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Closed-Form Discrete Fractional and Affine Fourier
Transforms

Soo-Chang Pefellow, IEEE,and Jian-Jiun Ding

Abstract—The discrete fractional Fourier transform (DFRFT)
is the generalization of discrete Fourier transform. Many types

of DFRFT have been derived and are useful for signal processing

applications. In this paper, we will introduce a new type of
DFRFT, which are unitary, reversible, and flexible; in addition,
the closed-form analytic expression can be obtained. It works
in performance similar to the continuous fractional Fourier
transform (FRFT) and can be efficiently calculated by FFT. Since
the continuous FRFT can be generalized into the continuous affine
Fourier transform (AFT) (the so-called canonical transform), we
also extend the DFRFT into the discrete affine Fourier transform
(DAFT). We will derive two types of the DFRFT and DAFT. Type
1 will be similar to the continuous FRFT and AFT and can be
used for computing the continuous FRFT and AFT. Type 2 is the
improved form of type 1 and can be used for other applications of
digital signal processing. Meanwhile, many important properties
continuous FRFT and AFT are kept in closed-form DFRFT and
DAFT, and some applications, such as the filter design and pattern

recognition, will also be discussed. The closed-form DFRFT we

introduce will have the lowest complexity among all current
DFRFT's that are still similar to the continuous FRFT.

Index Terms—Affine Fourier transform, discrete affine Fourier
transform, discrete Fourier transform, discrete fractional Fourier
transform, Fourier transform.

|I. INTRODUCTION

HE continuoudtractional Fourier transform (FRFT)1],

T

defined as
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The FRFT has been further generalized into the special affine
Fourier transform (SAFT) [3] (the so-called canonical transform
[4]). It is defined as
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wheread — bc = 1 must be satisfied. Special affine Fourier
transform has the additive property

ay,by,c1,d1 az,bz,c2,d2 az,b3,c3,d3
Ofer e t) (Ofstbercs o) (5(4))) = O (f(1))

)
where
a1 b1 as b _|as b3
Cc1 dl Co dQ o C3 d3
and it has the reversible property
oo (0t D(fw)) = f1)  (5a)

We will call this special affine Fourier transform tredfine
Fourier transform (AFT) The affine Fourier transform can

I L . _extend the utilities of FRFT and is a useful tool for the optical
[2], which is the generalization of Fourier transform, '%ystem analysis. The effect of the FRFT and AFT can be

interpreted by the Wigner distribution function (WDF). After
doing the FRFT, the WDF o®%.(f(¢)) will be the rotation of
the WDF of f(¢) with angle« [23], and after doing the AFT,
the WDF of O**%(#(t)) will be the twisting of the WDF
of f(t).

After the continuous fractional Fourier transform has been

where the phase af'1 — j cot a is constrained in the range of yerived, many researchers have tried to derive their discrete
(= /4,m/4). It has been discussed in recent years and used:interpart, that is, theiscrete fractional Fourier transform
many applications such as optical system analysis, filter deS'QBFRFT) We briefly review DFRFT's below. The name for each

soluiton of differential equations, phase retrieval, pattern reCOgpe of DFRFT is not recalled by the original authors. We give
nition, etc. The continuous FRFT satisfies the additivity progpeir names for easy classification.

erty as

0 (0F(F®)) = OF*(£(2)). @)
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1) Direct form of DFRFT The simplest way to derive the
DFRFT is sampling the continuous FRFT and computing
it directly, but when we sample the continuous FRFT
directly, then the resultant discrete transform we obtain
will lose many important properties. The most serious
problem is the DFRFT of this type will not be unitary and
reversible. Besides, lacks closed-form properties, and not
additive, so its applications are very limited.

) Improved sampling-type DFRFETh [5], a way to sample
the continuous FRFT properly is introduced, and then, the
resultant DFRFT will have the similar transform results as

1053-587X/00$10.00 © 2000 IEEE
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3)

4)

5)

6)

Although many types of the discrete fractional Fourier trans-

form

the continuous FRFT. Although, in this case, the DFRF[B] is also derived from the sampling of the continuous FRFT.
can work very similarly to the continuous case and hasHere, however, we will sample the continuous FRFT and affine
fast algorithm, but the transform kernel will not be orthogFourier transform by some proper intervals, and therefore, the
onal and additive. Besides, many constraints, includingansform matrix will be orthogonal and reversible. It can be
the input signal constraint, should be satisfied. written in the closed form so that many properties can be de-
Linear combination-type DFRFETh [6]—[8], and [24], the rived, and the fast algorithms can be achieved. Our idea comes
discrete fractional Fourier transform is derived by usinffom the [12] and [22]. In these papers, when we sample the
the linear combination of identity operation, DFT, timdractional Fourier transform properly, we will obtain an unitary
inverse operation, and IDFT. In this case, the transfortransform. We will improve upon these ideas.

matrix is orthogonal, and the additivity property and the In this paper, our focus is on thgractical applications
reversibility property will satisfy for this type of DFRFT. Thus, although our DFRFT/DAFT seem neat in concepts and
However, the main problem is that the transform resulsacrifice the additivity property, they are very suitable for the
will not match to the continuous FRFT. Besides, it willpractical applications due to the simpler and closed form of
work very similarly to the original Fourier transform ordiscrete fractional convolution and correlation introduced in
the identity operation and lose the important characteBection 1I-D and the advantages listed in Section II-E. Our
istic of “fractionalization.” DFRFT/DAFT will have the lowest complexity among all the
Eigenvectors decomposition-type DFRHAR [9]-[11], currentthe DFRFT/DAFT's that still have the similar properties
and [16], the authors derive another type of discrete fraas the continuous FRFT/AFT.

tional Fourier transform by searching the eigenvectors Due to the orientation of practical usage, we will derive two
and eigenvalues of the DFT matrix and then compute tygpes of DFRFT/DAFT. These two types of DFRFT/DAFT are
fractional power of the DFT matrix. This type of DFRFTessentially the same but different in parameterizations. The first
will work very similarly to the continuous FRFT andtype we derive has the parameters that are more directly linked
will also have the properties of orthogonal, additivityto the continuous FRFT/AFT and suits the applications of com-
and reversibility. In [11], they have further improved thiguting the continuous FRFT/AFT. On the other hand, type 2
type of DFRFT by modifying their eigenvectors morehas the simpler parameters set and allows more elegant expres-
similarly to the continuous Hermite functions, which areion for the operator kernels. It is suitable for other applications
the eigenfunctions of the FRFT. These types of DFRFT& DFRFT/DAFT, such as the filter design, pattern recognition
lack the fast computation algorithm, and the eigenvectofdescribed in Section IV), and the use for the phase retrieval
cannot be written in a closed form. discussed in [12] and [22] can also be improved by the type 2
Group theory-type DFRFETIN [13], the concept of group DFRFT/DAFT proposed in this paper.

theory [15] is used, and the DFRFT as the multiplication In Section II, we will give the derivation and definitions of
of DFT and the periodic chirps are derived. The DFRF®ur new types of DFRFT and DAFT. For different applications,
derived will satisfy the rotation property on the Wignewe will use different parameterizations to define 2 types of
distribution, and the additivity and reversible propertfpFRFT/DAFT. In Section I, we will discuss their properties
will also be satisfied. However, this type of DFRFT carand their transform results for some special signals. In Section
be derived only when the fractional order of the DFRFTV, we discuss their applications. Finally, in Section V, we
equals some specified angles, and when the numbernaéke a conclusion.

points NV is not prime, it will be very complicated to de-

rive. II. DERIVATION OF CLOSED-FORM DISCRETE FRACTIONAL
Impulse train-type DFRFTRecently, in [14], another AND AFFINE FOURIER TRANSFORMS

type of DFRFT 'S derived. This type. of DFRFT can be,\A. The Closed-Form Discrete Fractional Fourier Transform
viewed as a special case of the continuous FRFT. In thcg'TSType 1
case, the input functiofi(¢) is a periodic, equally spaced

impulse train, and if the number of impulses in a period 1) The Derivation: To derive the DFRFT, we first sample
is IV, and the period i\, thenN = A2. Besides, the the input functionf(¢) and the output functio®,, (=) of the
value oftan « is limited and must be a rational numbefFRFT [see (1)] by the intervahi,, Au as

(« is the order of FRFT). Because this type of DFRFT y(n) = f(n-At) Ya(m) = Fulm - Auw) (6)
can be viewed as a special case of continuous FRFTh . NN +1 N andm — —M. —M
many properties of the FRFT will also exist and have thi 'eren = ’ +1..., N, andm = ’ +
fast algorithm. However, this type of DFRFT has man;l/’ -+, M. Here, we do not start our sampling tat.: 0 and
constraints and cannot be defined for all values.of u = 0. Instead, we try to make the DC component in the center.
From (6), we can convert (1) as

(DFRFT) have been derived recently, no discrete affine Y, (m) = /1 —j2- cot « AF . b oot am® Au?
Y

Fourier transform (DAFT) has yet been derived.

In this paper, we will derive a new type of DFRFT, and then o AMAL
extend it into the discrete affine Fourier transform (DAFT). The X Z e’
DFRFT and DAFT we derived come from the proper sampling n=-N
of the continuous FRFT and AFT. The DFRFT introduced in CereotanA iy, @)
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The above equation can be written as the form of transformatione DFRFT of type 1:

matrix 1)
N sin o — J cos o Z.cot arm?Au?
Yalm)= Y Falm,n)-y(n) ®) Yalm) =\ "1 @
n=—N N )
where x >, T peotani Aty ()
1—35-cota 7 cot am? A n=—N
Fo(m,n) = I At ezt . whena € 2D7 4+ (0,7), D isinteger
B efj~cscoz~n~rnAuAt B e%w:ot a-n? At? (9) (i.e., sin v > 0) (17)

in order for (8) to be reversible. We will try to make the inverse 2)
transform to be the Hermitian (conjugation and transpose) of Yo(m) = \/—sina + jcosa bt am?Au?
a — TS

F,(m,n) whenM > N, i.e., 2M +1
M N
y(n)= Y Fi(m,n)-Yo(m) forM >N. (10) x N IEHE L edeotantat )
m=—M n=—N
Then, from (8) and (9) whena € 2D7 + (—m,0), D isinteger
Z Z Fr(m,n) - Fa(m, k) - y(k) - . (i.e., sina < 0). (18)
e M ke Additionally, the constraints that
N ) M >N (2N +1,2M + 1 are the number of points
Z Z Z.cot - (k*—n )At i . i
27r| sin a| - in the time, frequency domajn
j-cscame- (n k)-Ault (k) (11) Au - At =27 - |Sina|/(2M + 1) (19)
. e . .
If we want the summation for in (gil) to becomé(n — k) must also be satisfied. We note that wheh= N and
then ' o = 7/2, (17) will become the DFT, and whem =
—x /2, (18) will become the inverse DFT. We also note
Au-At =S 27 -sina/(2M +1) (12) that whene = D -« and D is some integer, there is no
. _ . _ proper choice folAw and At that satisfies this constraint
where|S| is some integer prime t@M + 1. In this case, (9) of (15), and we cannot use (17) or (18) as the definition
becomes of DFRFT wheny = D -#. In fact, in these cases, we can
Fo(m,n) = 1—j-cota A phreot am® Au? just use the following definitions:
27 3)
P R S'Zzl’f'”'lm . L.cot a-n? At?
¢ e (13) Yo.(m) =y(m) whena = 2D~ (20)
and
3 F( k k K
ZZ () Lo, )08 Ya(m) = y(-m) whena=(2D+1)r.  (21)
_ 2M+1 9 Equations (17)—(21) are the definition of the DFRFT.
= 2n|sing] ~y(n) 2) Some Important Discussion About the DFRFT of Type
OM L1 1: We also note, from (1) and (2), the inverse of the forward
+ 2 _ _ ° ¢ _
= : : At - y(n). (14)  continuous FRFT with ordet is just the forward continuous

27 sgn(sin &) - sin«
We then normalizé’, (m, n) to satisfy (11) and obtain the trans-
form matrix F,(m,n) as

FRFT with order—c«. In fact, this property will also exist for
the DFRFT defined as (17)—(21). Since, from (11), the inverse
of F,,(m,n) is just its Hermitian, i.e.F*(n, m), and if we de-

F,(m,n) = \/sgr(sm a)éﬁlji_ jeosa) fine F,,(m,n) as (16), then we find

. % -cot a-m? Au? —J- S'ercf'zim F_Q:Au:At(m7 7’L) = F:',At,Au(nv m) (22)

el ot cem? A2 - In the above equation, we notice that the sampling interval of

ne : (15)  the input (the second subscript) and the sampling interval of

For simplicity, we can choos§ = sgr(sina) = +1, and the output (the third subscript) are exchanged. Then, we can

rewrite (15) as conclude that
(. m) \/ [sinal —jSQsine) cOsa 7 coram? au Op2auAt (ogﬁgFAT“(y(n))) = y(n) (23)
_ . zunzin 3)]\2/{ +w} i cot am? Af? thatis, the DFRFT of order « with the sampling intervahw in
FMEL e? . (16) the input andAt at the output will be the inverse of the DFRFT

Then, we obtaln the following two formulas of discrete fracef order« with the sampling interval\t in the input andA« at
tional Fourier transforms (DFRFT) for Hina > 0 and 2) the output. This is the reversible property of the DFRFT of type
sina < 0: 1.
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As the continuous FRFT, the DFRFT of type 1 also has thenis will increase the computation time of the DFRFT because
periodic property, that is for the continuous FRFT

Yo(=m) = Youn(m) Ya(m) = Yason(m).  (24) OR(f()) = OF ™2 (FT(f(1)))

The DFRFT of type 1 will have the period @f as the contin- SO When|sin o] is very small, we can first do the forward DFT
uous FRFT. The DFRFT’s of type 1 also have the conjugati¢@' the sampling off(¢) and do the DFRFT defined as (17) or

property that (18) with the orderx — 7/2. Thus, we can change the DFRFT
. . of type 1 to
Y.(m)=Y*_(m) if y(n)isreal 25 ; 2 A2
( ) ( ) ( ) ( ) Ya(m) -C. 6—§~tana~rn A

The rest important properties will be derived in the Section Ill.
Although the DFRFT introduced here has no additivity prop-

erty, it can be convertible, that is, we can convert the DFRFT

with some set of parameters into the DFRFT with another set of

j j . 2w -sgn(cos a)-rm
X E E el M1

7 22 2 s 27nm-r
parameters. Suppose we use, Aw; for the DERFT with the x e ztama T AN TSR Ly(n)  (29)
parametery; and use\t, Au, for the DFRFT with the param- where
etera; (The sampling interval in both time domains is the same Au-Af =27 -|cosa|/(2M + 1)
and fixed). Then, from (16), we find T .
o | cos c| + j sgn(cos &) sin v (29a)

| sin ca| — j sgn(sin az) cos ap

N
. 2m-sgn(sin ag)m-m

E e J oM 1

n=—N

J 2 A2
B e§~c0ta2~rn Aug |

% e%~(cotag—cota1)~n2Atze%~cot a1 n? A B

y(n)

B \/| sin ap| — 7 sgn(sin ag ) cos aa
B 2M +1
M

Z h(((m —7))2m+41)

r=—M

N
L 2mesgn(sin ag)omer
. E G—J'_ 2T 1

n=—N
where h(m) is the DFT or IDFT of exp(j{cotas —
cot ap )n? At? /2)

7. m2Au2
.e2 cot az-m”Aug |

B e%w:otapnzAtz y(TL)

. 27 esgn(sin ag)nem

N
1
h - - —J M1
(m) = o371 n;Ne

X C%'(mt ag—cot (yl).nzmz' 26)
In addition
((n))apg+1 =n+ D2M + 1)
where
D is some integer such that + D(2M +1)| < M. 27

Therefore, we obtain

| sin ca| — j sgn(sin az) cos ag

Y =
as(m) | sin o1 | — j sgn(sin ay ) cos oy

M

S h((m = r))arre)

r=—M
7’) . (28)

M m2Au2
ez cot az-m”Auj |

(2M +1)(2N + 1)
Then, because
At-Af =2n/(2N +1), Af=2x/(At(2N + 1))
for the case thaltsin «| is small, we can define the DFRFT as
follows.
e Modification form of the DFRFT of type 1 when
|sinea] =~ 0
Ya(m) —C. Cf%manoornzduz
N N . 27-sgn(cos a)-rm
X Z Z e 2 M 1
r=—Nn=—N

_j2n’tana-r?

i 2mmer
(eN+1)ZAZ oI SNt y(n)

X e (30)
whereC'is the same as (29a), and the constraintfébecomes
Au= (2N +1)-|cosal - At/(2M + 1). (31)
When| sin ¢ is small, we can use (30) as the DFRFT.

The DFRFT of type 1 has a very important advantage, that is,
it is efficient to calculate and implemefecause there are two
chirp multiplications and one FFT, the total number of the mul-
tiplication operations required &P + (P/2) - log, P, where
P = 2M + 1is the length of the output. Among all types of
DFRFT, the linear combination type DFRFT [6]-[8], [24] will
have the least complexity and only requifé/2) -log, P multi-
plication operations. However, it does not match the continuous
FRFT and lacks many of the characteristics of the continuous
FRFT. For example, it is hard to filter out the chirp noise with
this type of DFRFT. For most of the other types of DFRFT, such
as the improved directly sampling-type DFRFT [5], we need
2P + P - log, P multiplication operations because there is one
convolution operation and two chirp multiplication operations
required. The DFRFT we introduce will have the lowest com-
plexity among all types of DFRFT that still work similarly to
the continuous FRFT.

3) Applications for Calculating the Continuous FRFWe

o= b ooty Audys <Sgn(sin o)
“t \ sgn(sin ao)

Although the DFRFT defined in (17)—(21) has no additive progan use the DFRFT of type 1 to calculate the continuous FRFT.

erty, if we fix At, then we can convert the transform result of th&/hen using the DFRFT for this application, we first sample the

DFRFT with ordeky; into orderas by two chirp multiplications input continuous function into a discrete sequence, do the for-

and one convolution operation. ward DFRFT, and get the output of DFRFT as the sampling of
We note, in (19), that ifsin «| is very small, them\t andAw  the transform results of continuous FRFT. We note that because

must also be very small, and the number of points must increasen we derive the DFRFT of type 1, we have normalized the
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unitary [from (14) to (15)]. Thus, when using the DFRFT of typeut the input function into several subsections with short time
1 to implement the continuous FRFT, we must consider this naturation and sample them

malization factor, that is, if yn(t) = y(t — h- L) -TI(t/L),
Yo(f) = OF(u(®)),  9(n) = y(nAt) h=-c0,...,—1,0,1,...,00 (35a)
Ya(m) = OB prpr(9(n)) (32) gn(m - At) = yp,(m - At)
then wherem € [-N,N], (2N+1)At=L (35b)
Yo(H)lr=mau = Ya(mAu) and input them into DFRFT. We will use the shifting property
N \/m ATy, (39 for the continuous FRFT [2,']ﬁ | -
27r| sin a| O%(f(t — 'r)) = ¢/ T macesamjursima
We will use some examples to discuss this. - Fo(u—7cosa). (36)

In Figs. 1 and 2, we will give some examples to illustrate thFhus, we require that cosa (r = L) must be the multiple
application of DFRFT for calculating the continuous FRFT. Thﬁ'ltegers ofAwu

original continuous input functions are: . .
g P L-cosa=C - Au whereC is some integer.

F!g. Lf(8) = 1(t/4.5) (re.ctangular) Then, from(2N + 1)At = L and the relation of (19), we see
Fig. 2: f(t) = A(¢/2.5) (triangular). that At must satisfy
Then, we sample the input function with the sampling interval
smyf

2m |sine|
2M +1)(2N +1) cosa
wheresgn(C) = sgncosa).  (37)

At = 0.02
Fig. 1:z(n) = II(n/225) (rectangular)

150. The value ofM is chosen as -

for a = 0.05,0.2: M = 150 Yon(m) = Oberer(gn(n)) (38a)
fora = 0.4: M = 225 Ya(m)= 3" (152 —m)le-C-tan a-Au®
for o = w/4: M = 300. he=—c0

We can compare the transform results for the rectangular func- Yon(m—h-C) (38b)

tion with the results of the continuous FRFT in [2]. We find tha&nd we can obtain the approximated valu&of /) (the contin-
the transform results of the DFRFT are similar to the ones obus FRFT ofy(¢)) from

the continuous FRFT in these two examples. The closed form Yol )l jmman = Ya(mAu)
of the continuous FRFT of rectangular function is derived in
[24], and the continuous FRFT of the triangular function can be e M +1 At-Y,(m). (38c)
calculated from the numerical method. We use these results to 27| sin o °
calculate our errors of the transform results in Figs. 1 and 2. Tiherefore, for very long input, we can also use the DFRFT of
error is calculated from type 1 to compute the transform results of the continuous FRFT
Ma oM +1 . [but the sampling interval\¢ must be chosen as (37)]. In Fig.
ernr= Z nlsinal At - Yo (m) 3, we will show an example. Here, we use
m=—>Ma ) o f(t) _ C—(t—‘r)z(r/Q (39)
— Y. (mAu) Z Yo (mAw)|?  (34) @S the irlput of contingous FRFT. The transform resulf @f
— M for continuous FRFT is

whereY,,(m) andY,(m) are defined as (32), ant¥/« is the Falu) = [1=Jcota  ircinacosa—jurcosa
largest integer such thdt/a - Aw < 7 (we just consider the c—jcota
interval thatn At € [—7, 7] for simplification). Then, we obtain io? Deota_seacta ooy
the error as in Table I. In fact, when choosing the same value of e AeTteto) . (39a)

sampling interval in the time and frequency domains and thWee will chooser = 1.6025, ¢ = 0.1, anda = /6. In (37),
same number of points, the error of our DFRFT when used & choose
calculate the continuous FRFT will be the same as the DFRFT C=20, M=250, N=70
introduced in [5]. However, our DFRFT will only require about
half of the computation of the DFRFT introduced in [5], an%n
many of the constraints in [5], such as the original signal, mus
be bandlimited in all the domain¥y{ () ~ 0 when|u| < B,
for all the value ofw) will be not required here.

Not all the input functions of the FRFT will be time limited,
as is the above experiment. If the input function has very long err=1463-107% for h = —2~2
time duration, we will modify the above process a little. We will err=7.1563-107° for h = —5~5.

d then, At = 0.03205, Ay = 0.1957. We then use the
RFT to compute the transform result fft) for continuous

FT by the method from (35a)—(38c¢), and in (35a), we choose
h = —2~2 and—5~5. We plot the result in the Fig. 3. Then,
we also use (34) to compute the error and obtain
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-1 -1 :
-5 0 5 -5 0 5
2 2
1 ‘/‘\f\/‘/\/\/\/\/\
0 )
-1 -1
-5 0 5 -5 0 5

Fig. 1. DFRFT for the rectangular functiar{n) = II(n/225), i.e., f(t) =
II(t/4.5). Upper left:cc = 0.05. Upper right:c = 0.2. Lower left: v = 0.4,
Lower right:a = 7/4.

2 2
1 1

e 0 5 R 0 5

2 2

1 1

15 0 5 1T 0 5

Fig. 2. DFRFT for the triangular function(n) = A(n/125) ,ie., f(t) =
A(t/2.5)). Upper left.a = 0.05. Upper right:o = 0.2. Lower left:oc = 0.4.
Lower right:a = w/4.

1343

1) From (40), we find that if the value ot (the effective
width of the input signal) increases, theéxt must de-
crease, that is, the sampling interval in the time domain
will also depend on the effective width of the input signal.

2) WhenW (the bandwidth off (¢)) increases andl is fixed,
thenA¢ must be decreased, andshould be increased.

3) When|cot « increases, i.eq — 0,7, and L is fixed,
then At must be decreased, andwill be increased.

B. Closed-Form Discrete Affine Fourier Transform of Type 1

We can use a similar way to derive the DAFT that is analogous
to the continuous case in (3). Similar to the process to derive the
DFRFT, we find that ifAt and Aw satisfy

Au- At =27 - |b|/(2M + 1) (41)
andM > N, then the transform matriki, ; . 4y(m,n) will be
reversible, where

1

2M +1
. 2mesgn(b)mem

e T zmTT

3 ej % -m? Au?

F(a,b,c,d) (ma 7’L) =

. Cj%-nzAtz

(42)
andm € [-M, M], n € [-N, N]. Thus, the DAFT of type 1 is

as follows.
e DAFT of type 1

1)
Yiap,ea)(m) = 2M1+ - ol 35 om? Au? EA:N e
x i $5nt At -y(n) whenb > 0 (43)
2)
KWMWMIVJZ:£%W%J§%J%W

x i35 A ~y(n) whenb < 0. (44)
The above DFRFT defined as (17), and (18) is a special case of

When we use the DFRFT to calculate the continuous FRFhe DAFT wherein{a, b, ¢, d} = {cos o, sin a, — sin «, cos o}
we should consider its precision. There are two main constraifise reversible property for the DAFT of type 1 is

that must be satisfied for precision. First, the value@f) can

be ignored outsidé-L, L]
L =)
@mammnjhu@yﬁ// (t)] - dt ~ 1
—L —oo

27N sin a
hereL = NAt= —— " |
W (2M + 1)Au

d,—b,—c,a),Au,At a,b,c,d),At,Au
O](DAFT ) (O](DAFT ) (?J(”)))

whereOg‘f}:‘:T’d)’At’A“(y(n)) is the DAFT ofy(n) for parame-
ters{a, b, ¢, d} and where the sampling intervAl is the input,
andAw is the output. This reversible property is the same as the
continuous AFT.

As for the case of DFRFT, when= 0, we also find that the

(45)

Second, we must consider the aliasing effect of the samplifga 1 f4is to be defined from (43) and (44) because the right

Consider first the bandwidth of the term
exp(j cot o - £2/2) - (t).
Because

d1l
Max< — Zcobar - t2

79 ) = Max(| cot «x - t|)

=|cota| L =|cota| NAt

side of (41) will be 0. However, fdr = 0, the continuous affine

(40) Fourier transform results will be

O$707C7d)(f(t)) — |d| . 6%-(:(1-71,2 . f(du) (46)
or
ORI f(@) = OF " UF(w))  (47)

if the bandwidth ofz(¢) is W, then the bandwidth of (40) is whereF(w) is the Fourier transform of(¢). Therefore, we can

W + | cot | - NAt. Then, from the sampling theory
(constraint 2){At) ™! > 2W + | cot o] - 2N At
=2W + |cot «| - 2L.

There are some remarks about the above two constraints.

define the DAFT, whed = 0, as follows.

1)
Yiaoea(m) = V- efetm s’
whenb = 0,

-y(d-m)

dis aninteger. (48)
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TABLE |
ERRORS FORUSING DFRFT OF TYPE 1 TO COMPUTE THE CONTINUOUS DFRFT
a=10.05 a=02 a=0.4 a= 4
Rectangle 1.191x107™* 8.793x107° 3.985x107° 2.172x107
Triangle 4.304x107 7.111x107° 3.600x10°° 1.825x107°

] 1 The DAFT has no additivity property, but it is convertible.
-_/\_ ‘ That is, we can convert the DAFT with some set of parameters

0 0 into another set of parameters. Suppose weAgseAw; for

\ the DAFT with the parametda,, by, ¢1, dy, } and useAt, Aus

for the DAFT with the parametefas, ba, ¢, dz, } (At and M

are fixed). Then, as for the case of DFRFT, we find that the

following relation can be satisfied'

Yoo b e0,de (M) = Z h(( V2n+1)
r=—M
" ' R sm(by) -7
iy 0 5 5 0 5 e Fortera <w
(55)

Fig. 3. Experiment for using DFRFT to compute the transform result of

continuous FRFT for the signal with nonfinite time duration. Upper-leftwhere((n))2pr+1 is defined as (27), ankl(r) can be obtained
Input [see (39)]. Upper-right: Exact transform result [see (39a)]. Lower Ieffrom the DFT of a ch|rp

Transform results calculated from DFRFT with = —2~2. Lower right:
Transform results calculated from DFRFT with= —5~5. h(m Z o 27 552,,1\(153 nom e%(%_%) .- Atz'
2M +1 ~
2) (56)
Yia 0. (m) = \/I o 35 m? Au? In addition, we can use the DAFT to compute the continuous
’ R affine Fourier transform, and then, as in the case of the DFRFT,
N . 2mesgn(a)-kom Coremek the following two constraints must be satisfied:
Z Z el T 2m+T e N y(n) L .
n=— N k=—N constraint 1: |x(t)| - dt // |x(t)| - dt ~ 1
whenb =0, disnotaninteger. (49) L >
_ . hereL = NAt = — "0 (57)
In(49), R = (2M + 1) - (2N + 1), and W (@M 1 Diu
Au= (2N +1)-|a| - At/(2M +1). (50) _ 1 a a
We note that it is no problem for (48) to be reversible. Besides,constraint 2: = > 2\ + ‘g‘ 2NAt=2W + ‘5‘ ‘2L
(49) is also reversible (58)
N T S The above three remarks for using DFRFT to calculate the con-
N K Me "¢ tinuous FRFT listed in Section I1-A will also be applied here.
.e*jx"" av? Yia.0,c,0)(m). (51) C. Closed-Form Fractional and Affine Fourier Transform of
From the constraint of (41), we find that (43) and (44) cahyP€ 2
also be written as In general, we can use the discrete transform to do the fol-
PR SRR — N lowing: 1) Compute the continuous transform for spectral anal-
Yiap,ey(m) = oM +1 o B ZN ysis, and 2) suit for processing the discrete data signals. For the

. 27-sgn(b)m-m

L former case, the input of the discrete transform is the sampling
xe I TEmAT @AY y(n) (b #£0).  of some continuous function. For the later case, the inputis justa
(52) pure discrete sequence. For example, we can use DFT for com-

Thus, if we fix At and M, then only the values af/b, sgr(b) puting the continuous Fourier transform, and the input is the
b - d will affect the transform result. Some import:;mt equ7alit ampling of some continuous function. Meanwhile, we can also
relations for the DAFT of type 1 are se DFT for other digital signal processing applications, and in

this case, the input is inherently a discrete sequence itself, such
Yiap,e.0) (1) =Y(—a,~,—c,—a)(=m) (53)  asthe daily stock market or checking account, etc. Similarly, ex-
Yo be) (M) =Y(a, b —c.a)(m). (54)  cept for computing the continuous FRFT/AFT, we can also use
Here we have assumed that the valueaofand M are fixed. DFRFT/DAFT for some other applications and just use them as
The number of computations for the DAFT will also be prothe discrete data transforms.
portional to2P + (FP/2) - log, P, whereP = 2M + 1. This is When we use DFRFT and DAFT to compute the continuous
the same as the case of the DFRFT. FRFT/AFT, the mathematical form of the DFRFT and DAFT
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should be almost the same as the continuous FRFT and AFTe Inverse DAFT of type 2

Thus, in Sections II-A and II-B, we derive the DFRFT and 1 L M i

DAFT from the sampling of kernels of the continuous FRFT y(n) = 1/m ezt Z e’ Tt

and AFT. However, when we use DFRFT and DAFT for m=—M

some other_applications, the above requirement, such as phase e EmTp Yip g0 (m). (65)

alignment, is not necessary. We make DFRFT and DAF BN .

remain the simple basic structures of FRFT and AFT, but th ye note that Whe'M_ = N, the inverse transform with th_e

have the same abilities and are easier to compute and desig arametergp, g, s} is just the same as forward transform with
We will derive the DAFT of type 2 from the transform matrix. ¢ parameterg—q, —p, —s}. Thus, whenl/ = NN, the DAFT

of the DAFT of type 1 and then simplify it into the DFRFTW!th the parameterg—g, —p, —s} is the inverse of the DAFT

of type 2. The DAFT of type 1 defined as (43) and (44) ha‘gIth the parametergp, g, s}

too many parameters. We can try to simplify it and set OGP~ (Og’f}fg(y(n))) =y(n) whenM = N. (66)

(d/b) - Au?, q = (a/b) - At2. Then

In this paper, we us@g ;fF’fr) to denote the DAFT of type 2

1 J 2 N
F, m,n) = sezPm s
R e ORI W) = Ypg(m) = 3 Figgy(m,m) ().
IR e’ (5 (67
Then, fromAt - Au = 2r[b|/(2M + 1), we find We note, from (1) and (3), that the continuous FRFT is a spe-
’ ' cial case of the continuous AFT in that the inner and outer chirp
p-q=2n/(2M +1)?) - ad. (60) terms have the same parametetgh = d/b = cot «). In the

. _similar way, we can define the DFRFT from the DAFT by set-
Becausez, d can be any real value, there will be no constraiffyg ,, —  ands = +1 and obtain the following.

for p, ¢, andp, g can be any real value. Thus, the DFRFT matriX § pERET of type 2
defined as (59) will have three parametgrg, b without any

N
constraint and has the free dimension of 3. Y (M) = /1 LeEmp Z i e
We note that the continuous affine Fourier transform has four 2M +1

n=—N
parameterda, b, ¢, d} plus one constraint and has the free di- iz
mension of 3 in total. Although, in (59), the free dimension is ez y(n) whereM 2> N. (68)
also 3, but the value of sgh) can only bet1, in fact, the free  We call the above DFRFT/DAFT defined in Sections II-A and
dimension is near 2. Thus, as in (12), which has a paraméter B the DFRFT/DAFT of type 1. They are suitable for calculating
the Fourier term, we can also put a parametierto the Fourier the continuous FRFT/AFT. In addition, we call the DFRFT and

transform term of (59) DAFT defined in (68) and (63) the DFRFT/DAFT of type 2. The
DFRFT/DAFT of type 2 are simple and suitable for other digital
Fipgs(m,n) = 1 . espm® signal processing applications.
w 2M +1 _ For the DAFT of type 2, we can ugeandgq to control the
eI phan” (61) variation of the chirp in the frequency and time domains. When

p — 0,the DAFT defined as (63) will be similar to a chirp multi-
wheres is prime to2M/ + 1. Then, we find that the reversible pjication operation followed by a DFT. In addition, wher- 0,
property will be satisfied: the DAFT will be similar to the DFT followed by a chirp mul-
M N tiplication operation. Whem = ¢, then the transform matrix
= F* . F, . . I p 5y (m,n) willbe a symmetry matrix, i.efy, , (m,n) =
o m;M k:z—:J\ (a7 Fpg (1) - (8) Fiiisign, mg, and the transform matrix for tﬁ)epirz\serse)DAFT
(62) is just the conjugate af,, ,, ;,(m,n).
Therefore, we can define the discrete affine Fourier transformThe DAFT/DFRFT of type 2 also need” + (P/2) - log, P
(DAFT) as follows. multiplication operations. They also have no additive property,
e DAFT of type 2 but they are convertible. We can calculate the DAFT with the
parameters(ps, g2, s2} from the DAFT with the parameters

N
1 J 2 _s.2msnm f

Yip.q.)(m) =4/ cez P E e T {p1, @, 51} from

2M + Y. (m)

n=—N

P2,92,52
K 2
2™ y(n) (63) I
=2 ™ 3" h(((s2-m = 7))anit1)
where r=—M
—%Pl'((sfl) 7,)2 .
M > N (2N + 1,2M + 1 are the number e LRI T ((31 )ansat 7’) (69)
of points in the time, frequency domain where (())2a741 is the modulo symbol defined as (27), and
s is prime toM (64) (sTH)2m41 is defined as
-1
and its inverse transform is the following. ((51 ) (31 )2M+1))2M+1 =1 (70)
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h(m) can also be calculated from the DFT of a chirp TABLE I
RELATIONS BETWEEN THEDAFT OF TYPE 2 AND ITS SPECIAL CASES
N
1 Comem g 2
him) = ——— eI L edlema)n 71 —g 5=+
( ) oM + 1 Zr (71) DFRFT of type 2 p=q,s=1l
n=—N DFRFT of type 1 p=cota~Au2, g=cotaA, s=sgn(sina)
After two chirp multiplications and one convolution, we car parT of type 1 p=dbdil, g=abhP, s=sg(b)
convert the DAFT with some parameters into the DAFT witlper ppr p=g=0, s=1forDFT, s=-1 for IDFT
other parameters. In the case where= ¢,
2
. iy . -1 B _
Yo ) = ipem? P ((((s1 )ansn® m))mﬂ) In the case wherg = 0
1 M N
—1 - g 2mesn-m _ . 2msemk
X Ypiq1.5 <(((31 )2M+1 52° m))2M+1> © Jogs(n) = VoM + 1 Z ¢’ Hee Z e
m=—M k=—N

(72) ; :
. . ) . 6§~p~k2 . g(k) = 2M =+ 1- 6]~(1.n2/2 . g(n)'

In this case, we can even save the convolution operation. Other . _ . _
important properties of the DFRFT/DAFT of type 2 are introd hus, wherp = 0, the discrete affine convolution can be written

duced in Section Ill. as foII_ows:_ _ _ _ _

We show the relations between DAFT of type 2 and its special® Simplification form of the discrete affine convolution
cases in Table II. (p=0)

N

D. Discrete Fractional/Affine Convolutions and Correlations f(n) * g(n) = e’ Z ed-al(n=r)ens1

Since the discrete fractional and affine Fourier transforms 045 r=—N

i i i ERp-

have been defined, we can use them to define the discrete frac- cg(((n = P))ang1) - 2T - F(r). (77)

tional and affine convolutions and correlations. We only discuss
the affine case, and the rest of the discrete fractional convollhis is just the conventional discrete fractional convolution of
tion and convolution can be obtained by substituipgg, s} as  exp(j-g-n?/2)- f(n) andexp(j-g-n?/2)-g(n) and with the extra

{p,p,+1}. multiplication ofexp(—j - ¢ - n?/2). We note that in this case,
The discrete affine convolution can be defined as follows: s will have no effect. Thus, for the simplification, when using
e Discrete affine convolution the discrete affine convolution, we often get 0. In fact, for
practical applications, control of the paramegeis quite suf-
f(”)p;’;,sg(”) ficient to control performance. The discrete affine convolution

q—p.—s a5 s can be used in digital filter design, discrete fractional Hilbert
= Ofa" " (OBEAS () - OFE9(m)) - (73) (20 o, ete.

We must remember that the DAFT with the parameters From the definition of the continuous fractional correlation
{—q,—p, s} is the inverse of the DAFT with the parameter$18], we can use the similar way to define the discrete affine cor-

g, sk It Gpga(m) = Og’fp’})(g(n)), then (73) can be relation. If z(n) is the fra.\ction.al correIaFion of(n) gndg(n),
rewritten as then we have the following.Discrete affine correlation

. M _ ~(p3,43,53) (pl,ql,51)
f(n) = g(n)= 2M1+ 1(3—%'(1'"2 Z of B #z(n) = Opapr (ODAFT (z(n))
P23 . 2,q2,52
= coni( O3 (g(n)))) (78)
X Gpgs(m) > ¢ I 3 f(1). We use corfj) to denote the conjugation operation. We will de-
r=—N note it as
(74)

z(n) = 2(n) @((pLq1,51),m2.42,52).33,¢3,53)) (). (79)
We note that the terrxp(j - p-m?/2) has been cancelled. The (0Lt o), (02,02,52),(03,03.53))

above equation can also be written as The original discrete correlation is the special case of (78)

1 L gn? that {pl,ql,s1} = {p2,¢2,s2} = {0,0,1},{p3,¢3,s3} =

n) * gn)=———-¢e"327 0,0, —1}. Equation (78) can also be written as

Fn) % o) = e {0,0,—1}. Equation (78)

N _ —3/2  _ip3-n?

~ i s z(n) = (2M + 1) - ez
X3 Gpael((n = )aasgn) - 17 (1) N
N 5 zw.s/g.ﬂ.m i-(q3+p1—p2)-mz
X C 2M41 cc2
(75) nlg—:l\l

where

. 2mslnlom s 2ms2.m2m
E E B AN e el T M

M
s 2w-sn-m —
T -G, (m). (76) .
;M i R K z(nl) - g*(n2). (80)

. 1
Tp,q,5(n) = m
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For simplification, we sepl = p2 = ¢3 = p3 = 0, and ¢ FFT: whetherthe DFRFT can be implemented by FFT and
sl = s2. Then, the above equation becomes the number of FFT's required;
 Constraintsthe number of constraints used for calculating

M the continuous FRFT;

3 s.2m 83 n-m
#(n) = (2M +1)7= Z e e + All orders whether the DFRFT can be defined for all the
u A;"=_M order o without constraints; _ _
—j.2mstnionz)m « Properties the number of properties that can be derived;
. Z Z ¢ " « Addv./Convt.whether the DFRFT is additive or convert-
pi=-Mn2=AM ible (the convertibility means that we can convert the
x 2= ) L g(n]) - g*(n2).  (81) DFRFT with some parameters into the DFRFT with other
parameters);
We obtain the following. « DSP. whether the DFRFT is suitable for the digital signal
¢ Simplification form of the discrete affine correlation processing applications.
From Table Ill, we have seen that there are many advantages
2(n) = x(n) @((0,q1,51),(0,2,51),(0,43,0} 9(1) for the DFRFT/DAFT defined in this paper. The only disadvan-
1) M i glnm1? tage is that the additivity property is not satisfied. However, this
=(2M +1) Z c? disadvantage will have only a small affect on the practical usage
_ ni=-M of the DFRFT/DAFT. Besides, we can use the chirp multiplica-
x e~ 5 a2 (17 Dz pas3ntni))iag tion and convolution to convert the DFRFT/DAFT with some

cz(nl) - g ((((s17Y)ans4183 - n+nl))anrq1) (82) Parameters into another set of parameters, i.e., convertible. We

give the proposed DFRFT/DAFT “O0O” for last the term. This

where ((s))anr41, (s~ H)an41 are defined in (27) and (70). is because of their advantages of reversibility, less complexity,

Equation (81) will be much simpler than (80). Thus, for th@nd the characteristic of “fractionalization;” in addition, many

simplification, we can setl = p2 = ¢3 = p3 = 0andsl = s2  Pproperties can be derived. Meanwhile, the DFRFT/DAFT de-

for discrete affine correlation. The discrete affine correlatiofined here is very simple, and each of the parameteys and

can be used for pattern recognition. In Section IV-B, we wilt will have the clear roles; thus, the design and the analysis will

illustrate this. be very easy for practical applications.

The simplification form of discrete affine convolution/corre-

lation defined as (77) and (81) only require one conventional digH. PROPERTIES OF THEDISCRETEFRACTIONAL AND AFFINE

crete convolution, and the relations between its input and output FOURIER TRANSFORMS

are very clear. Therefore, the discrete affine convolution/corr/g: Properties of the DFRFT and DAFT

lation is easier to implement and analyze. It further enhances ] ) )
the proposed DAFT/DFRFT as a useful tool for digital signal Because the DFRFT/DAFT we derived are reversible, simple,
processing. and can be written in the closed form, their properties can be

easily derived. We will discuss the properties of the DFRFT and
E. Comparison of Closed-Form DFRFT and DAFT with OthePAFT in this subsection. Only the properties of the DAFT of
Types of DFRFT type 2 are listed in Table IV and discussed he_re. The properties
i _ . of the DFRFT/DAFT of type 1 and the properties of the DFRFT
At the end of this section, we will compare the DFRFT angds yne 2 can be obtained by the parameters substituting listed
the DAFT introduced in this paper with other types of DFRF T, Taple 1. We will USeF|, ,..)(m,n) to represent the transform

The name for each type of DFRFT is as follows. matrices of the DAFT, usé)g’fF’ST) to represent the transform

+ Direct: direct form of DFRFT, operation, use(n) to represent the input, and usg, , ,y(m)
* Improved improved sampling type DFRFT [5]; to represent the transform resultsygf).

* Linear linear combination type DFRFT [6]-{8], [24] Some of the properties are proved as follows.
» Eigenfxs. eigenvectors decomposition-type DFRFT

[91-{11], [16];

a) Proof of Property 7:
» Group group theory-type DFRFT [13];

 Impulse impulse train-type DFRFT [14]; (pa,s) { —jo2mk
. . . . [0 p’,q, (C [y v ny(n))
» Proposedthe DFRFT/DAFT we derive in this paper, i.e., DAFT
the closed-form DFRFT/DAFT. N -
Each term of the comparison means the following. = Y Flgn(m,n) ¢ /71" y(n)
n=—N

* Reversiblewhether the DFRFT is reversible;

.. . . L . . N
 Similarity: whether the DFRFT is similar to its continuous I op(—2mk—k?
= BT S B a(m k) - y(n)

counterparts; )
* Closed form whether the DFRFT can be written in the ; ) n=A
closed form; ) (AT )
» Complexity the number of multiplication operations re-
quired (P is the number of points); O
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TABLE Il
COMPARISONS FORDIFFERENT TYPES OFDFRFT/DAFT

Directly | Improved | Linear Eigenfxs. Group Impulse | Proposed
Reversible x O* O O O O @
Closed form O O O x ®) O O
Similarity O O x O A O O
Complexity P? Plog,P+2P|(PI2)log,P| P2 |Plog,P+2P|P-log,P+2P|(P/2)log,P
+2P
FFT X 2 FFT 1 FFT x 2FFT 2FFT 1 FFT
Constraints Less Middle Unable Less Much Much Less
All orders o o o @) X X O
Properties Less Middle Middle Less Many Many Many
Addv./Convt. No Convt. Additive | Additive | Additive | Additive Convt.
DSP X O O ®) @) O (0]0)

*  Although the improved sampling type of DFRFT is reversible, but the reverse operations would require 3 FFTs

computation; The proposed DFRFT needs only 1 FFT computation.

b) Proof of Property 10: From (85), we can calculate the inverse DAFT from the forward
M M DAFT with the same parameters. (Remember that we can cal-
Y, m)|? = Y, m)-Y”* m culate the DFT from the IDFT).
m;M| ()l m;M () Y () From the modulation property, we find, as the continuous
M N N FRFT, after DAFT, that the modulation will partially remain
= Z Z Z Frpqs)(m) as the modulation and partially become the shifting operation.
e M e N re— N Similarly, from the time-shifting property, we find that after the
. F(*; 0.9) (m) - y(n) - y*(r) DAFT, the shifting operation will partially remain as the shifting
NN operation and partially become the modulation operation. We
_ Z Z §n— 1) -y(n) -y (r) note that for the original DFT and the IDFT, the shifting opera-
Ny tion will totally become the modulation operation, and the mod-
N ulation operation will totally become the shifting operation.
- Z ly(n)[2. Thus, from the above discussion, we can say that many of the
Mt properties of continuous FRFR/AFT in [2] are also kept in our

glosed—form DFRFT/DAFT.

We also discuss the scaling property that only exists for the
DFRFT and DAFT of type 1. In these cases, the input is the
sampling of some continuous function.

Z Flpq.0)(mn) - Y 0.6 (m) = y(n) (83)  Scaling property for the DFRFT and DAFT of type 1

From the conjugation property for the transform matrix, w
find that the inverse transform

M

m=—M Supposey(n) is the sampling of the continuous functio(t)
can be rewritten as with the interval ofA¢
M
> Fpgmy(=myn) Y g (m) = u(n) u(n) = z(n - At) (86)
m=—M
M ands(t) is the scaling of:(#)
Z Fop—q,5(m,n) - Yip,q.6(—m) = y(n).
meM s(t) = a(o - 1), 87)
Then applying property 1, we find that
i (p—q)on? ~(—P,—a,s I (g—p)om? Now, if we samples(¢) with the interval ofAt
O O B8 (HaDmy L (—m)) = (). ples(t) /o

(84)
Then using the conjugation property for the transform matrix g(n) = s(n-At/o) =z(o-n-At/o) = x(n-At) (88)
again, we obtain
; s ; ) then we will findg(n) = y(n). Because the constraint of (19)
et =D O (@E(p_@'m Y(}i,q,s)(m)) =y"(n). (85) or(41) must be satisfied, the sampling interval in the fractional
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TABLE IV
PROPERTIES OFDAFT
(1) Symmetry property of the ( ) 4 (p-q)(m -n ) ( )
m,n n,m
transform matrix g Fioan
Specially, when p = ¢ (including the case of DFRFT)
Fipas (m, n) =Fipgs (n,m)
(2) Conjugation property for (; . s)(m n)= F( Pi—g,-5) (m,n)= F(_ P)_q,s)(— m,n)
the transform matrix =F_p s (m, n)
(3) Conjugation property for| If Y1, (m)=0%z (n)), Y ,,,q,s)( )= 0559 (y(n))
the transform result then
Yoo (m)= lpgm9 (m) =¥l pgs) (~m)
When y(n) is pure real:
L (m) =Y pgmn (m)= ¥pas (_ m)
When y(n) is pure imaginary:
(p 9.5) (m) ( P=q,-5) (m) Y(—p,—q,s) (_ m)
(4) Time-reverse property (a) 0},‘,’“‘?—}” (y(— n)) =Y 09 (— m)
®) Yy (~m)= Y09 (m)
(5) Transform for even and| Ify(n)is even, then the transform result is also even:
odd functions Ypas (m)= Y(p,q,s)(_ m)
If y(n) is odd, then the transform result is also odd:
Vipas (m)= _Y(p 4N m)
(6) DC property In
Y(p,q,s)(o) = ZN et . ( )
Ifq=0, (pqs)(o) ZNJ’( )
(7) Modulation property R —jzfn
(p q,5) (m) O(DZI%') (e 2 y(n)) ’
L plemis ™ apgark+ g 0?)
then Y(pqs)( )=e 2 .
Yv(p,q,:) (m + (S_l )2M+l k)
where (s_l)z +1 18 defined as Eq. (70). In other world,
‘ (2.9.5) X ‘ (2.4.5) (((m +(s™ )2M+1k))2M+l}
domain now isr- Au, whereAu is the original sampling interval We can conclude that if
in the fractional domain. Thus
byed byed
Viawew(m) = OF 5 (y(n)) = 055" (Sau (1))
90
G _ 1 %~%~n12(o’~Au)2 ( )
(a,b,e,d) (m) - IM +1 e G(a,l,bl,cl,dl)(m)
. 1,01,e1,d1 1,01,e1,d1
N mepinm g saur = Ofapr ™ (g(n)) = O5ax ™ (Sav/a(a(a1))
. Z e T L et g (At/0) - g(n) 91)
n=—N
L e where we useSa,(z(t)) to denote sampling(t) with the in-
%\M +1 terval of At, then from (43) and (44)
. 2m-sgn(b) mom J.
nzz;N G(a,b,c,d)(m) E Bt m T bt Yia o2b,0—2¢ d)( )
(89) — Yr((rfza,b,(’,(rzd)( ) (92)
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TABLE IV
PROPERTIES OFDAFT (Continued

(Cont.)
(8) Shifting property Suppose (a) ¥()=0 forn>Nandn<-N+k whenk>0
y(n)=0 forn>N+kandn<-N whenk<0
(b) -k =2m/(2M+1), r is some integer

then
w(2m+r)k

OLEI(Wn+k))=e 2 ¢ Yipgsy(m+7)

where 7= (s_l)ZMH-r. If the shifting is changed as the circular
shifting, i.e., y(n+k) is modified as y(((7i+k)),;,; ), then the

%(Zm—r)-pr

above equation will still be satisfied, and the constraint (a)

will be not required.

(9) Scaling property Suppose (a) o is prime to 2A+1
(b) g = 42r/(2M+1), r is some integer

()

then
Ot (o m)apn D=7,
where p= (0" 1 (6> (T0)ppm1 = 1)

10) P I's th En- & 2 ¥ 2
(10) Parseval’s 'eorem (En s ‘Y(p’q’s)(mx _ Z’J’(”}
ergy conservation) m=—M n=—N

P.029.p5)

. , M N
(11) Generalized Pfxrseval s Z Yl(p,q,s)(m)' YZZp,q,s) (m) - Zyl(n)- y2° (n)
theorem (Generalized en-| m=—M n=—N

ergy conservation)

For the special case of DFRFE = d = cosa,b = —¢ = type 1lisuseful for computing the continuous FRF/AFT. In addi-
sin «) tion, for the DFRAT/DAFT of type 2, there are also some prac-
tical applications. We will introduce two examples, that is, the
filter design (a special case of discrete fractional convolution)
and the pattern recognition (use discrete fractional correlation).

In fact, except for these applications, there are also some po-
This scaling property is very similar to the continuous FRFNtial applications for the DFRFT/DAFT. For example, because
case in [2]. The scaling property of the continuous FRFT is the DFRFT/DAFT are the unitary transform constructed from
the orthogonal chirp basis [see (94)] if a function is similar to

¢ 1—jcota 4% Cota(l—ZZEzf) the combination of several chirps, then it is convenient to use
OF <f <;>) = m ne the DFRFT/DAFT to expand this function. It is also possible to

use the DFRFT/DAFT for the phase retrieval [12], discrete frac-

cot? o

% cot a-a?- (17 cot? p ) -m? Au?
Go(m)=e Ys(m)

where cot 3 = cot a/o?.  (93)

B, <u sir.1/3 ) (93a) tional Hilbert transform, and beam shaping, etc.
asimo According to our experiment, among the three parameters of
wherecot 8 = cot /o2, DAFT, ¢ is the most important, next i, andp will have the

least importance. Besides, from the discussion in Section II-D,
we find that when using the discrete affine convolution and cor-
relation, itis convenient to sget= 0 for the simplification. Thus,
In Table V, we just list the transform results of some spéor digital signal processing applications, we have the following.
cial signals for the DAFT of type 2. The transform result for
exp(—jqm?/2) -exp(j2nr - m/(2M +1)) comes from the first 1) We usually use the parameterto control the perfor-
transform result and (85). mance, and set = 1 andp = 0. .
2) Sometimes (the applications about scaling), we also ad-
just s and still setp = 0.
IV. APPLICATIONS OF THEDFRFTAND DAET 3) Inlesser conditions (such as the phase retrieval), we also
adjust the value of.

B. Transform Results for Some Special Signals

Because of the advantages of the DFRFT/DAFT listed in Sec-

tion II-E, there are many signal processing applications for tAdie design method of the digital signal processing applications
DFRFT/DAFT. The main application for the DFRAT/DAFT ofwhen using DAFT can be simplified by the above principles.
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TABLE V

TRANSFORM RESULTS OFDAFT FOR SOME SPECIAL FUNCTIONS

Input function

Transform result (s is any integer relatively prime to 2Af+1)

(1) &n—r) ’ 1 .eé‘p‘mz 'e—fz”;r'm ‘e%»qu
2M +
_l.q.nz j2mrn lp»nz
) e? e WM V2M +1-e? S(sn-r)

where &sn—-r) =0 when ((sn))ypeg £ 7

&Asn—r)=1 when ((s7))3p4) =7

Logm? I pn?
@) e’ cos( 27 j 2M +1-e? (8(sn+r)+8(sn—r))/2
2M +1
gt 2mrm Ipn?
4) e? sin(zMHJ J2M +1-e2" (8(sn+r)-8(sn-r))/2

A. Filter Design

For the inverse formula of DAFT of (63), we find

M o
y(?’L) = Z Yip,q,s) (m) ) C—%p-rn . bnl(n) (94)

m=—M
where

bm(n) = V/I/M 720 e

TS n-m

2M+1 s

m € [-M, M].

We also choose the width of the bandstop filiéras 9. There-
fore, the filter in the fractional domain is

fim)=1-11((m — 36)/9). (103)
Then we substitute them into (97) to obtain the recovered signal.
In Fig. 4, we will show the results, and the recovered signal will
be very similar to the original signal(n). We also show the
conventional DFT of(n) defined in (100) and plot the result in

(95) the middle-left of Fig. 4. It is clear that the conventional DFT

Therefore, the DAFT is an unitary transform with the orc@nnot separate the signal from the chirp interference.

thonormal chirp basis of,,.(n) as above. Thus

. if a discrete Except for filtering out the chirp noise, since the DAFT

function is a chirp or the combination of several chirps, the?yStem is time (space) variant, we can also use the DAFT to de-
it is convenient to use the DAFT to analyze so that DAFT ca#gn the time-varying filter to remove some noise or distortions
be used for filter design to remove the chirp noise. If the chifyith spectrum varying with time (space). The general formula

noise has the form

cn)y=A- g3 (n—r)? (96)
then we can use the DAFT to filter out this chirp
s m—1m
oy = oty ([1-n (™™
O elo) + ) (97)

for the filter design by DAFT is
r(n) = OBE - (Fim) - OBE26 (). (104)

For simplification of computation, when we use the DAFT
for the application of filter design, it is convenient to get 0
ands = 1, as in the above case. It is even simpler than using
the DFRFT p = ¢ ands = =£1) because we save two chirp

multiplications (one for the forward DAFT and another one for
the inverse).

whereOZ %2 represents the inverse of the DAFT with param- -
eters{p, q, s}, K represents the width of bandstop filter, and B- Pattern Recognition

g=n mo=(2M + 1)nr/2rs. (98)

We will give an example in the following. In this example
the number of points for the function 8 = 90. We use the

Gaussian function as the input

z(n) = exp(—0.005 - n?). (99)

Because of the space-variant properties of the DFRFT and
DAFT, we can use them for the pattern recognition to determine

the same object located in a different place.

We will use the discrete fractional correlation described in
Section 1I-D. We will apply the result of (81), that is(n) is the
fractional correlation of:(n) andg(n), andpl = p2 = ¢3 =

Suppose it is interfered by the chirp noise so that the receivegdi= 0, s1 = s2. We will further simplify it by settingyl = ¢2,

signal becomes
t(n) = exp(—0.005 - n?) 4+ 0.3

-exp(—i-0.025 - (n — 50)%/2). (100)
Then, from (96) and (98), we find that
q = 0.025. (101)

Then, we set = 1 andp = 0 and obtain the center of the

bandstop filter as

mo = 181 % 0.025 % 50/2/7 /1 = 36. (102)

sl =1,ands3 =1, i.e.,

#(n) = DFT (X(quljl)(n) : G*(}J?ql?l)(n)) . (105)
Then
M ) ]
Z(TL) = (2M =+ 1)_1/2 Z e%'ql'nlz@_%'(11'(("1+"))§M+1
nl=—M
~a(nl) - g* (((n +nl))2rr41). (106)
Suppose the input signal is time limited as
x(nl)=0 for|nl| > B (107)
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1 1
1
0.5 0.5 0.5 0.5
0
0

-50 0 50 -50 0 50 .50 [ 50 -50 [ 50

Z
]
:

1 -1 ' 0.5 0.5
- -2
2 -50 0 50 -50 0 50 0 0
1 -50 0 50 -50 0 50
0 /\ 05 Fig.5. Reference and the shifted object of the example in Section IV-B. Upper
1 ) left: Reference. Upper right, Lower left, and Lower right: Shifted object with
) 0 no = 14, 45, 65, respectively.
i 50 0 50 -50 0 50
1 1
Fig.4. Example offilter design by DAFT in Section IV-A. Upper left: Original
signal. Upper right: Interfered signal (with chirp noise). Middle left: DFT of the® -6 0.5
interfered signal. Middle right: DAFTp = 0,q = 0.025,s = 1) of the
interfered signal. Lower left: Noise part filtered out. Lower right: Recoverer o 0

signal. -50 [) 50 50 0 50

and we only considez(n) in the range thalx| < M — B so

that (106) can be written as 08 m °s
z(n) = \/ : EB: epraimd? gm gk (nln)? : 50 0 50 ’ 50 o 50/\/\_‘
AL Fig. 6. Discrete fractional lation between the shifted object and ref
% 1g. 0. IScrete fractional correlation between the shirted object and reference
-x(nl) - g*(n + nl). (108) inthe example in Secion IV-B. Upper left to lower right; = 0, 14, 45, and
If the magnitude response is only considered, then 65, respectively.
1
|z(n)| = oM T 1 Thus, the discrete fractional correlation and, hence, the DAFT,
B can be used for the space variant pattern recognition to detect a
% Z eIl 1Y L g* (n 4 nl) . pattern in a certain region.
i B We will give an example in the following. The total number of
(109) points isM = 90. The reference here is a rectangular function
Now, we user(n) as the reference templatén) and suppose r{n)
thatg(n) is a space-shifted version of the reference pattern, i.e., z(n) = r(n) = U(n/11) (114)

w(n) =r(n) g(n)=r(n—mno) (110)

and suppose(n) is real. Then and the objecy(n) is the space-shifted version ofn)

: 9(n) = T((n — no) /1) (115)
2l =1/ 537 1 We try four cases fong = 0, 14, 45, and65. The fractional
B order isgl = 0.009, and from the criterion of (113)n0| <
% Z eI (1) Cr(n 4 nl — ng) 7/(11x0.009) = 31.73. Thus, the criterion of (113) is satisfied
e B whenng = 0, 14, but forne = 45 and65, (113) is violated. We

(111) find that forng = 0, 14, the peak oflz(n)| will almost have
no attenuation, and foi, = 45, 65, the peak ofz(n)| will

then the peak ofi:(n)| is located ab = no, and its value is attenuate a lot. We show the results in Figs. 5 and 6. We also

peak of|z(n)|: |2(ng)| = 1 calculate the conventional discrete correlationof) andg(n)
2M +1 for comparison
B *
| 3 emrmntn 2 #(n) = DFT(X (m)G*(m))
nl=-—B where
(112) X(m) = DFT(z(n)), G(m)=DFT(g(n)). (116)

This is an ideal peak at, = 0. Because the width of(n) \ye change the last operation to be DFT instead of IDFT to avoid

is B, the peak will only distort a little when the phase of thene time reverse. The results are shown in Fig. 7. We find, for the
exponential term is in the range pf, 7] when|n| < B,i.e..,  griginal discrete correlation, that the peak will never distort, no

' (113) matter how much displacement there is. The conventional dis-
B-ql crete correlation can be used for space-invariant pattern recog-
If no is outside the above range, then the peak will distort seriition, and the discrete fractional correlation can be used for

ously, and we can identify that the object is out of some regiospace-variant pattern recognition.

Ino| <
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(10]
0.5 0.5 [11]
0 0
-50 0 50 -50 0 50 [12]
1 1
05 0.5 [13]
0 0
-50 [} 50 -50 0 50 [14]

Fig. 7. Conventional discrete correlation between the shifted object an
reference in the example in Section IV-B. Upper left to lower right:= 0,
14, 45, and65, respectively.

fis)
[16]

V. CONCLUSION

In this paper, we have introduced new types of the discretg1 ]
fractional Fourier transform (DFRFT) and the discrete affine[18]
Fourier transform (DAFT). The first type comes from sampling
the continuous transforms directly, and the second type is th[égl
simplification of the former. We also discuss their applications
for computing the continuous FRFT and affine Fourier trans{20]
form, discrete filter design, and pattern recognition. [21]

The DFRFT and DAFT we derive in this paper keep many
of the important properties that the continuous FRFT ancﬂ
affine Fourier transform have. For example, they have simila ]
formulas, are all unitary, reversible, partial time variant, use
the chirp functions as their transform basis (see Sections I3l
and 1V-A), and they all transform a signal into the intermediate
domain between time and frequency. Thus, as the continuoys4]
fractional and affine Fourier transforms are useful tools for
continuous signal processing, we think the DFRFT and DAFT
will also be very useful for digital signal processing. Since the
DFRFT and DAFT can be efficiently implemented by FFT, and
many important properties of FRFT and AFT can be kept, v
believe they will have many signal processing applications
the future.
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