\{i},

with ∆i,j(xi, xj) as in (3) and βij as in (4), ∆̃i,j :=
inf(xi,xj)∈M2{∆i,j(xi, xj) s.t. ‖pi − pj‖ ≤ dconi}, and appro-

priately modifying the control law. Similarly, collision avoid-

ance with static environment obstacles could be incorporated

in the overall scheme. An event-triggered extension is also

possible by employing results from the related literature, e.g.,

[28]. Finally, for implementation purposes in real applications,

the discontinuous part of (5) could be approximated by a

continuous function via the boundary layer technique [29],

e.g.,
|vij |

|vij |+ǫij
instead of sgn(vij ), when |vij | < ǫij , where

vij ∈ R is the jth component of vi, ∀i ∈ N , and ǫij is a

small positive constant.

V. SIMULATION RESULTS

We consider a simulation example with N = 8 rigid

bodies in SE(3), described by ellipsoids with axes lengths

lx,i = 0.5m, ly,i = 0.3m, lz,i = 0.2m, ∀i ∈ N . The initial

poses are p1 = [3,3,0]⊤, p2 = −[3,3,0]⊤, p3 = [3,−3,0]⊤, p4
= [−3,3,0]⊤, p5 = [3,3,3]⊤, p6 = −[3,3,3]⊤, p7 = [3,−3,3]⊤,

p8 = [−3,3,−3]⊤, η1 = η8 = [0.769,0.1696,0.6153,0.0358]⊤,

η2 = η6 = [0.8488,−0.3913,−0.0598,−0.3505]⊤, η3 =
η5 = [0.7638,−0.5283,−0.3275,−0.1738]⊤, η4 = η7 =
[0.7257,0.3081,0.3714,0.4904]⊤. We consider that φ(x) de-

scribes an independent multi-agent navigation objective, with

desired configurations as p1d
= p2, p2d

= p1, p3d
= p4,

p4d
= p3, p5d

= p6, p6d
= p5, p7d

= p8, p8d
= p7, ηid

=
[1,0,0,0]⊤, ∀i ∈ N . We set the errors epi

:= pi − pid
and

eηi
:= [eϕi

, e⊤ǫi ]
⊤ := ηid

⊗ η̄i, where η̄i := [ϕi,−ǫ⊤i ]
⊤ ∈ S3 is

the quaternion conjugate, ⊗ denotes the quaternion product,

and eϕi
, eǫi are the scalar and vector parts, respectively, of the

quaternion error [25]. The desired quaternion configuration is

achieved when eηi
= [±1, 0, 0, 0]⊤ and hence the function

φ(x) is chosen as φ(x) =
∑

i∈N

(
1
2‖pi − pid

‖2 + 1− e2ϕi

)
,

with φ̇ =
∑

i∈N

(
(pi − pid

)⊤ṗi − eϕi
e⊤ǫiωi

)
[25]. The con-

trol inputs uf,i are therefore chosen as uf,i = [p⊤id
−

p⊤i , eϕi
e⊤ǫi ]

⊤, ∀i ∈ N . The agent masses are chosen as

(0.1, 0.2, 0.01, 0.1, 0.1, 0.2, 0.1, 0.2) and the principal mo-

ments of inertia as diag{0.05, 0.03, 0.01}, ∀i ∈ N . We also set



fi(vi) = mfi sin(wfit + φfi)vi, di(t) = (1/mfi) sin(wfit +
φfi), ∀i ∈ N , with [mf1 , . . . ,mf8 ] = 0.1 · [1,2,0.1,1,1,2,1,2],
[ωf1 , . . . , ωf8 ] = 0.01 · [1,2,0.1,1,1,2,1,2], and [φf1 ,. . . ,φf8 ]
= 0.01 · [5,1,0.05,0.5,1,0.5,1]. We choose bm = 1

βm
, with

β̄m = 1, ∆̄m = 104, γσ = 10−40, ∀m ∈ M̄, and

θ̂i(0) = 0.1, d̂bi(0) = 0.2, kvi = 1, ∀i ∈ N . The

expressions for ∆m(xm1
, xm2

) were derived by using the

symbolic toolbox of MATLAB. Fig. 2 shows a 3D plot of

the agent trajectories, and Fig. 3 shows the minimum of the

barrier functions minm∈M̄{bm(t)} (left), which is always

positive, and the signals γi(t) := ‖pi − pid
‖2 + 1 − e2ϕi

and vi(t) (right), ∀i ∈ N , t ∈ [0, 15]. A short video that

demonstrates the aforementioned simulation example can be

found in https://youtu.be/IAni7zIMM7k.

Fig. 2. The evolution of agent trajectories ∀t ∈ [0, 15].
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Fig. 3. Left: The evolution of the minimum of the barrier functions
minm∈M̄{bm(t)}. Right: The evolution of the signals γi(t) and vi(t),
∀i ∈ N , ∀t ∈ [0, 15].

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a closed-form barrier function as well

as a robust decentralized control scheme for the multi-agent

collision avoidance of 3D ellipsoids, using discontinuous and

adaptive controllers. Future efforts will be devoted towards

adding connectivity properties to the current framework and

resolving issues of local minima.
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