
1338 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 5, MAY 2000
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Abstract—The discrete fractional Fourier transform (DFRFT)
is the generalization of discrete Fourier transform. Many types
of DFRFT have been derived and are useful for signal processing
applications. In this paper, we will introduce a new type of
DFRFT, which are unitary, reversible, and flexible; in addition,
the closed-form analytic expression can be obtained. It works
in performance similar to the continuous fractional Fourier
transform (FRFT) and can be efficiently calculated by FFT. Since
the continuous FRFT can be generalized into the continuous affine
Fourier transform (AFT) (the so-called canonical transform), we
also extend the DFRFT into the discrete affine Fourier transform
(DAFT). We will derive two types of the DFRFT and DAFT. Type
1 will be similar to the continuous FRFT and AFT and can be
used for computing the continuous FRFT and AFT. Type 2 is the
improved form of type 1 and can be used for other applications of
digital signal processing. Meanwhile, many important properties
continuous FRFT and AFT are kept in closed-form DFRFT and
DAFT, and some applications, such as the filter design and pattern
recognition, will also be discussed. The closed-form DFRFT we
introduce will have the lowest complexity among all current
DFRFT's that are still similar to the continuous FRFT.

Index Terms—Affine Fourier transform, discrete affine Fourier
transform, discrete Fourier transform, discrete fractional Fourier
transform, Fourier transform.

I. INTRODUCTION

T HE continuousfractional Fourier transform (FRFT)[1],
[2], which is the generalization of Fourier transform, is

defined as

(1)

where the phase of is constrained in the range of
. It has been discussed in recent years and used in

many applications such as optical system analysis, filter design,
soluiton of differential equations, phase retrieval, pattern recog-
nition, etc. The continuous FRFT satisfies the additivity prop-
erty as

(2)
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The FRFT has been further generalized into the special affine
Fourier transform (SAFT) [3] (the so-called canonical transform
[4]). It is defined as

when (3)

when (4)

where must be satisfied. Special affine Fourier
transform has the additive property

(5)
where

and it has the reversible property

(5a)

We will call this special affine Fourier transform theaffine
Fourier transform (AFT). The affine Fourier transform can
extend the utilities of FRFT and is a useful tool for the optical
system analysis. The effect of the FRFT and AFT can be
interpreted by the Wigner distribution function (WDF). After
doing the FRFT, the WDF of will be the rotation of
the WDF of with angle [23], and after doing the AFT,
the WDF of will be the twisting of the WDF
of .

After the continuous fractional Fourier transform has been
derived, many researchers have tried to derive their discrete
counterpart, that is, thediscrete fractional Fourier transform
(DFRFT). We briefly review DFRFT's below. The name for each
type of DFRFT is not recalled by the original authors. We give
their names for easy classification.

1) Direct form of DFRFT. The simplest way to derive the
DFRFT is sampling the continuous FRFT and computing
it directly, but when we sample the continuous FRFT
directly, then the resultant discrete transform we obtain
will lose many important properties. The most serious
problem is the DFRFT of this type will not be unitary and
reversible. Besides, lacks closed-form properties, and not
additive, so its applications are very limited.

2) Improved sampling-type DFRFT. In [5], a way to sample
the continuous FRFT properly is introduced, and then, the
resultant DFRFT will have the similar transform results as
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the continuous FRFT. Although, in this case, the DFRFT
can work very similarly to the continuous case and has a
fast algorithm, but the transform kernel will not be orthog-
onal and additive. Besides, many constraints, including
the input signal constraint, should be satisfied.

3) Linear combination-type DFRFT. In [6]–[8], and [24], the
discrete fractional Fourier transform is derived by using
the linear combination of identity operation, DFT, time
inverse operation, and IDFT. In this case, the transform
matrix is orthogonal, and the additivity property and the
reversibility property will satisfy for this type of DFRFT.
However, the main problem is that the transform results
will not match to the continuous FRFT. Besides, it will
work very similarly to the original Fourier transform or
the identity operation and lose the important character-
istic of “fractionalization.”

4) Eigenvectors decomposition-type DFRFT. In [9]–[11],
and [16], the authors derive another type of discrete frac-
tional Fourier transform by searching the eigenvectors
and eigenvalues of the DFT matrix and then compute the
fractional power of the DFT matrix. This type of DFRFT
will work very similarly to the continuous FRFT and
will also have the properties of orthogonal, additivity,
and reversibility. In [11], they have further improved this
type of DFRFT by modifying their eigenvectors more
similarly to the continuous Hermite functions, which are
the eigenfunctions of the FRFT. These types of DFRFT’s
lack the fast computation algorithm, and the eigenvectors
cannot be written in a closed form.

5) Group theory-type DFRFT. In [13], the concept of group
theory [15] is used, and the DFRFT as the multiplication
of DFT and the periodic chirps are derived. The DFRFT
derived will satisfy the rotation property on the Wigner
distribution, and the additivity and reversible property
will also be satisfied. However, this type of DFRFT can
be derived only when the fractional order of the DFRFT
equals some specified angles, and when the number of
points is not prime, it will be very complicated to de-
rive.

6) Impulse train-type DFRFT. Recently, in [14], another
type of DFRFT is derived. This type of DFRFT can be
viewed as a special case of the continuous FRFT. In this
case, the input function is a periodic, equally spaced
impulse train, and if the number of impulses in a period
is , and the period is , then . Besides, the
value of is limited and must be a rational number
( is the order of FRFT). Because this type of DFRFT
can be viewed as a special case of continuous FRFT,
many properties of the FRFT will also exist and have the
fast algorithm. However, this type of DFRFT has many
constraints and cannot be defined for all values of.

Although many types of the discrete fractional Fourier trans-
form (DFRFT) have been derived recently, no discrete affine
Fourier transform (DAFT) has yet been derived.

In this paper, we will derive a new type of DFRFT, and then
extend it into the discrete affine Fourier transform (DAFT). The
DFRFT and DAFT we derived come from the proper sampling
of the continuous FRFT and AFT. The DFRFT introduced in

[5] is also derived from the sampling of the continuous FRFT.
Here, however, we will sample the continuous FRFT and affine
Fourier transform by some proper intervals, and therefore, the
transform matrix will be orthogonal and reversible. It can be
written in the closed form so that many properties can be de-
rived, and the fast algorithms can be achieved. Our idea comes
from the [12] and [22]. In these papers, when we sample the
fractional Fourier transform properly, we will obtain an unitary
transform. We will improve upon these ideas.

In this paper, our focus is on thepractical applications.
Thus, although our DFRFT/DAFT seem neat in concepts and
sacrifice the additivity property, they are very suitable for the
practical applications due to the simpler and closed form of
discrete fractional convolution and correlation introduced in
Section II-D and the advantages listed in Section II-E. Our
DFRFT/DAFT will have the lowest complexity among all the
current the DFRFT/DAFT's that still have the similar properties
as the continuous FRFT/AFT.

Due to the orientation of practical usage, we will derive two
types of DFRFT/DAFT. These two types of DFRFT/DAFT are
essentially the same but different in parameterizations. The first
type we derive has the parameters that are more directly linked
to the continuous FRFT/AFT and suits the applications of com-
puting the continuous FRFT/AFT. On the other hand, type 2
has the simpler parameters set and allows more elegant expres-
sion for the operator kernels. It is suitable for other applications
of DFRFT/DAFT, such as the filter design, pattern recognition
(described in Section IV), and the use for the phase retrieval
discussed in [12] and [22] can also be improved by the type 2
DFRFT/DAFT proposed in this paper.

In Section II, we will give the derivation and definitions of
our new types of DFRFT and DAFT. For different applications,
we will use different parameterizations to define 2 types of
DFRFT/DAFT. In Section III, we will discuss their properties
and their transform results for some special signals. In Section
IV, we discuss their applications. Finally, in Section V, we
make a conclusion.

II. DERIVATION OF CLOSED-FORM DISCRETEFRACTIONAL

AND AFFINE FOURIER TRANSFORMS

A. The Closed-Form Discrete Fractional Fourier Transform
of Type 1

1) The Derivation: To derive the DFRFT, we first sample
the input function and the output function of the
FRFT [see (1)] by the interval , as

(6)

where , and
. Here, we do not start our sampling at and

. Instead, we try to make the DC component in the center.
From (6), we can convert (1) as

(7)
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The above equation can be written as the form of transformation
matrix

(8)

where

(9)

in order for (8) to be reversible. We will try to make the inverse
transform to be the Hermitian (conjugation and transpose) of

when , i.e.,

for (10)

Then, from (8) and (9)

(11)

If we want the summation for in (11) to become ,
then

(12)

where is some integer prime to . In this case, (9)
becomes

(13)

and

(14)

We then normalize to satisfy (11) and obtain the trans-
form matrix as

sgn

(15)

For simplicity, we can choose sgn , and
rewrite (15) as

sgn

(16)

Then, we obtain the following two formulas of discrete frac-
tional Fourier transforms (DFRFT) for 1) and 2)

DFRFT of type 1:
1)

when is integer

i.e., (17)

2)

when is integer

i.e., (18)

Additionally, the constraints that

are the number of points

in the time, frequency domain

(19)

must also be satisfied. We note that when and
, (17) will become the DFT, and when

, (18) will become the inverse DFT. We also note
that when and is some integer, there is no
proper choice for and that satisfies this constraint
of (15), and we cannot use (17) or (18) as the definition
of DFRFT when . In fact, in these cases, we can
just use the following definitions:

3)

when (20)

4)

when (21)

Equations (17)–(21) are the definition of the DFRFT.
2) Some Important Discussion About the DFRFT of Type

1: We also note, from (1) and (2), the inverse of the forward
continuous FRFT with order is just the forward continuous
FRFT with order . In fact, this property will also exist for
the DFRFT defined as (17)–(21). Since, from (11), the inverse
of is just its Hermitian, i.e., , and if we de-
fine as (16), then we find

(22)

In the above equation, we notice that the sampling interval of
the input (the second subscript) and the sampling interval of
the output (the third subscript) are exchanged. Then, we can
conclude that

(23)

that is, the DFRFT of order with the sampling interval in
the input and at the output will be the inverse of the DFRFT
of order with the sampling interval in the input and at
the output. This is the reversible property of the DFRFT of type
1.
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As the continuous FRFT, the DFRFT of type 1 also has the
periodic property, that is

(24)

The DFRFT of type 1 will have the period of as the contin-
uous FRFT. The DFRFT’s of type 1 also have the conjugation
property that

if is real (25)

The rest important properties will be derived in the Section III.
Although the DFRFT introduced here has no additivity prop-

erty, it can be convertible, that is, we can convert the DFRFT
with some set of parameters into the DFRFT with another set of
parameters. Suppose we use for the DFRFT with the
parameter and use for the DFRFT with the param-
eter (The sampling interval in both time domains is the same
and fixed). Then, from (16), we find

where is the DFT or IDFT of

(26)

In addition

where

is some integer such that (27)

Therefore, we obtain

(28)

Although the DFRFT defined in (17)–(21) has no additive prop-
erty, if we fix , then we can convert the transform result of the
DFRFT with order into order by two chirp multiplications
and one convolution operation.

We note, in (19), that if is very small, then and
must also be very small, and the number of points must increase.

This will increase the computation time of the DFRFT because
for the continuous FRFT

so when is very small, we can first do the forward DFT
for the sampling of and do the DFRFT defined as (17) or
(18) with the order . Thus, we can change the DFRFT
of type 1 to

(29)

where

(29a)

Then, because

for the case that is small, we can define the DFRFT as
follows.

Modification form of the DFRFT of type 1 when

(30)

where is the same as (29a), and the constraint forbecomes

(31)

When is small, we can use (30) as the DFRFT.
The DFRFT of type 1 has a very important advantage, that is,

it is efficient to calculate and implement. Because there are two
chirp multiplications and one FFT, the total number of the mul-
tiplication operations required is , where

is the length of the output. Among all types of
DFRFT, the linear combination type DFRFT [6]–[8], [24] will
have the least complexity and only require multi-
plication operations. However, it does not match the continuous
FRFT and lacks many of the characteristics of the continuous
FRFT. For example, it is hard to filter out the chirp noise with
this type of DFRFT. For most of the other types of DFRFT, such
as the improved directly sampling-type DFRFT [5], we need

multiplication operations because there is one
convolution operation and two chirp multiplication operations
required. The DFRFT we introduce will have the lowest com-
plexity among all types of DFRFT that still work similarly to
the continuous FRFT.

3) Applications for Calculating the Continuous FRFT:We
can use the DFRFT of type 1 to calculate the continuous FRFT.
When using the DFRFT for this application, we first sample the
input continuous function into a discrete sequence, do the for-
ward DFRFT, and get the output of DFRFT as the sampling of
the transform results of continuous FRFT. We note that because
when we derive the DFRFT of type 1, we have normalized the
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unitary [from (14) to (15)]. Thus, when using the DFRFT of type
1 to implement the continuous FRFT, we must consider this nor-
malization factor, that is, if

(32)

then

(33)

We will use some examples to discuss this.
In Figs. 1 and 2, we will give some examples to illustrate the

application of DFRFT for calculating the continuous FRFT. The
original continuous input functions are:

Fig. 1: (rectangular)

Fig. 2: (triangular).

Then, we sample the input function with the sampling interval

Fig. 1: (rectangular)

Fig. 2:

and use the DFRFT of order and
. The value of is chosen as

for

for

for

We can compare the transform results for the rectangular func-
tion with the results of the continuous FRFT in [2]. We find that
the transform results of the DFRFT are similar to the ones of
the continuous FRFT in these two examples. The closed form
of the continuous FRFT of rectangular function is derived in
[24], and the continuous FRFT of the triangular function can be
calculated from the numerical method. We use these results to
calculate our errors of the transform results in Figs. 1 and 2. The
error is calculated from

err

(34)

where and are defined as (32), and is the
largest integer such that (we just consider the
interval that for simplification). Then, we obtain
the error as in Table I. In fact, when choosing the same value of
sampling interval in the time and frequency domains and the
same number of points, the error of our DFRFT when used to
calculate the continuous FRFT will be the same as the DFRFT
introduced in [5]. However, our DFRFT will only require about
half of the computation of the DFRFT introduced in [5], and
many of the constraints in [5], such as the original signal, must
be bandlimited in all the domains ( when
for all the value of ) will be not required here.

Not all the input functions of the FRFT will be time limited,
as is the above experiment. If the input function has very long
time duration, we will modify the above process a little. We will

cut the input function into several subsections with short time
duration and sample them

(35a)

where (35b)

and input them into DFRFT. We will use the shifting property
for the continuous FRFT [2]

(36)

Thus, we require that must be the multiple
integers of

where is some integer.

Then, from and the relation of (19), we see
that must satisfy

where sgn (37)

Thus, if we choose as(37), then together with the shift prop-
erty, we obtain

(38a)

(38b)

and we can obtain the approximated value of (the contin-
uous FRFT of ) from

(38c)

Therefore, for very long input, we can also use the DFRFT of
type 1 to compute the transform results of the continuous FRFT
[but the sampling interval must be chosen as (37)]. In Fig.
3, we will show an example. Here, we use

(39)

as the input of continuous FRFT. The transform result of
for continuous FRFT is

(39a)

We will choose , , and . In (37),
we choose

and then, . We then use the
DFRFT to compute the transform result of for continuous
FRFT by the method from (35a)–(38c), and in (35a), we choose

and . We plot the result in the Fig. 3. Then,
we also use (34) to compute the error and obtain

err for

err for
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Fig. 1. DFRFT for the rectangular functionx(n) = �(n=225), i.e.,f(t) =
�(t=4:5). Upper left:� = 0:05. Upper right:� = 0:2. Lower left:� = 0:4,
Lower right:� = �=4.

Fig. 2. DFRFT for the triangular functionx(n) = �(n=125) , i.e.,f(t) =
�(t=2:5)). Upper left:� = 0:05. Upper right:� = 0:2. Lower left:� = 0:4.
Lower right:� = �=4.

When we use the DFRFT to calculate the continuous FRFT,
we should consider its precision. There are two main constraints
that must be satisfied for precision. First, the value of can
be ignored outside

(constraint 1):

where

Second, we must consider the aliasing effect of the sampling.
Consider first the bandwidth of the term

(40)

Because

Max Max

if the bandwidth of is , then the bandwidth of (40) is
. Then, from the sampling theory

(constraint 2):

There are some remarks about the above two constraints.

1) From (40), we find that if the value of (the effective
width of the input signal) increases, then must de-
crease, that is, the sampling interval in the time domain
will also depend on the effective width of the input signal.

2) When (the bandwidth of ) increases and is fixed,
then must be decreased, andshould be increased.

3) When increases, i.e., , and is fixed,
then must be decreased, andwill be increased.

B. Closed-Form Discrete Affine Fourier Transform of Type 1

We can use a similar way to derive the DAFT that is analogous
to the continuous case in (3). Similar to the process to derive the
DFRFT, we find that if and satisfy

(41)

and , then the transform matrix will be
reversible, where

(42)

and . Thus, the DAFT of type 1 is
as follows.

DAFT of type 1
1)

when (43)

2)

when (44)

The above DFRFT defined as (17), and (18) is a special case of
the DAFT wherein .
The reversible property for the DAFT of type 1 is

(45)

where is the DAFT of for parame-
ters and where the sampling interval is the input,
and is the output. This reversible property is the same as the
continuous AFT.

As for the case of DFRFT, when , we also find that the
DAFT fails to be defined from (43) and (44) because the right
side of (41) will be 0. However, for , the continuous affine
Fourier transform results will be

(46)

or

(47)

where is the Fourier transform of . Therefore, we can
define the DAFT, when , as follows.

1)

when is an integer. (48)
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TABLE I
ERRORS FORUSING DFRFTOF TYPE 1 TO COMPUTE THECONTINUOUS DFRFT

Fig. 3. Experiment for using DFRFT to compute the transform result of
continuous FRFT for the signal with nonfinite time duration. Upper-left:
Input [see (39)]. Upper-right: Exact transform result [see (39a)]. Lower left:
Transform results calculated from DFRFT withh = �2�2. Lower right:
Transform results calculated from DFRFT withh = �5�5.

2)

when is not an integer. (49)

In (49), , and

(50)

We note that it is no problem for (48) to be reversible. Besides,
(49) is also reversible

(51)

From the constraint of (41), we find that (43) and (44) can
also be written as

(52)

Thus, if we fix and , then only the values of sgn
will affect the transform result. Some important equality

relations for the DAFT of type 1 are

(53)

(54)

Here we have assumed that the values ofand are fixed.
The number of computations for the DAFT will also be pro-

portional to , where . This is
the same as the case of the DFRFT.

The DAFT has no additivity property, but it is convertible.
That is, we can convert the DAFT with some set of parameters
into another set of parameters. Suppose we use for
the DAFT with the parameter and use
for the DAFT with the parameter ( and
are fixed). Then, as for the case of DFRFT, we find that the
following relation can be satisfied:

(55)
where is defined as (27), and can be obtained
from the DFT of a chirp

(56)
In addition, we can use the DAFT to compute the continuous

affine Fourier transform, and then, as in the case of the DFRFT,
the following two constraints must be satisfied:

constraint 1:

where (57)

constraint 2:

(58)
The above three remarks for using DFRFT to calculate the con-
tinuous FRFT listed in Section II-A will also be applied here.

C. Closed-Form Fractional and Affine Fourier Transform of
Type 2

In general, we can use the discrete transform to do the fol-
lowing: 1) Compute the continuous transform for spectral anal-
ysis, and 2) suit for processing the discrete data signals. For the
former case, the input of the discrete transform is the sampling
of some continuous function. For the later case, the input is just a
pure discrete sequence. For example, we can use DFT for com-
puting the continuous Fourier transform, and the input is the
sampling of some continuous function. Meanwhile, we can also
use DFT for other digital signal processing applications, and in
this case, the input is inherently a discrete sequence itself, such
as the daily stock market or checking account, etc. Similarly, ex-
cept for computing the continuous FRFT/AFT, we can also use
DFRFT/DAFT for some other applications and just use them as
the discrete data transforms.

When we use DFRFT and DAFT to compute the continuous
FRFT/AFT, the mathematical form of the DFRFT and DAFT
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should be almost the same as the continuous FRFT and AFT.
Thus, in Sections II-A and II-B, we derive the DFRFT and
DAFT from the sampling of kernels of the continuous FRFT
and AFT. However, when we use DFRFT and DAFT for
some other applications, the above requirement, such as phase
alignment, is not necessary. We make DFRFT and DAFT
remain the simple basic structures of FRFT and AFT, but they
have the same abilities and are easier to compute and design.

We will derive the DAFT of type 2 from the transform matrix
of the DAFT of type 1 and then simplify it into the DFRFT
of type 2. The DAFT of type 1 defined as (43) and (44) has
too many parameters. We can try to simplify it and set

. Then

(59)

Then, from , we find

(60)

Because can be any real value, there will be no constraint
for , and can be any real value. Thus, the DFRFT matrix
defined as (59) will have three parameters without any
constraint and has the free dimension of 3.

We note that the continuous affine Fourier transform has four
parameters plus one constraint and has the free di-
mension of 3 in total. Although, in (59), the free dimension is
also 3, but the value of sgn can only be , in fact, the free
dimension is near 2. Thus, as in (12), which has a parameterin
the Fourier term, we can also put a parameterinto the Fourier
transform term of (59)

(61)

where is prime to . Then, we find that the reversible
property will be satisfied:

(62)
Therefore, we can define the discrete affine Fourier transform
(DAFT) as follows.

DAFT of type 2

(63)

where

are the number

of points in the time, frequency domain

is prime to (64)

and its inverse transform is the following.

Inverse DAFT of type 2

(65)

We note that when , the inverse transform with the
parameters is just the same as forward transform with
the parameters . Thus, when , the DAFT
with the parameters is the inverse of the DAFT
with the parameters

when (66)

In this paper, we use to denote the DAFT of type 2

(67)
We note, from (1) and (3), that the continuous FRFT is a spe-

cial case of the continuous AFT in that the inner and outer chirp
terms have the same parameters . In the
similar way, we can define the DFRFT from the DAFT by set-
ting and and obtain the following.

DFRFT of type 2

where (68)

We call the above DFRFT/DAFT defined in Sections II-A and
B the DFRFT/DAFT of type 1. They are suitable for calculating
the continuous FRFT/AFT. In addition, we call the DFRFT and
DAFT defined in (68) and (63) the DFRFT/DAFT of type 2. The
DFRFT/DAFT of type 2 are simple and suitable for other digital
signal processing applications.

For the DAFT of type 2, we can useand to control the
variation of the chirp in the frequency and time domains. When

, the DAFT defined as (63) will be similar to a chirp multi-
plication operation followed by a DFT. In addition, when ,
the DAFT will be similar to the DFT followed by a chirp mul-
tiplication operation. When , then the transform matrix

will be a symmetry matrix, i.e.,
, and the transform matrix for the inverse DAFT

is just the conjugate of .
The DAFT/DFRFT of type 2 also need

multiplication operations. They also have no additive property,
but they are convertible. We can calculate the DAFT with the
parameters from the DAFT with the parameters

from

(69)

where is the modulo symbol defined as (27), and
is defined as

(70)
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can also be calculated from the DFT of a chirp

(71)

After two chirp multiplications and one convolution, we can
convert the DAFT with some parameters into the DAFT with
other parameters. In the case where

(72)

In this case, we can even save the convolution operation. Other
important properties of the DFRFT/DAFT of type 2 are intro-
duced in Section III.

We show the relations between DAFT of type 2 and its special
cases in Table II.

D. Discrete Fractional/Affine Convolutions and Correlations

Since the discrete fractional and affine Fourier transforms
have been defined, we can use them to define the discrete frac-
tional and affine convolutions and correlations. We only discuss
the affine case, and the rest of the discrete fractional convolu-
tion and convolution can be obtained by substituting as

.
The discrete affine convolution can be defined as follows:

Discrete affine convolution

(73)

We must remember that the DAFT with the parameters
is the inverse of the DAFT with the parameters

. If , then (73) can be
rewritten as

(74)

We note that the term has been cancelled. The
above equation can also be written as

(75)

where

(76)

TABLE II
RELATIONS BETWEEN THEDAFT OF TYPE 2 AND ITS SPECIAL CASES

In the case where

Thus, when , the discrete affine convolution can be written
as follows.

Simplification form of the discrete affine convolution

(77)

This is just the conventional discrete fractional convolution of
and and with the extra

multiplication of . We note that in this case,
will have no effect. Thus, for the simplification, when using

the discrete affine convolution, we often set . In fact, for
practical applications, control of the parameteris quite suf-
ficient to control performance. The discrete affine convolution
can be used in digital filter design, discrete fractional Hilbert
transforms, etc.

From the definition of the continuous fractional correlation
[18], we can use the similar way to define the discrete affine cor-
relation. If is the fractional correlation of and ,
then we have the following.Discrete affine correlation

conj (78)

We use conj to denote the conjugation operation. We will de-
note it as

(79)

The original discrete correlation is the special case of (78)
that

. Equation (78) can also be written as

(80)
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For simplification, we set , and
. Then, the above equation becomes

(81)

We obtain the following.
Simplification form of the discrete affine correlation

(82)

where are defined in (27) and (70).
Equation (81) will be much simpler than (80). Thus, for the
simplification, we can set and
for discrete affine correlation. The discrete affine correlation
can be used for pattern recognition. In Section IV-B, we will
illustrate this.

The simplification form of discrete affine convolution/corre-
lation defined as (77) and (81) only require one conventional dis-
crete convolution, and the relations between its input and output
are very clear. Therefore, the discrete affine convolution/corre-
lation is easier to implement and analyze. It further enhances
the proposed DAFT/DFRFT as a useful tool for digital signal
processing.

E. Comparison of Closed-Form DFRFT and DAFT with Other
Types of DFRFT

At the end of this section, we will compare the DFRFT and
the DAFT introduced in this paper with other types of DFRFT.

The name for each type of DFRFT is as follows.

• Direct: direct form of DFRFT;
• Improved: improved sampling type DFRFT [5];
• Linear: linear combination type DFRFT [6]–[8], [24];
• Eigenfxs.: eigenvectors decomposition-type DFRFT

[9]–[11], [16];
• Group: group theory-type DFRFT [13];
• Impulse: impulse train-type DFRFT [14];
• Proposed: the DFRFT/DAFT we derive in this paper, i.e.,

the closed-form DFRFT/DAFT.
Each term of the comparison means the following.

• Reversible: whether the DFRFT is reversible;
• Similarity: whether the DFRFT is similar to its continuous

counterparts;
• Closed form: whether the DFRFT can be written in the

closed form;
• Complexity: the number of multiplication operations re-

quired ( is the number of points);

• FFT: whether the DFRFT can be implemented by FFT and
the number of FFT's required;

• Constraints: the number of constraints used for calculating
the continuous FRFT;

• All orders: whether the DFRFT can be defined for all the
order without constraints;

• Properties: the number of properties that can be derived;
• Addv./Convt.: whether the DFRFT is additive or convert-

ible (the convertibility means that we can convert the
DFRFT with some parameters into the DFRFT with other
parameters);

• DSP: whether the DFRFT is suitable for the digital signal
processing applications.

From Table III, we have seen that there are many advantages
for the DFRFT/DAFT defined in this paper. The only disadvan-
tage is that the additivity property is not satisfied. However, this
disadvantage will have only a small affect on the practical usage
of the DFRFT/DAFT. Besides, we can use the chirp multiplica-
tion and convolution to convert the DFRFT/DAFT with some
parameters into another set of parameters, i.e., convertible. We
give the proposed DFRFT/DAFT “OO” for last the term. This
is because of their advantages of reversibility, less complexity,
and the characteristic of “fractionalization;” in addition, many
properties can be derived. Meanwhile, the DFRFT/DAFT de-
fined here is very simple, and each of the parameters and

will have the clear roles; thus, the design and the analysis will
be very easy for practical applications.

III. PROPERTIES OF THEDISCRETEFRACTIONAL AND AFFINE

FOURIER TRANSFORMS

A. Properties of the DFRFT and DAFT

Because the DFRFT/DAFT we derived are reversible, simple,
and can be written in the closed form, their properties can be
easily derived. We will discuss the properties of the DFRFT and
DAFT in this subsection. Only the properties of the DAFT of
type 2 are listed in Table IV and discussed here. The properties
of the DFRFT/DAFT of type 1 and the properties of the DFRFT
of type 2 can be obtained by the parameters substituting listed
in Table I. We will use to represent the transform

matrices of the DAFT, use to represent the transform
operation, use to represent the input, and use
to represent the transform results of .

Some of the properties are proved as follows.

a) Proof of Property 7:
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TABLE III
COMPARISONS FORDIFFERENTTYPES OFDFRFT/DAFT

b) Proof of Property 10:

From the conjugation property for the transform matrix, we
find that the inverse transform

(83)

can be rewritten as

Then applying property 1, we find that

(84)
Then using the conjugation property for the transform matrix
again, we obtain

(85)

From (85), we can calculate the inverse DAFT from the forward
DAFT with the same parameters. (Remember that we can cal-
culate the DFT from the IDFT).

From the modulation property, we find, as the continuous
FRFT, after DAFT, that the modulation will partially remain
as the modulation and partially become the shifting operation.
Similarly, from the time-shifting property, we find that after the
DAFT, the shifting operation will partially remain as the shifting
operation and partially become the modulation operation. We
note that for the original DFT and the IDFT, the shifting opera-
tion will totally become the modulation operation, and the mod-
ulation operation will totally become the shifting operation.

Thus, from the above discussion, we can say that many of the
properties of continuous FRFR/AFT in [2] are also kept in our
closed-form DFRFT/DAFT.

We also discuss the scaling property that only exists for the
DFRFT and DAFT of type 1. In these cases, the input is the
sampling of some continuous function.

Scaling property for the DFRFT and DAFT of type 1
Suppose is the sampling of the continuous function

with the interval of

(86)

and is the scaling of

(87)

Now, if we sample with the interval of

(88)

then we will find . Because the constraint of (19)
or (41) must be satisfied, the sampling interval in the fractional
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TABLE IV
PROPERTIES OFDAFT

domain now is , where is the original sampling interval
in the fractional domain. Thus

(89)

We can conclude that if

(90)

(91)

where we use to denote sampling with the in-
terval of , then from (43) and (44)

(92)
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TABLE IV
PROPERTIES OFDAFT (Continued)

For the special case of DFRFT

where (93)

This scaling property is very similar to the continuous FRFT
case in [2]. The scaling property of the continuous FRFT is

(93a)

where .

B. Transform Results for Some Special Signals

In Table V, we just list the transform results of some spe-
cial signals for the DAFT of type 2. The transform result for

comes from the first
transform result and (85).

IV. A PPLICATIONS OF THEDFRFTAND DAFT

Because of the advantages of the DFRFT/DAFT listed in Sec-
tion II-E, there are many signal processing applications for the
DFRFT/DAFT. The main application for the DFRAT/DAFT of

type 1 is useful for computing the continuous FRF/AFT. In addi-
tion, for the DFRAT/DAFT of type 2, there are also some prac-
tical applications. We will introduce two examples, that is, the
filter design (a special case of discrete fractional convolution)
and the pattern recognition (use discrete fractional correlation).

In fact, except for these applications, there are also some po-
tential applications for the DFRFT/DAFT. For example, because
the DFRFT/DAFT are the unitary transform constructed from
the orthogonal chirp basis [see (94)] if a function is similar to
the combination of several chirps, then it is convenient to use
the DFRFT/DAFT to expand this function. It is also possible to
use the DFRFT/DAFT for the phase retrieval [12], discrete frac-
tional Hilbert transform, and beam shaping, etc.

According to our experiment, among the three parameters of
DAFT, is the most important, next is, and will have the
least importance. Besides, from the discussion in Section II-D,
we find that when using the discrete affine convolution and cor-
relation, it is convenient to set for the simplification. Thus,
for digital signal processing applications, we have the following.

1) We usually use the parameterto control the perfor-
mance, and set and .

2) Sometimes (the applications about scaling), we also ad-
just and still set .

3) In lesser conditions (such as the phase retrieval), we also
adjust the value of .

The design method of the digital signal processing applications
when using DAFT can be simplified by the above principles.
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TABLE V
TRANSFORMRESULTS OFDAFT FOR SOME SPECIAL FUNCTIONS

A. Filter Design

For the inverse formula of DAFT of (63), we find

(94)

where

(95)
Therefore, the DAFT is an unitary transform with the or-
thonormal chirp basis of as above. Thus, if a discrete
function is a chirp or the combination of several chirps, then
it is convenient to use the DAFT to analyze so that DAFT can
be used for filter design to remove the chirp noise. If the chirp
noise has the form

(96)

then we can use the DAFT to filter out this chirp

(97)

where represents the inverse of the DAFT with param-
eters represents the width of bandstop filter, and

(98)

We will give an example in the following. In this example,
the number of points for the function is . We use the
Gaussian function as the input

(99)

Suppose it is interfered by the chirp noise so that the received
signal becomes

(100)

Then, from (96) and (98), we find that

(101)

Then, we set and and obtain the center of the
bandstop filter as

(102)

We also choose the width of the bandstop filteras 9. There-
fore, the filter in the fractional domain is

(103)

Then we substitute them into (97) to obtain the recovered signal.
In Fig. 4, we will show the results, and the recovered signal will
be very similar to the original signal . We also show the
conventional DFT of defined in (100) and plot the result in
the middle-left of Fig. 4. It is clear that the conventional DFT
cannot separate the signal from the chirp interference.

Except for filtering out the chirp noise, since the DAFT
system is time (space) variant, we can also use the DAFT to de-
sign the time-varying filter to remove some noise or distortions
with spectrum varying with time (space). The general formula
for the filter design by DAFT is

(104)

For simplification of computation, when we use the DAFT
for the application of filter design, it is convenient to set
and , as in the above case. It is even simpler than using
the DFRFT ( and ) because we save two chirp
multiplications (one for the forward DAFT and another one for
the inverse).

B. Pattern Recognition

Because of the space-variant properties of the DFRFT and
DAFT, we can use them for the pattern recognition to determine
the same object located in a different place.

We will use the discrete fractional correlation described in
Section II-D. We will apply the result of (81), that is, is the
fractional correlation of and , and

. We will further simplify it by setting
and , i.e.,

DFT (105)

Then

(106)

Suppose the input signal is time limited as

for (107)
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Fig. 4. Example of filter design by DAFT in Section IV-A. Upper left: Original
signal. Upper right: Interfered signal (with chirp noise). Middle left: DFT of the
interfered signal. Middle right: DAFT(p = 0; q = 0:025; s = 1) of the
interfered signal. Lower left: Noise part filtered out. Lower right: Recovered
signal.

and we only consider in the range that so
that (106) can be written as

(108)

If the magnitude response is only considered, then

(109)

Now, we use as the reference template and suppose
that is a space-shifted version of the reference pattern, i.e.,

(110)

and suppose is real. Then

(111)

then the peak of is located at , and its value is

peak of

(112)

This is an ideal peak at . Because the width of
is , the peak will only distort a little when the phase of the
exponential term is in the range of when , i.e.,

(113)

If is outside the above range, then the peak will distort seri-
ously, and we can identify that the object is out of some region.

Fig. 5. Reference and the shifted object of the example in Section IV-B. Upper
left: Reference. Upper right, Lower left, and Lower right: Shifted object with
n = 14; 45; 65; respectively.

Fig. 6. Discrete fractional correlation between the shifted object and reference
in the example in Secion IV-B. Upper left to lower right:n = 0; 14; 45; and
65, respectively.

Thus, the discrete fractional correlation and, hence, the DAFT,
can be used for the space variant pattern recognition to detect a
pattern in a certain region.

We will give an example in the following. The total number of
points is . The reference here is a rectangular function

(114)

and the object is the space-shifted version of

(115)

We try four cases for , , and . The fractional
order is , and from the criterion of (113),

. Thus, the criterion of (113) is satisfied
when , but for and , (113) is violated. We
find that for , the peak of will almost have
no attenuation, and for , the peak of will
attenuate a lot. We show the results in Figs. 5 and 6. We also
calculate the conventional discrete correlation of and
for comparison

DFT

where

DFT DFT (116)

We change the last operation to be DFT instead of IDFT to avoid
the time reverse. The results are shown in Fig. 7. We find, for the
original discrete correlation, that the peak will never distort, no
matter how much displacement there is. The conventional dis-
crete correlation can be used for space-invariant pattern recog-
nition, and the discrete fractional correlation can be used for
space-variant pattern recognition.
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Fig. 7. Conventional discrete correlation between the shifted object and
reference in the example in Section IV-B. Upper left to lower right:n = 0;

14; 45; and65, respectively.

V. CONCLUSION

In this paper, we have introduced new types of the discrete
fractional Fourier transform (DFRFT) and the discrete affine
Fourier transform (DAFT). The first type comes from sampling
the continuous transforms directly, and the second type is the
simplification of the former. We also discuss their applications
for computing the continuous FRFT and affine Fourier trans-
form, discrete filter design, and pattern recognition.

The DFRFT and DAFT we derive in this paper keep many
of the important properties that the continuous FRFT and
affine Fourier transform have. For example, they have similar
formulas, are all unitary, reversible, partial time variant, use
the chirp functions as their transform basis (see Sections III
and IV-A), and they all transform a signal into the intermediate
domain between time and frequency. Thus, as the continuous
fractional and affine Fourier transforms are useful tools for
continuous signal processing, we think the DFRFT and DAFT
will also be very useful for digital signal processing. Since the
DFRFT and DAFT can be efficiently implemented by FFT, and
many important properties of FRFT and AFT can be kept, we
believe they will have many signal processing applications in
the future.
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