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Abstract—Most prevalent statistical models of natural images
characterize only the univariate distributions of divisively normal-
ized bandpass responses or wavelet-like decompositions of them.
However, the higher-order dependencies between spatially neigh-
boring responses are not yet well understood. Towards filling this
gap, we propose a new closed-form spatial-oriented correlation
model that captures statistical regularities between perceptually
decomposed natural image luminance samples. We validate the
new correlation model on a variety of natural images. Experi-
mental results demonstrate the robustness of the new correlation
model across image content. A software release that implements
the new closed-form spatial-oriented correlationmodel is available
at http://live.ece.utexas.edu/research/3dnss/bicorr_release.zip.

Index Terms—Bivariate model, closed-form, natural scene sta-
tistics (NSS), spatial-oriented correlation model.

I. INTRODUCTION

M ODELING natural scene statistics (NSS) and under-
standing the low-level human vision system have

come to be regarded as a dual problem [2]. NSS models have
also proven to be important ingredients towards the design of
image/video processing and computer vision algorithms [3]–[6].
A variety of natural scene statistical models have been

developed in the vision science literature, both in the spatial
[7] and wavelet domain [8]. Early on, Ruderman [7] showed
that a simple non-linear operation of local mean subtraction
followed by variance divisive normalization on natural image
luminance results in a decorrelating and Gaussianizing effect.
While the statistics, i.e., marginal distributions, of natural image
pixels exhibit non-Gaussian behavior, after projection onto
appropriate multi-scale spaces, e.g., using wavelet bases [9] or
2D Gabor filter banks [8], the resulting coefficients are found to
obey regular statistical models, such as Gaussian scale mixtures
[10]. These natural scene statistical models have been deployed
in perceptual and computational image/video applications with
great success, such as image denoising and restoration [3], and
image/video quality assessment [11]–[14].
However, efforts to date have focused on the use of first-order

univariate statistical models, although there certainly exist sig-
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nificant dependencies between spatially neighboring bandpass
image responses, which are not yet fully understood or mod-
eled. Some early work has been conducted on analyzing and
modeling joint/bivariate relationships between sub-band natural
image coefficients. For example, Portilla et al. [15], [16] pro-
posed a Markov statistical descriptor for texture images using a
set of parametric constraints on pairs of complex wavelet coef-
ficients at adjacent spatial locations, orientations, and scales. In
[17], [18], the authors found that the coefficients of orthonormal
wavelet decompositions of natural images are fairly well-decor-
related; however, they are not independent. The authors also
showed that the empirical joint histograms of adjacent coeffi-
cients produce contour plots having distinct ‘bowtie’ shapes.
This was observed on coefficient pairs separated by different
spatial offsets, across adjacent scales, and at orthogonal ori-
entations. Liu et al. [19] measured inter- and intra-scale de-
pendencies between image wavelet coefficients using mutual
information. In [20], Sendur et al. considered image wavelet
coefficients and their parents (at adjacent coarser scale loca-
tions), and proposed a circularly symmetric bivariate distribu-
tion to model their dependencies. Po et al. [21] applied a two-di-
mensional contourlet transform to natural images, and exam-
ined both the marginal and joint distributions. They measured
the dependencies between image contourlet coefficients using
mutual information, and proposed a hidden Markov tree (HMT)
image model with Gaussian mixtures that can capture interloca-
tion, interscale, and interdirection dependencies. The authors of
[22] proposed an infinitely divisible model of generic image sta-
tistics, which presupposes that the environment may be subdi-
vided into local objects cast against an ergodic image field, while
also containing regions of very little information (e.g., blue sky).
However, among all these and other efforts to characterize the
bivariate behavior of natural image fields, none has offered a
closed-form quantitative model of the bivariate correlations of
bandpass natural images. If available, such a closed-form ex-
pression could be invaluable for analyzing statistical image be-
havior and for formulating easily expressed and computed opti-
mized solutions to a wide variety of image processing problems.
Here wemake progress towards filling this gap by introducing

a new closed-form correlation model of spatially neighboring
bandpass natural image responses across sub-band orientations.
We start by analyzing bivariate joint histograms using a versa-
tile multivariate generalized Gaussian distribution, and propose
a new exponentiated cosine function model of spatial-oriented
correlation. We statistically validate the robustness of the new
closed-form NSS model.

II. SPATIAL-ORIENTED CORRELATION NATURAL
SCENE STATISTICAL MODEL

Human vision systems (HVS) extract abundant information
from natural environments by processing visual stimuli through
different levels of decomposition and interpretation. Since we
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want to learn and explore the statistical relationships that are
embedded in natural images, and how these statistics might be
implicated in visual processing and used for practical image pro-
cessing, we apply certain perceptually relevant pre-processing
steps on natural image luminance, and develop our new correla-
tion model from the empirical response distributions.
The basic resources on which we perform bivariate and corre-

lation statistical modeling are the pristine images from the pop-
ular and widely used LIVE IQA Database [23].

A. Perceptual Decomposition

We acquire luminance by transforming pristine color images
into the perceptually relevant CIELAB color space, which is op-
timized to quantify perceptual color differences and better cor-
responds to human color perception than does the perceptually
nonuniform RGB space [24]. Each luminance image ( ) is then
transformed by the steerable pyramid decomposition, which is
an over-complete wavelet transform that allows for increased
orientation selectivity [25]. The use of the wavelet transform is
motivated by the fact that its space-scale-orientation decompo-
sition is similar to models of the bandpass responses of simple
cells in primary visual cortex [8], [26], [27].
After applying the multi-scale, multi-orientation decomposi-

tion, we perform the perceptually significant process of divisive
normalization on the luminance wavelet coefficients of all of
the sub-bands [18]. The divisive normalization transform (DNT)
used in our work is implemented as follows [28]:

(1)

where are spatial coordinates, are the wavelet coeffi-
cients, are the coefficients after DNT, is a semi-saturation
constant, the weighted sum occurs over a spatial neighborhood
of pixels indexed by at the same sub-band, and is a
finite-extent Gaussian weighting function.

B. Bivariate Joint Distribution Analysis

Before introducing the new correlation model, we start by
studying the bivariate joint distribution of spatially adjacent lu-
minance wavelet coefficients subjected to DNT, i.e., in Eq. (1).
Specifically, we use the steerable pyramid decomposition with
five scales, indexed from 1 (finest) to 5 (coarsest), and twelve
frequency-tuning orientations (defined as the normal to a sinu-
soidal wave front): .
Here wemainly focus on the bivariate distributions and corre-

lations ofhorizontally andvertically adjacentpixels. Specifically,
for horizontally adjacent pixels, we sample pairs from locations

and inan image.Sincewehaveobserved that very
similar statistics arise from horizontally and vertically adjacent
pixels, we will only discuss the results for the horizontal case.
To model the bivariate joint histogram of spatially adjacent

bandpass responses, we utilize a multivariate generalized
Gaussian distribution (MGGD), which includes both the multi-
variate Gaussian and Laplace distributions as special cases. The
use of MGGD is motivated by the fact that the univariate gener-
alized Gaussian distribution has been widely used in modeling
univariate natural scene statistics [12], [13]. MGGD is also
a versatile and accurate tool for modeling multi-dimensional
image histograms [29]. The probability density function of a
multivariate generalized Gaussian distribution that we use is:

(2)

where , is an symmetric scatter matrix, and
are scale and shape parameters, respectively, and is the

density generator:

(3)

where . Note that when , Eq. (2) yields the mul-
tivariate Laplacian distribution, and when , Eq. (2) corre-
sponds to the multivariate Gaussian distribution.
We model the bivariate empirical histograms of horizontally

adjacent sub-band coefficients in natural images as following a
bivariate generalized Gaussian distribution (BGGD), viz., using
Eq. (2) with . The BGGD parameters are obtained using
the maximum likelihood estimator (MLE) algorithm described
in [30].
Fig. 1 shows the empirical joint distributions of horizontally

adjacent sub-band responses and their corresponding BGGD fits
on pristine image ‘building2’ from the LIVE IQADatabase [23].
The bivariate joint distributions are obtained by first binning
both responses at spatially adjacent locations, for example, the
responses at location and , to form a two-dimen-
sional grid, then counting the number of occurrences within each
grid entry, and finally computing the height of each grid entry
by normalizing its occurrence by the sum of occurrences from
all entries. As may be seen in the three-dimensional illustrations
shown in the top row, where the blue bars represent the actual
histograms and the colored meshes represent the BGGD fits, the
joint distributions of sub-band responses are well modeled as
bivariate generalized Gaussian. The 2D illustrations, which de-
pict iso-probability contour maps of the joint distributions and
the fits in the middle and bottom rows, respectively, also demon-
strate the close fits of the BGGDmodel. The most important ob-
servation here is that both the shape and height of the bivariate
distributions and fits vary with the tuning orientations of the sub-
band responses. In particular, when the spatial relationship be-
tween bandpass samples, e.g., horizontal, matches the sub-band
tuning orientation, e.g., , then the joint distribution becomes
peaky and extremely elliptical, meaning the horizontally adja-
cent bandpass responses are highly correlated at sub-band ori-
entation . Conversely, when the spatial relationship and the
sub-band tuning orientation are orthogonal, e.g., horizontal and
0 (rad), then the joint distribution becomes nearly a circular
Gaussian, implying almost uncorrelated sub-band responses.
To further examine this spatial orientation dependency, in

Fig. 2(a) we plotted the BGGD model parameters, i.e., and ,
as a function of relative orientation at the same scale as in Fig. 1.
Here we define relative orientation as the difference between
the sub-band tuning orientation and the spatial orientation of
adjacent responses. Fig. 3 demonstrates the definition of the
spatial orientation between adjacent pixels. For example, if
the sub-band tuning orientation is 0 (rad), and the pixels are
horizontally adjacent, i.e., the spatial orientation is , then the
corresponding relative orientation is equal to .
Fig. 2(a) clearly shows that there is strong orientation depen-
dency of both parameters. We have also studied the behavior of
the correlation coefficients of spatially adjacent responses as a
function of relative orientation. These are contained in the scatter
matrix of the BGGD model (Eq. (2) with ). Fig. 2(b)
shows the correlation coefficients between horizontally adjacent
bandpass responses as a function of relative orientation. The
horizontally adjacent bandpass responses are most correlated
when the sub-band tuning orientation aligns at , and become
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Fig. 1. Joint histograms of horizontally adjacent bandpass coefficients from a pristine image and the corresponding BGGD fits at the finest scale with different
orientations. From left column to right column: 0 (rad), , , , and . Top row: 3D illustration of bivariate histogram and BGGD fit, middle row: 2D
iso-probability contour plot of histogram, and bottom row: 2D iso-probability contour plot of BGGD fit (a) 0(rad) (b) (c) (d) (e) (f) 0(rad) (g)
(h) (i) (j) (k) 0(rad) (l) (m) (n) (o) .

Fig. 2. Plots of the two BGGD model parameters and the correlation coeffi-
cients as a function of relative orientation. (a) BGGD parameters. (b) Correla-
tion Coefficients.

Fig. 3. Definition of the spatial orientation between adjacent pixels, where the
red boxes represent the current pixel and the blue boxes represent the spatially
adjacent pixels.

nearly uncorrelated at orientations 0 (rad) and , substantiating
the spatial relative orientation dependency observed in Fig. 1.

C. Closed-Form Spatial-Oriented Correlation Model

Motivated by this observed regular, periodic behavior, we
have deployed an exponentiated cosine function to model the
correlation coefficients as a function of relative orientation:

(4)

(5)

Fig. 4. The exponentiated cosine function and its fit to correlation coefficients
as a function of relative orientation (a) Exponentiated cosine function (b) Fit to
correlation coefficients.

where is the correlation coefficients between spatially adjacent
bandpass responses, and represent spatial and sub-band
tuning orientations, respectively, is the amplitude, is the
exponent, and is the offset. Note that the correlation coef-
ficient is period- in relative orientation and reaches max-
imum value when . Fig. 4(a) shows exem-
plar exponentiated cosine curves for different sets of parameters.
The exponentiated cosine model is able to capture a wide range
of periodic curves having bell-shaped lobes of varying relative
slopes. Fig. 4(b) plots an empirical correlation coefficient curve
as a function of relative orientation and its overlaid exponen-
tiated cosine fit for horizontally adjacent bandpass responses,
i.e., . From both the curve overlap and associated mean
squared error (MSE), it is apparent that the exponentiated co-
sine model fits the spatial-oriented correlations between adja-
cent bandpass luminance responses extremely well.
To gain more insight into this exponentiated cosine model, we

computed the correlation coefficients between horizontally adja-
cent bandpass responses as a function of sub-band tuning orien-
tation for all 29 pristine images in the LIVE IQA Database, and
found thecorrespondingexponentiatedcosinemodelparameters,
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TABLE I
CHI-SQUARED STATISTICAL TEST RESULTS

Fig. 5. Box plots of the exponentiated cosine model parameters (a) At the finest
scale (b) Amplitude across scales (c) Exponent across scales (d) Offset across
scales.

i.e., amplitude , exponent , and offset . In Fig. 5(a),we present
box plots of the three model parameters at the finest scale across
all pristine images with whiskers expressing the 1.5 interquartile
range (IQR). Fig. 5(b) to (d) show the box plots of amplitude, ex-
ponent, and offset obtained from all pristine images across dif-
ferent scales, respectively. Clearly, both the amplitude and offset
parameters hold fairly consistent values across image content and
scales, i.e., and , while the exponent param-
eter varies roughlywithin the range of [1, 1.4], in agreement with
the scale-invariant property of natural images [31]. Indeed, little
is lost and simplicity gained by taking and , wherein
a succinct one-parameter model may be arrived at:

(6)

In each of (5)–(6), the model parameters were estimated with
non-linear least squares using the Levenberg-Marquardt algo-
rithm [32].

III. VALIDATION OF THE EXPONENTIATED COSINE MODEL

To validate the robustness of the new spatial-oriented corre-
lation model (Eq. (6)), we performed a statistical hypothesis test
on the 29 pristine images in the LIVE IQA Database and the
23 pristine images in the VCL@FER Database [33]. In partic-
ular, we used a chi-squared statistical test for goodness of fit.
First, we computed the exponentiated cosine model parameter
at each scale by fitting the mean correlation coefficients be-

tween horizontally adjacent bandpass responses as a function of
sub-band tuning orientation for all LIVE pristine images. Then,
we obtained the corresponding exponentiated cosine function,

i.e., where is the number of sub-band tuning ori-
entations, using Eq. (6). Finally, we computed the chi-squared
statistic to determine whether the null hypothesis is sup-
ported, i.e., that the correlation coefficients as a function of sub-
band tuning orientation are drawn from a population with mean
equal to . Specifically, if is rejected, it means that the ex-
ponentiated cosine function is not a statistically robust model
for natural spatial-oriented correlations; otherwise, we can con-
clude that the spatial-oriented correlations of all LIVE pristine
images can be statistically represented by the exponentiated co-
sine model . The chi-squared statistic is computed as:

(7)

where is the model, are the
correlation coefficients as a function of sub-band tuning orien-
tation for the -th pristine image, and is the number of pris-
tine images. We also performed a chi-squared statistical test of
the exponential cosine model derived from the LIVE IQA Data-
base on the VCL@FER Database, where
are the correlation coefficients for the -th pristine image in the
VCL@FER Database. We repeated this procedure to perform
chi-squared statistical tests on all five scales, from 1 (finest) to
5 (coarsest). The test results for both the within- and cross-data-
base validations are summarized in Table I. We can see that the
-values for all five scales are larger than a significance level

, indicating that the new spatial-oriented exponenti-
ated cosine correlation model holds well for the tested natural
images. We also performed the same chi-squared statistical test
of the exponential cosine model derived from the VCL@FER
Database, and both the within- and cross-database (on the LIVE
IQA Database) validations show similar results, which are not
included in this paper due to the page limit. Interested readers
may refer to [34]. In addition, the model parameter estimated
for each scale varies slightly around 1.2, which supports the box
plot of in Fig. 5(c).

IV. CONCLUSION

We have proposed a new closed-form natural scene statis-
tical model that express the correlations between spatially neigh-
boring bandpass responses of natural images across sub-band
orientations. The new model was statistically validated as able
to model the relative spatial-oriented correlations of natural lu-
minance images. More importantly, our model is perceptually
relevant to models of visual processing in human vision sys-
tems (HVS), and nearly identical results can be attained using
different color space conversions, e.g., YUV, or scale-orienta-
tion decompositions, e.g., Gabor [26]. We believe that the new
correlationmodel will prove useful in a broad spectrum of image
and video processing algorithms. For example, both the bivariate
GGD and the exponentiated cosine models are closed-form, and
can be readily used to develop analytic optimization solutions
for image denoising, restoration, and enhancement.
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