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Closed-Form Error Analysis of the
Non-Identical Nakagami-m Relay Fading Channel

Himal A. Suraweera, Member, IEEE, and George K. Karagiannidis, Senior Member, IEEE

Abstract— We present closed-form expressions for the average
bit error probability (ABEP) of BPSK, QPSK and M -QAM of
an amplify-and-forward average power scaling dual-hop relay
transmission, over non-identical Nakagami-m fading channels,
with integer values of m. Additionally, we evaluate in closed-
form the ABEP under sufficiently large signal-to-noise ratio
for the source-relay link, valid for arbitrary m. Numerical and
simulation results show the validity of the proposed mathematical
analysis and point out the effect of the two hops unbalanced
fading conditions on the error performance.

Index Terms— Wireless relays, Nakagami-m fading, amplify-
and-forward, error performance.

I. INTRODUCTION

IN recent years, wireless relaying techniques have attracted
a lot of research interest due to their possible exploit in

cellular, ad-hoc networks and military communications [1]. In
relay networks, intermediate nodes are used to relay signals
between the source and the destination terminal.

Amplify-and-forward (AF) is one of the two main schemes
for relaying [2]. AF relays without performing any decoding,
retransmit a scaled replica of the received signal. Literature on
AF relaying schemes assumes two different power constraints
at the relay: fixed-gain [2] also called “average power scaling”
(APS) in [3] and instantaneous power scaling [3].

The performance analysis of multihop wireless networks
operating under different fading conditions has been an impor-
tant field of research in the past few years. See for example,
[2]–[10]. In [3], Mheidat and Uysal have investigated the
impact of receive diversity on the performance of a relay-
assisted network in which the relay is operating under the AF-
APS constraint. In [2], [5], Hasna and Alouini have studied
the average bit error probability (ABEP) of dual-hop systems
with AF relaying over Rayleigh and Nakagami-m fading
channels. In [4], Adinoyi and Yanikomeroglu have analyzed
the error performance of a decode-and-forward (DF) based
multi-antenna relay network in the presence of Nakagami-m
fading. In [6] and [7] Karagiannidis et al. have studied the
performance bounds of AF multihop transmissions over non-
identically distributed Nakagami-m fading channels. In [9]
Ikki and Ahmed have presented a tight lower bound for the
performance of an AF multi-relay network over non-identical
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Nakagami-m fading channels, especially in the medium and
high signal-to-noise (SNR) region.

In this letter, we present closed-form expressions for the
ABEP of an AF-APS dual-hop relay link in non-identical
Nakagami-m fading channels (which is the real situation in
practical wireless relaying systems) with integer fading pa-
rameters. To the best of authors’ knowledge, no exact closed-
form ABEP expressions for the non-identical Nakagami-m
AF-APS relaying are reported. Moreover, we derive a closed-
form formula for the error performance under sufficiently large
SNR for the source-relay link, valid for arbitrary values of m.

II. DUAL-HOP RELAY MODEL

Consider a wireless communication system, where a source
terminal S communicates with a destination terminal D using
a relay R [2]. Let the modulated signal transmitted by S during
the first time slot denoted as x. The received signal at R is
given by [2]

yr =
√

ESRα1x + nr (1)

where α1 is the fading amplitude of the S − R link. nr is
an additive white Gaussian noise (AWGN) component with
single sided power spectral density N0. In the second time
slot, the relay multiplies the received signal by a gain factor
G and then retransmits to D. The received signal at D is

yd =
√

ERDα2G(
√

ESRα1x + nr) + nd (2)

where α2 is the fading amplitude of the R − D link and nd

is the AWGN component with power N0 at the input of D.
ESR and ERD represent the average energies available at R
and D, taking into consideration of possibly different path loss
and shadowing effects in S − R and R-D links [3]. When R
operates under APS constraint, G2 = 1/(ESR + N0). The
instantaneous end-to-end SNR at D, γeq, is given by [2]

γeq =
(ESR/N0)(ERD/N0)α2

1α
2
2

1 + ESR/N0 + (ERD/N0)α2
2

(3)

and (3) can be reexpressed as

γeq =
γ1γ2

C + γ2
(4)

where C = 1 + (ESR/N0) and γ1 = α2
1ESR/N0, γ2 =

α2
2ERD/N0 denote the instantaneous SNRs of the S-R and

R-D hops respectively. Since the hops are subject to non-
identical Nakagami fading, we model α1 and α2 according to
Nakagami-m distribution with fading severity parameters m1

and m2, respectively, i.e.,

pαi
(α) =

2mmi
i α2mi−1e−miα

2

Γ(mi)
(5)
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where i = 1, 2 and Γ(z) =
∫ ∞
0

tz−1e−tdt is the gamma
function. In the probability density functions (pdfs) of α1

and α2, without loss of generality, we have set E{α2
1} and

E{α2
2} to unity. Since αi is modeled as a Nakagami-m

random variable (RV), the instantaneous SNR γi is a gamma
distributed RV with pdf given by

pγi
(γ) =

mmi
i γmi−1e−miγ/Ωi

Ωmi
i Γ(mi)

(6)

where Ω1 = ESR/N0 and Ω2 = ERD/N0.

III. ERROR ANALYSIS

Traditionally the ABEP is computed by determining the pdf
of γeq and then averaging the conditional BEP in AWGN,
Pb(e|γ), over this pdf. Mathematically, Pb(e) is given by

Pb(e) =
∫ ∞

0

p(e|γ)pγeq(γ)dγ (7)

Note that for several Gray bit-mapped constellations employed
in practical systems, Pb(e|γ) is in the form of Q

(√
βγ

)
with Q(x) being the Gaussian Q-function defined as Q(x) =
(1/

√
2π)

∫ ∞
x

e−t2/2dt and β is a constant (BPSK: Pb(e|γ) =
Q(

√
2γ), QPSK: Pb(e|γ) = Q(

√
γ) and in the case of

square/rectangular M -QAM, Pb(e|γ) can be written as a finite
weighted sum of Q

(√
βγ

)
terms [11]).

To evaluate the integral in (7), we invoke the technique
described in [10]. That is, after introducing a new RV with
standard Normal distribution, Pb(e) =

∫ ∞
0

Q(
√

βγ)pγeq(γ)dγ
can be reexpressed as

Pb(e) =
1√
2π

∫ ∞

0

Fγeq

(
t2/β

)
e−t2/2dt (8)

Fortunately, Tsiftsis et al. in [8] derived the cumulative distri-
bution function of γeq, Fγeq(γ), valid for integer m1 and m2.
Using [8, eq. 18] Fγeq(γ) can be written as1

Fγeq(γ) = 1 −
m1−1∑
i=0

i∑
j=0

Υ(i, j)e−m1γ/Ω1 (9)

γ
2i+m2−j

2 Km2−j

(
2
√

m1m2Cγ

Ω1Ω2

)

and

Υ(i, j) =
2
(

i
j

)
Γ(m2)i!

(
m1

Ω1

) 2i+m2−j
2

(
Cm2

Ω2

)m2+j
2

(10)

In (9) Kν(·) is the ν-th order modified Bessel function of
the second kind. Substituting (9) into (8) and using [12, eq.
2.16.8.4] Pb(e) can be computed in closed-form as

Pb(e) =
1
2
− 1√

2π

m1−1∑
i=0

i∑
j=0

0.25Υ(i, j)ϑλ1Γ
(
i + 1

2

)
(
β

(
1
2 + m1

Ω1β

))λ2
(11)

· 1(
m1m2C
Ω1Ω2β

) 1
2

Γ
(

2λ2 − i +
1
2

)
Ψ

(
2λ2 − i +

1
2
, 2λ1;ϑ

)

1It is noted that Eqs. 18 and 19 in [8] include typos which we have corrected
in (9) and (10).

where λ1 = m2−j+1
2 , λ2 = 2i+m2−j

2 , ϑ = 2m1m2C
(2m1+Ω1β)Ω2

and
Ψ(a, b; z) is the Tricomi confluent hypergeometric function
[13, p. 504]. Note that to arrive at (11) we have employed the
well known relationship between the Whittaker function and
Ψ(a, b; z) [13, p. 505].

In the special case of Rayleigh fading, a closed-form for
Pb(e) can be obtained setting m1 = m2 = 1, in (11) and after
some manipulations as

Pb(e) =
1
2
− ξ

∫ ∞

0

t e
−

(
2+Ω1
2Ω1

)
t2

K1

(
2
√

C

Ω1Ω2
t

)
dt (12)

=
1
2

(
1 − 	√

1 + (2/Ω1β)
e� [K1(	) − K0(	)]

)

where ξ =
√

2C
πΩ1Ω2β and 	 = C

(2+Ω1β)Ω2
. Note, that (12)

can be also derived from (7) and [2, eq. 9], pointing out the
validity and the generality of our approach.

A. ABEP under Sufficiently Large SNR for S-R Link and
Arbitrary m

In order to derive the ABEP for arbitrary m, we assume
sufficiently large SNR for the S-R hop [3], i.e., ESR/N0 >
ERD/N0. Under this assumption, the end-to-end SNR is [3]

ωeq =
ERD

N0
α2

1α
2
2 (13)

A squared Nakagami RV is gamma distributed. Let two
independent RVs X and Y be gamma distributed, i.e., X ∼
G(aX , bX) and Y ∼ G(aY , bY ). The pdf of the product Z of
X and Y is given by

pZ(z) =
∫ ∞

0

1
t
pX(t)pY

(z

t

)
dt (14)

=
2

Γ(aX)Γ(aY )
(bXbY )−

aX+aY
2 z( aX+aY

2 −1)

× KaY −aX

(
2
√

z

bXbY

)
Therefore, the pdf of ωeq can be expressed as

pωeq(ω) =
2

Γ(m1)Γ(m2)

(
m1m2

Ω2

)m1+m2
2

ω
m1+m2

2 −1 (15)

×Km2−m1

(
2
√

m1m2

Ω2
ω

)

Making the substitution t2 = ω and using the formula Q(x) =
0.5 erfc(x/

√
2), the ABEP is given by

Pb(e) =
2
(

m1m2
Ω2

)m1+m2
2

Γ(m1)Γ(m2)

∫ ∞

0

tm1+m2−1 (16)

× erfc

(√
β

2
t

)
Km2−m1

(
2
√

m1m2

Ω2
t

)

The involved integral in (16) can be evaluated using [12,
2.16.59.1] and the ABEP is expressed as shown in (17) where
2F2(a, b; c, d; z) is a generalized hypergeometric function [12].
Note that Ψ(·, ·; z) and 2F2(a, b; c, d; z) can be evaluated using
popular symbolic software such as MAPLE, MATHEMATICA
and MATLAB.
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Pb(e) =
1√

π Γ(m1)Γ(m2)

[
2m1−1Γ(m2 − m1)Γ(0.5 + m1)

m1(m1m2/Ω2β)−m1
2F2

(
m1, 0.5 + m1; 1 + m1, 1 + m1 − m2;

2m1m2

Ω2β

)
(17)

+
2m2−1Γ(m1 − m2)Γ(0.5 + m2)

m2(m1m2/Ω2β)−m2
2F2

(
m2, 0.5 + m2; 1 + m2, 1 + m2 − m1;

2m1m2

Ω2β

)]
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Fig. 1. Simulated and theoretical ABEP of the dual-hop relay link.

0 5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
RD

/N
0
 (dB)

A
BE

P

m1=1.25, m 2 =0.75

m1=1, m2 =1.25

m1=1, m2 =2.5

m1=2, m2 =2.5

m1=2, m2 =4.5

m1=3, m2 =3.25

Theoretical

Fig. 2. Comparison of simulated and theoretical ABEP. Ω1 = 35 dB.

IV. NUMERICAL AND SIMULATION RESULTS

Fig. 1 shows the ABEP of 4-QAM against the average SNR
per hop, different values of m and ESR/N0 = ERD/N0. It
should be noted, that although AF relaying will decrease the
complexity at the relay, the destination needs to have channel
state information knowledge of both the S-R and the R-D
links. For comparison, the Rayleigh faded relay performance is
also plotted. Observe that all the numerical results (the curves)
are in exact agreement with the simulated ABEP results.
With S − R link subject to Rayleigh fading, no significant
improvement in ABEP can be obtained for m > 3 in the R-
D link. However, improved fading severity conditions in both

links lower the ABEP significantly and the achieved diversity
order is increased. As noticed from Fig. 1 for an ABEP equal
to 10−5, when fading severity changes from m1 = m2 = 2
to m1 = 3,m2 = 4, a SNR gain of 8 dB can be achieved.
Fig. 2 illustrates the ABEP of the dual-hop relay link when the
average SNR of the S-R link is 35 dB [3]. Again as expected,
the error performance improves for large m values in both
hops. Finally, simulations were performed to check the validity
of (17). As it is evident from Fig. 2 they perfectly match with
the analytical ABEP.

V. CONCLUSION

We have derived closed-form ABEP expressions for several
modulation schemes of an AF-APS dual-hop relay link op-
erating in independent and non-identical Nakagami-m fading
channels. This analysis is useful to investigate the performance
of AF-APS relaying subject to different fading conditions both
for source to relay and relay to destination links.
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