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Abstract—In this paper, novel closed-form designs of the FIR
Hilbert transformers, maximally flat digital differentiators and
fractional delayers are proposed. The transfer functions of these
filters are analytically obtained by expanding some suitable func-
tions into power series. Efficient implementations can be derived
from the resultant transfer functions. The weighting coefficients
and the building blocks of these filters are explicitly expressed in
closed form. The proposed filter structures are more robust to the
coefficient quantization than the direct form.

Index Terms—Differentiator, FIR filter, fractional delayer, max-
imal flatness, transformer.

I. INTRODUCTION

T HE DESIGN of the Hilbert transformers (HTs), digital dif-
ferentiators (DDs), and fractional delayers (FDs) has been

widely considered. In [4], explicit expressions for the impulse
responses of the Case 3 and Case 4 maximally flat (MF) FIR
HTs were derived. These expressions with double summations
are computed by using a generalization of the Bernstein polyno-
mial. In the above article, the MF conditions were set at the fre-
quency for the Case 3 HTs and set atfor the Case 4 HTs.
In [5], another explicit expression for the impulse response of
the Case 3 MF HTs with maximal flatness at the frequency
was obtained. This closed-form impulse response expressed by
the product of two binomial coefficients is solved according to
the result of the DDs in the same article. The impulse response
obtained in [4] is identical to that in [5] but the latter one is more
compact.

In [6], the impulse response of the Case 3 maximally linear
FIR DDs with maximal flatness at was explicitly solved
by using the Crout’s method. The expression of the impulse re-
sponse is represented in recursive form with the sum of the bi-
nomial coefficients. In [7], the DDs with maximal linearity at

were approximated by the sum of a Case 3 and a Case
4 FIR filters. The filter coefficients are solved and recursively
expressed by using the Crout’s method. In order to realize the
filter, one half-delay ( ) is required. Consequently, an addi-
tional filter is needed for implementing this half-delay filter. In
[8], an explicit expression for the Case 3 FIR DDs with maximal
linearity at was solved. This result is equivalent to the one
in [6] but the former one was more compact in mathematical ex-
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pression. In [8], the author also showed that the MF FIR DDs
could be obtained by differentiating the continuous-time signal
which is reconstructed by the samples using the Lagrange in-
terpolation. In [10], the MF FIR DDs were designed with max-
imal flatness at where is an integer. This MF FIR
DDs were generalized to higher order degrees and presented
in [9]. These filters could be regarded as the interpolated FIR
(IFIR) filters [11], [12] where themodel filterswere the MF
FIR DDs with maximal flatness at described in [7] with
a -fold stretch. In [13], the Case 3 FIR DDs of the first and the
higher order degrees at and at were redesigned
based on expressing the frequency responses of the FIR filters
as weighted sums of with maximal linearity at ,
or with maximal linearity at . Accordingly, the
weighting coefficients can be explicitly solved. Efficient realiza-
tion structures were derived based on the closed-form transfer
functions of the filters. In [5], the impulse responses for the Case
3 FIR DDs with maximal linearity at were derived and
explicitly expressed in binomial coefficients. These weighting
coefficients are equivalent to the ones proposed in [7], [10] but
the former ones were more compact in mathematical expression.

The design of the FDs is a recent well-studied problem. In
[14], a comprehensive review for the design of the FIR and all-
pass FDs was presented. In [15], the design of the MF FIR FDs
with maximal flatness at arbitrary frequency was converted to
solve a set of linear equations but the solution was not explicitly
solved. In [16], the authors derived a closed-form expression of
the impulse response for the FIR FDs based on expanding the
ideal transfer function into power series. This result may be re-
garded as the MF FIR FDs with maximal flatness at . In
[17], the weighting coefficients of FIR FDs of odd length were
explicitly solved based on expressing the continuous-time sig-
nals as polynomials. The result is also equivalent to the FIR FDs
with maximal flatness at . The explicit expression for the
impulse responses of the MF FIR FDs of arbitrary order with
maximal flatness at arbitrary frequency was derived in [18], [19]
by solving linear equations expressed in [15].

The filters designed by MF approach may lead to efficient
implementation structures. In [20], the linear-phase MF lowpass
FIR filters were explicitly derived. The filters were implemented
efficiently by structures proposed in [1]. In [2], the linear-phase
sharp cutoff lowpass FIR filters were designed where the MF
FIR filters served as the building blocks. This technique did not
involve iterative approximation and the resultant filters can be
designed quickly and implemented efficiently. In [3], the con-
cept of MF building blocks was extended to design the optimal
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linear-phase FIR lowpass filters with a prescribed degree of flat-
ness in the passband. Because the weighting coefficients of the
linear-phase MF lowpass FIR filters are the binomial coeffi-
cients, they can be expressed as cumulative products of simple
rational numbers. The dynamic range of the weighting coeffi-
cients is greatly reduced. In this paper, we will show that filters
designed by the power series expansion will obtain similar effi-
cient realization structures.

In this paper, we derive the transfer functions of the HTs, DDs
and FDs by expanding some suitable functions into power se-
ries. Although the methods for designing these filters have been
widely reported, the proposed approach is different from the ex-
isting methods in several ways. First, the method of power se-
ries expansion does not express the weighting coefficients as the
solution of certain linear equation. These coefficients are ob-
tained without analytically or numerically solving linear equa-
tions while the step of explicitly or implicitly solving linear
equation appears in many existing method. That is, the power
series expansion is a more simple and direct method for de-
signing FIR filters. Second, we will show that the resultant fil-
ters obtained by the proposed method are exactly the maximally
flat filters which have been widely reported in the literature
and reviewed in this section. In other words, we propose a new
method to unify the design of the maximally flat filters. How-
ever, this approach not only gives new expressions of the filter
coefficients, but also reveals new structures of the maximally
filters. These new structures facilitate efficient implementation
of the maximally flat filters. Third, we will show that resul-
tant weighting coefficients are independent of the filter orders.
Based on this property, the filter quality can be gradually im-
proved by adding extra blocks without necessity of updating the
coefficients in the previous blocks. That is to say, the proposed
method reveal the fact that the maximally flat filters can be im-
plemented by module.

This paper is organized as follows. In Section II, we propose a
design of the FIR HTs based on expanding the signum function
into power series. The MF FIR HTs proposed in [4] are special
cases of our results. In Section III, FIR DDs are designed by
expanding some inverse triangular functions into power series.
These filters are equivalent to the well-studied MF FIR DDs but
the proposed approach provides efficient realization structures
which are not easily found from the previous results. In Sec-
tion IV, the FIR FDs are designed by expanding the ideal transfer
function into binomial series. This result is equivalent to the
transfer function proposed in [16]. However, our approach will
obtain an efficient implementation structure similar to the struc-
tures of the HTs and DDs. In Section V, design examples and
coefficient quantization effects are provided. Section VI makes
a final conclusion.

II. DESIGN OFFIR HILBERT TRANSFORMERS

The ideal frequency response of HTs is expressed as

for

for .
(1)

This frequency response may be regarded as the signum func-
tion multiplied by a constant factor where the signum
function is defined by

for

for .
(2)

Therefore, instead of designing a filter with frequency response
expressed in (1) directly, the design of the HTs can be regarded
as designing a filter with the signum frequency response. This
may be accomplished by expressing the signum function in
Fourier series, and represented as [21]

(3)

The above sine series is equivalent to the idea Case 3 HT [22].
Instead of expanding the original , another approach is

to express it as a composite function. An interesting property of
is that

for . Consequently, if is approximated by
a polynomial in and or is substituted for ,
we obtain an FIR filter. On the other hand, if is approx-
imated by a rational function, an IIR filter is obtained. In this
paper, is approximated by a polynomial. This is achieved
by truncating a power series of to finite terms.

In order to expand into power series, we begin with the
following representation of

(4)

where . The Taylor series of at center is
expressed by

where the double factorial is defined as follows:

Consequently, the signum function is expressed by

(5)

The range of the expanding centeris restricted for its con-
vergence. The series expressed in (5) converges for

, that is, . Since or will be
substituted for , has to be chosen larger than . On the other
hand, the expanding centerin the -domain is associated to a
frequency center in the -domain with the relationship of

or . Therefore, must be smaller
than unity to obtain a real value of . Accordingly, the value of

is restricted by

(6)
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Fig. 1. Implementation structures for the Case 3 FIR HTs. The Case 4 filters are obtained by substituting thez for z in each block. (a) Original structure
derived from power series expansion. (b) Modified structure.

To design the FIR HTs, or will be substituted
for . In the following sections, we will discuss these two cases
separately. If or is substituted for , we obtain
the Case 3 or Case 4 FIR filters, respectively. Detailed investi-
gation on designing and implementing these filters is provided
in each sections.

A. Design of Case 3 FIR Hilbert Transformers

To obtain the Case 3 FIR filters, we substitute for in
(5) and truncate the series up to the firstterms. The signum
function is now approximated by a sinusoid power series and
expressed as

(7)
Multiplying (7) by and substituting for ,
the transfer functions for the zero phase Case 3 FIR HTs are
expressed as

(8)

To obtain the causal transfer functions, is multiplied
by , and the resultant transfer functions of the Case 3
FIR HTs of the ( )th-order are represented by

(9)

The expanding center ofin -domain is associated with an-
other expanding center in the -domain. The relation be-
tween and is represented as

Since is restricted by , is within the range
of . That is, the ideal frequency response is approxi-
mated well within middle frequency band.

In order to investigate the realization of the transfer func-
tion, denote ,

, and for
. The transfer functions are rewritten

as

(10)

Based on (10), an implementation structure is shown in
Fig. 1(a). This structure consists of building blocks of
and one block of . There are delay elements and

weighting coefficients for this realization scheme. However,
there may be extra multiplications in the blocks of
if we do not pose any limit on . Therefore, the number of
multiplications are for a th-order FIR HTs. However,
for some special choices of, the multiplications may be
halved since may be realized without any multiplication.
A useful property is that the weighting coefficients are inde-
pendent of the filter order. Accordingly, the higher order filter
can be obtained by cascading a lower order filter with
without changing the low order filter coefficients.

A modified realization structure is obtained based on the ob-
servation that the weighting coefficients can be written as

That is, the weighting coefficients are products of simple
rational numbers. According to this observation, this leads to
an implementation structure shown in Fig. 1(b). The dynamic
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Fig. 2. Efficient implementation structure of the Case 3 MF FIR HTs with maximal flatness at! = �=2. Case 4 MF FIR HTs with maximal flatness at! = �
are obtained by substituting thez for z .

range of weighting coefficients are now reduced. In fact, the
coefficients are all within the range of .

The special case of reduces to a very simple transfer
function of the Case 3 FIR HTs. The transfer function is ex-
pressed as

(11)

There are delay elements and multipliers for im-
plementation. Refer to the frequency responses of the MF Case
3 FIR HTs derived in [4]

and the magnitude responses of our proposed FIR HTs in (11)
are represented as

it is easy to show the following property.
Property 1: for .
That is, this special case is equivalent to the MF Case 3 FIR

HTs proposed in [4].

B. Design of Case 4 FIR Hilbert Transformers

The Case 4 FIR filters are obtained by substituting
for in (5) and truncate the resultant series up to the first
terms. The signum function is now approximated by

(12)

Multiplying this equation by and substituting
for , the transfer functions for the Case 4

FIR HTs are expressed by

(13)

To obtain the causal transfer functions, are mul-
tiplied by . Therefore, the transfer functions of the
( )th-order Case 4 FIR HTs are represented by

(14)

The relation between and the expanding center in the fre-
quency domain is expressed by

Since is restricted by , is within the range
of . Therefore, the ideal frequency response is approx-
imated well within the high frequency band.

The implementation is similar to that of the Case 3
filter except different building blocks. Denote

, , and
for . The

transfer functions are rewritten as

(15)

Equation (15) implies that delay elements and
weighting coefficients are needed for implementation. There
may be extra multiplications in the blocks of for the
general choice of. Therefore, the number for multiplications
are for the th block FIR HTs and it needs more multi-
pliers than the direct form. However, for some special choices
of , the number of multipliers may be halved since may
be realized without any multiplication. The weighting coeffi-
cients are identical to the ones in the Case 3 HTs. Accordingly,
a higher order filter can still be constructed by cascading a lower
order filter and without altering the low order filter coeffi-
cients. A modified implementation with reduced dynamic range
is shown in Fig. 2.

The special case of leads to a simple transfer function
of the Case 4 FIR HTs. The transfer function is expressed as

(16)
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There are delay elements and multipliers needed
for implementation. This special case is also equivalent to the
MF Case 4 FIR HTs at proposed in [4].

III. D ESIGN OFMAXIMALLY FLAT DIGITAL DIFFERENTIATORS

The ideal frequency response of the DDs is

(17)

The design of the DDs is similar to the design of the HTs. The
filters with frequency response are designed and
the resultant filters are multiplied byto obtain the DDs. The
Fourier series of is written by [21]

(18)

The weighting coefficients are equivalent to the ideal impulse
response of the DDs.

The proposed design of DDs by power series is based on the
relation between the trigonometric functions and their inverse
functions. All the designed DDs are MF FIR filters which may
appear in open literature reviewed in Section I, but the power
series approach reveals some interesting structures which are
useful for designing efficient implementation structures.

A. Design of Case 4 Maximally Linear FIR Differentiators
at

It may be a natural approach for the design of the DDs
to use the relationship between and , since

over some frequency band whereis
equal to 1 or in this paper. The power series of the inverse
sine function can be expressed by [24]:

(19)
Substituting for and truncating the series up to first
terms, we obtain the following approximation for

(20)

In [13], the authors designed a first-order DD for the low fre-
quency band by expressing the FIR DDs as a sum of the power
of . The weighting coefficients are explicitly solved and
the transfer functions could be written by (20). The authors also
pointed out the relationship between the design of the DDs and
the series expansion of the inverse sine function. The frequency
response of this filter exhibits good linearity near . How-
ever, the approximation toexpressed in (20) is valid only in the
range of . We can find out this fact by considering
the composite function of in the range of [ ].
Note that is increasing for when is
increased from 0 to is increasing from 0 to 1 and

is increasing from 0 to . However, when is
increased from to , is decreasing from 1 to 0 and thus

is decreasing from to 0. That is,

is approximated to in rather than the full frequency
band by the power series expressed in (20).

To design the fullband DDs, we may substitute for
in (19) and use the equality of

Then the approximation to is expressed by

(21)

The associated causal transfer function is expressed by

(22)

The DDs with the transfer functions expressed in (22) are Case
4 FIR filters of the th order. There are
delay elements and multipliers needed to implement the DDs
expressed in (22). However, there is a modified implementation
structure with a new set of weighting coefficients expressed as

where are the
weighting coefficients of the original implementation. The
block diagram of the modified structure is shown in Fig. 3.

B. Design of Case 3 Maximally Linear FIR Differentiators
at

The Case 3 MF FIR DDs are designed by expanding a dif-
ferent function into the power series from the original inverse
sine function discussed in Section III-A. This prototype func-
tion is expressed by

(23)

In [23], the above equality was established by changing variable
in theGregory series. In [13], the function

was a intermediate result to expand into power se-
ries. However, (23) may be derived by differentiating the power
series of with respect to and is available in some
mathematical handbooks, such as [24].

To design the DDs by using (23), we substitute for
and rearrange some terms. After truncating (23) up to the first
terms, we obtain the following approximating formula of

as

(24)
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Fig. 3. Efficient implementation structure of the Case 4 MF FIR DDs with maximal linearity at! = 0.

Fig. 4. Efficient implementation structure of the Case 3 MF FIR DDs with maximal linearity at! = 0.

The corresponding causal transfer function is expressed as

(25)

The DDs with the transfer functions expressed in (25) are the
Case 3 FIR filters of the th-order. There are
delay elements and multipliers needed to implement the DDs
according to (25). These DDs are equivalent to the MF Case
3 FIR DDs explicitly expressed in [8]. Consider the frequency
responses of the MF Case 3 FIR DDs derived in [8]

and the magnitude responses of our proposed FIR DDs in (24)
are represented as

we can prove the following property.
Property 2: for .
Like the modified structure of the HTs described in Section II

a new modified implementation is obtained with the weighting
coefficients expressed as

where are the weighting coeffi-
cients of the original implementation structure. The block dia-
gram of the modified structure is shown in Fig. 4.

IV. I MPLEMENTATION OF THE MAXIMALLY FLAT FIR
FRACTIONAL DELAYERS

The ideal transfer function of the FDs with desired delayis

(26)

In [16], the function in (26) was expanded into the binomial
series, truncated, and then simplified algebraically to obtain the
impulse response. If the power series of is truncated to
the first terms, it may be written as [24]

(27)
This transfer function of the FIR FDs is an intermediate and
simplified result in [16]. In fact, the transfer function expressed
in (27) is equivalent to the MF FIR FDs explicitly obtained in
[18] with maximal flatness at . To show this fact, consider
the transfer function of the th-order MF FIR FDs derived in
[18]

The following property holds.
Property 3: for .
The transfer function in (27) reveals a new structure of the

FIR FDs. The major advantage of this structure is that the
weighting coefficients are independent of the filter order. If we
represent the weighting coefficients as cumulative products of
rational numbers and write the coefficients as

where are the orig-
inal weighting coefficients, an efficient implementation struc-
ture similar to the ones of the MF HTs and DDs is obtained.
This realization structure is shown in Fig. 5.

V. COEFFICIENT QUANTIZATION EFFECTS ONFILTER

PERFORMANCE

Fig. 6 shows the magnitude responses of the Case 3 FIR HTs
expressed in (9) with 5, 10, 15, and 30. The expanding
center is for the four filters. These filters exhibit
good approximation around . The bandwidth is
increasing by increasing . The effect of the expanding center
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Fig. 5. Efficient implementation structure for the MF FIR FDs with maximal flatness at! = 0.

Fig. 6. Magnitude responses of the Case 3 FIR HTs with variousM and
expanding centerc = sin 0:4�.

on the frequency response of the Case 3 FIR HTs is shown
in Fig. 7. The filters of with , ,

, and are designed. These central frequencies
are associated to the expanding centers at ,

, , and . The inset shows the
detailed frequency responses around . These plots
indicate that the bandwidth is increasing but the magnitude
response at is degraded for smaller .

Fig. 8 shows the rounding effect of the coefficients on the
magnitude responses of the Case 3 FIR HTs of and

which is corresponding to the MF FIR HTs around
. The closed-form impulse response of the direct

form structure is obtained in [4]. The original and the modi-
fied implementations derived by the power series expansion are
shown in Fig. 1. If the impulse response of the direct form is
rounded to 4 bits, the corresponding magnitude response is not
flat for the direct form implementation. However, the magnitude
responses remain flat after rounding the weighting coefficients
for the proposed structures. The inset shows the detailed mag-
nitude responses around . After rounding to 4 bits, the
magnitude response of the original structure is better than the
one of the modified structure for the larger bandwidth. The per-
formance evaluation on the rounding effect is evaluated by the
root mean squared error(RMSE) over a frequency band of

and expressed as

(28)

Fig. 7. Magnitude responses of the Case 3 FIR HTs with various expanding
centers andM = 5.

Fig. 8. Magnitude responses of the Case 3 FIR HTs ofM = 10 andc = 1

with coefficients rounded to 4 bits.

where is the designed frequency response and is
the desired one. Fig. 9 shows the RMSEs for the MF FIR HTs
with various . The RMSEs are evaluated within the interval
of , i.e., and in (28). The
impulse responses of the direct form and the weighting coeffi-
cients of the proposed structures are all rounded to 4 or 8 bits.
The curves indicate the errors of the direct form implementation
are larger than those of the proposed structures. The original im-
plementation is better than the modified structure. The error is
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Fig. 9. RMSEs of the Case 3 FIR HTs of different implementation structures
versusM . (d), (o), and (m) stand for the error curves of the direct form, original
implementation derived by the power series, and the modified structure,
respectively.

Fig. 10. Magnitude responses of the Case 4 FIR HTs with variousM and
expanding centerc = sin (0:75�=2).

not decreasing for increasing since some weighting coeffi-
cients are too small to be represented by finite bits.

Fig. 10 shows the magnitude responses of the Case 3 FIR HTs
expressed in (14) with , 10, 15, and 30. The expanding
center is chosen to be equal to for the four fil-
ters. These filters exhibit good approximation around .
The bandwidth is increasing by increasing. The effect of the
expanding centeron the frequency response of the Case 4 FIR
HTs is illustrated in Fig. 11. The filters of with

, , , and are designed. These frequen-
cies are associated to the expanding centers of ,

, , and , respectively. The inset
shows the detailed frequency responses around . These
plots indicate that the bandwidth is increasing but the magnitude
response at is degraded for a small .

Fig. 12 shows the rounding effects on the magnitude response
of the Case 4 FIR HTs of with which is cor-

Fig. 11. Magnitude responses of the Case 4 FIR HTs with various expanding
centers andM = 5.

Fig. 12. Magnitude responses of the Case 4 FIR HTs ofM = 10 andc = 1
with coefficients rounded to 4 bits.

responding to the MF FIR HT around . The impulse
response of the direct form implementation is also obtained in
[4]. The original and the modified implementation structures de-
rived by the power series expansion are shown in Fig. 1. Sim-
ilar to the Case 3 HTs, the corresponding magnitude response
is not flat if the impulse response is rounded to 4 bits in the
direct form implementation. The magnitude responses keep flat
after rounding the weighting coefficients for the proposed struc-
ture. The inset shows the detailed magnitude responses around

. Fig. 13 shows the RMSEs for the MF FIR HTs
with various . The RMSEs are evaluated within the interval
of . The impulse responses of the direct form filter
and the weighting coefficients of the proposed structures are
rounded to 4 or 8 bits. These curves indicate the errors of the
direct forms are larger than those of the proposed ones. The orig-
inal implementations are better than the modified ones.

Fig. 14 shows the rounding effect on the magnitude response
of the Case 4 FIR DDs of which are associated to the
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Fig. 13. RMSEs of the Case 4 FIR HTs of different implementation structures
vs.M . (d), (o) and (m) stand for the error curves of the direct form, original
implementation derived by the power series and the modified structure,
respectively.

Fig. 14. Magnitude responses of the Case 4 FIR DDs ofM = 10 with
coefficients rounded to 4 bits.

MF FIR DDs with maximal flatness at . The magnitude
response of the modified structure with coefficients rounded to 4
bits is more closer to the ideal one than the magnitude response
of the original structure. Fig. 15 shows the RMSEs for the MF
FIR DDs of various . The RMSEs are evaluated within the
interval of where the coefficients of the original and
the modified implementation structures are rounded to 4 or 8
bits. The errors of the original structures are larger than those of
the modified structures. It is interesting that the RMSEs of the
modified structure with coefficients rounded to 8 bits are smaller
than those without rounding.

Fig. 16 shows the rounding effect on the magnitude responses
of the Case 3 FIR DDs of which are corresponding
to the MF FIR DDs with maximal linearity at . The
closed-form impulse response of the direct form structure is
obtained in [8]. If the impulse response of the direct form is
rounded to 4 bits, the corresponding magnitude response is

Fig. 15. RMSEs of the Case 4 FIR DDs of different implementation structures
v.s.M . (o) and (m) stand for the error curves of the original implementation
derived by the power series, and the modified structure, respectively.

Fig. 16. Magnitude responses of the Case 3 FIR DDs ofM = 10 with
coefficients rounded to 4 bits.

not linear around . However, the magnitude responses
keep linear after rounding the weighting coefficients for the
proposed structures. Fig. 17 shows the RMSEs for the MF FIR
DDs of various . The RMSEs are evaluated in the interval of

. The impulse responses of the direct form structure
and the weighting coefficients of the proposed structures are
rounded to 4 or 8 bits. The curves indicate the errors of the
direct forms are larger than those of the proposed structures.

VI. CONCLUSIONS

A novel design of the FIR HTs, DDs, and FDs based on power
series expansion is proposed and the filter coefficients are ex-
plicitly expressed in closed form. The weighting coefficients are
able to be represented by products of simple rational numbers.
Based on the simple forms of the weighting coefficients, effi-
cient implementation structures are derived. The magnitude re-
sponses of the filters are less sensitive than those of the direct
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Fig. 17. RMSEs of the Case 3 FIR DDs of different implementation structures
v.s.M . (d), (o), and (m) stand for the error curves of the direct form, original
implementation derived by the power series and the modified structure,
respectively.

form structures when the filter coefficients are rounded to finite
bits. The finite word length effect on the filer performance is in-
vestigated and evaluated by the RMSE criterion.
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