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Abstract— In this paper, we propose a simple analytical
methodology to study the performance of multi–source multi–
relay cooperative wireless networks with network coding at the
relay nodes and Maximum–Likelihood (ML–) optimum channel–
aware detectors at the destination. Channel–aware detectors are
a broad class of receivers that account for possible decoding
errors at the relays, and, thus, are inherently designed to mitigate
the effect of erroneous forwarded and network–coded data. In
spite of the analytical complexity of the problem at hand, the
proposed framework turns out to be simple enough yet accurate
and insightful to understand the behavior of the system, and, in
particular, to capture advantages and disadvantages of various
network codes and the impact of error propagation on their
performance. It is shown that, with the help of cooperation, some
network codes are inherently more robust to decoding errors at
the relays, while others better exploit the inherent spatial diver-
sity and redundancy provided by cooperative networking. Finally,
theory and simulation highlight that the relative advantage of a
network code with respect to the others might be different with
and without decoding errors at the relays.

I. INTRODUCTION

Cooperative communications and network coding have re-

cently emerged as strong candidate technologies for many

future wireless applications, such as cellular networks, wire-

less sensor networks, fixed broadband wireless systems, and

vehicular networks. Since their inception in [1] and [2], they

have been extensively studied to improve the performance of

wireless networks. In particular, theory and experiments have

shown that they can be extremely useful for wireless networks

with disruptive channel and connectivity conditions [3], [4].

However, similar to many other technologies, multi–

hop/cooperative communications and network coding are not

without limitations [5]. More specifically, relay transmissions

consume extra bandwidth resources, which implies that using

cooperative diversity typically results in a loss of system

throughput. On the other hand, network coding might be very

susceptible to transmission errors caused by noise, fading, or

interference. In fact, the algebraic operations accomplished

by intermediate nodes of the network introduce some packet

dependencies in a way that the injection of even a single

erroneous packet has the potential to corrupt every packet

received by the destination. In the light of their own advan-

tages and limitations, it seems very natural to jointly exploit

cooperation and network coding to better take advantage and

retain their key benefits while overcoming their limitations. For

example, network coding can be an effective enabler to recover

the throughput loss experienced by multi–hop/cooperative

communications, while the redundancy inherently provided

by cooperation might significantly help to alleviate the error

propagation problem that arises when mixing the packets.

In this context, the fundamental issue to be accounted

for to understand the actual performance improvement and

advantage of network–coded cooperative communications is to

carefully consider that all the nodes of the network are error–

prone, and that erroneous decoding and forwarding might have

a significant impact on the end–to–end performance, diversity,

throughput, and quality–of–service. The conventional method

that is often advocated as a solution to counteract the error

propagation problem is the adoption of a Cyclic Redundancy

Code (CRC) check mechanism at the relays, which aims at

not forwarding corrupted packets [6]. However, recent results

have shown by simulation that, in addition to be highly spectral

inefficient as an entire packet is blocked if just one bit is in

error, relaying based on CRC check might not be very effective

in block–fading channels [7].

Because of its well–acknowledged importance in network–

coded multi–hop/cooperative networks, how to tackle the error

propagation problem has recently attracted the interest of

many researchers, and some latest results on the matter are

available with and without network coding in [6]–[11] and

references therein. More specifically, two classes of solutions

have recently emerged: threshold–based relaying (see, e.g., [6],

[7]) and channel–aware detectors at the destination (see, e.g.,

[8], [10], [11]). Due to space constraints, a careful review of

all the contributions is not possible here, and the interested

readers are kindly requested to consult the references above

for further details. In this paper, we will focus our attention

only on the latter family of solutions. In particular, channel–

aware receivers let the relay nodes forwarding all the received

data without necessarily checking their reliability. On the

other hand, the destination takes advantage of Channel State

Information (CSI) of the overall network to optimally process

all the received data according to the instantaneous quality

of each wireless link. Recent results have shown that these

receivers can fully–exploit the diversity provided by cooper-

ation without [8] and with [11] network coding, respectively.

However, it is well–known that these receivers are extremely

difficult to be studied analytically, which prevents us to get a

clear understanding of their performance, to enable a simple

comparison among various solutions without resorting to time–

consuming simulations, and to perform system optimization.

A survey of the complexity of modeling these detectors can

be found in [8], [11], and references therein.

Motivated by these considerations, in this paper we aim at

providing a simple yet accurate and, more important, insight-

ful analytical framework to compute the Average Bit Error



Fig. 1. Two–source two–relay network topology. Different line–styles denote trans-

mission over orthogonal channels (e.g., time–slots) to avoid mutual interference: S1

transmits in time–slot 1 (solid lines), S2 in time–slot 2 (dashed lines), R1 in time–slot

3 (dotted lines), and R2 in time–slot 4 (dashed–dotted lines).

Probability (ABEP) of network–coded cooperative wireless

networks with channel–aware detectors. In particular, our main

objective is twofold: i) to enable a simple comparison of

various network codes and to study their achievable diversity

when used in a cooperative networking scenario, and ii) to

understand the impact of decoding errors at the relays for each

of them. This paper represents a substantial extension of our

previous work [11], where we were able to compute closed–

form expressions of the ABEP of channel–aware detectors

only for ideal source–to–relay channels, i.e., by neglecting the

error propagation effect. As mentioned in [8] for cooperative

networks, this is a very difficult analytical problem, which is

here shown to become even more complicated when network

coding is taken into account. However, we exploit simple

approximations to get asymptotically–tight estimates.

The paper is organized as follows. In Section II, system

model, network code, and receiver design are introduced. In

Section III, the analytical framework to compute the ABEP of

the proposed channel–aware detector with non–ideal source–

to–relay channels is described. In Section IV, high–SNR

(Signal–to–Noise–Ratio) analysis is performed, and diversity

and coding gains of four network codes are compared. In

Section V, some numerical results are shown. Finally, Section

VI concludes the paper.

II. SYSTEM MODEL

We consider the canonical two–source two–relay cooper-

ative network in Fig. 2. In time slot t = 1, 2, source node

St broadcasts a modulated symbol, xSt
, with average energy

Em. By assuming uncoded Binary Phase Shift Keying (BPSK)

modulation, we have xSt
=

√
Em (1 − 2bSt

), where bSt
∈

{0, 1} is the bit emitted by St. Thus, the bits received at relays

R1, R2, and destination D, respectively, are:
⎧

⎨

⎩

yStR1
= hStR1

xSt
+ nStR1

yStR2
= hStR2

xSt
+ nStR2

yStD = hStDxSt
+ nStD

(1)

where hXY is the fading coefficient from node X to node Y ,

which is a circular symmetric complex Gaussian Random Vari-

able (RV) with zero mean and variance σ2
XY per dimension

(Rayleigh fading). For analytical tractability, independent and

identically distributed (i.i.d.) fading over all the wireless links

is considered, i.e., σ2
0 = σ2

XY for any X and Y . Furthermore,

nXY is the complex Additive White Gaussian Noise (AWGN)

at the input of node Y and related to the transmission from

node X to node Y . The AWGN in different time slots is i.i.d.

with zero mean and variance N0/2 per dimension.

Notation. The following notation is used: i) γ̄ = 2Em/N0;

ii) Q (x) =
(
1
/√

2π
) ∫ +∞

x
exp

(
−t2

/
2
)
dt is the Q–function;

iii) PXY = Q (
√

γ̄γXY ) is the BEP over the wireless link from

node X to node Y , where γXY = |hXY |2; iv) Pr {·} denotes

probability; v) gX (·) and GX (·) denote Probability Density

Function (PDF) and Cumulative Distributed Function (CDF)

of RV X , respectively; vi) ⊗ is the convolution operator; vii)

δ (·) is the Dirac delta function; viii) H (·) is the Heaviside

step function; ix) E {·} denotes the expectation operator; x)

µ =
√

γ̄σ2
0

/
(1 + γ̄σ2

0); xi) P̄ = (1/2) (1 − µ); and xii) ⊕
denotes bit–wise XOR.

A. Relay Operations

Similar to recent works on cooperative diversity without

(e.g., [8], [9]) and with (e.g., [7], [10], [11]) network coding,

we assume that the relays perform network coding without

checking if the packet is correct or wrong by resorting to, e.g.,

CRC–enabled error detection. Thus, the operation of the relays

can be defined as demodulate–network–code–and–forward.

More specifically, the relays perform coherent ML–optimum

demodulation as follows (t = 1, 2):
⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

b̂StR1
= arg min

b̃St
∈{0,1}

{∣
∣
∣yStR1

−
√

EmhStR1

(

1 − 2b̃St

)∣
∣
∣

2
}

b̂StR2
= arg min

b̃St
∈{0,1}

{∣
∣
∣yStR2

−
√

EmhStR2

(

1 − 2b̃St

)∣
∣
∣

2
} (2)

where ·̂ denotes the detected symbol and ·̃ denotes the trial

symbol used in the hypothesis–detection problem.

After demodulation, each relay Rq: i) performs network

coding on the estimated bits, ii) re–modulates the network–

coded bit, and iii) transmits the modulated bit to the destination

during the third (q = 1) and fourth (q = 2) time–slot.

By denoting with fRq
(·, ·) the network coding operation

performed by relay Rq, i.e., bRq
= fRq

(

b̂S1Rq
, b̂S2Rq

)

, the

bit received at the destination D is:

yRqD = hRqDxRq
+ nRqD (3)

where xRq
=

√
Em

(
1 − 2bRq

)
.

B. Network Codes

Similar to [11], we aim at analyzing and comparing four

network codes (or network coding scenarios), which determine

the function bRq
= fRq

(·, ·): i) Scenario 1: bR1
= b̂S1R1

and bR2
= b̂S2R2

; ii) Scenario 2: bR1
= b̂S1R1

⊕ b̂S2R1
and

bR2
= b̂S1R2

⊕ b̂S2R2
; iii) Scenario 3: bR1

= b̂S1R1
⊕ b̂S2R1

and bR2
= b̂S2R2

; and iv) Scenario 4: bR1
= b̂S1R1

and

bR2
= b̂S1R2

⊕ b̂S2R2
. Further details about the rational for

these network codes are available in [11].

The methodology for performance analysis we introduce

in Section III is applicable to all the network codes above.

However, due to space constraints and for ease of description,

in Section II-C and in Section III we focus our attention only

on Scenario 4. On the other hand, in Section IV we summarize,

for high–SNRs, the ABEP of all the network codes, which

allows us to compare them in a simple way. The frameworks

are substantiated via Monte Carlo simulations in Section V.

C. Receiver Operations

As mentioned in Section I, we are interested in analytically

studying the performance of channel–aware detectors, which

are based on the Maximum Likelihood Sequence Estimation

(MLSE) criterion of optimality with hard–decision decoding at

the physical layer. More specifically, given yS1D, yS2D, yR1D,

yR2D, the analyzed detector encompasses two main steps [11]:



PEP
(
c
(1) → c

(3)
)

= Ψ1Ψ3Ψ4H (w1 + w3 + w4) + (1 − Ψ1) (1 − Ψ3) (1 − Ψ4) H (−w1 − w3 − w4) + (1 − Ψ1) (1 − Ψ3) Ψ4H (−w1 − w3 + w4)
+ (1 − Ψ1) Ψ3 (1 − Ψ4) H (−w1 + w3 − w4) + Ψ1 (1 − Ψ3) (1 − Ψ4) H (w1 − w3 − w4) + (1 − Ψ1)Ψ3Ψ4H (−w1 + w3 + w4)
+ Ψ1 (1 − Ψ3) Ψ4H (w1 − w3 + w4) + Ψ1Ψ3 (1 − Ψ4) H (w1 + w3 − w4)
(a)
≈ Ψ1Ψ3Ψ4

+ Ψ1H (w1 − w3 − w4) + Ψ3Ψ4H (−w1 + w3 + w4) ← Υ
(3,4)
1

+ Ψ3H (−w1 + w3 − w4) + Ψ1Ψ4H (w1 − w3 + w4) ← Υ
(1,4)
3

+ Ψ4H (−w1 − w3 + w4) + Ψ1Ψ3H (w1 + w3 − w4) ← Υ
(1,3)
4

(9)

a) Step 1 (Physical Layer): Hard–decision estimates of

[bS1
, bS2

, bR1
, bR2

] are provided by using a ML–optimum

receiver with full–CSI about the source–to–destination and

relay–to–destination channels (t = 1, 2 and q = 1, 2):
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b̂StD = arg min
b̃St

∈{0,1}

{∣
∣
∣yStD −

√
EmhStD

(

1 − 2b̃St

)∣
∣
∣

2
}

b̂RqD = arg min
b̃Rq

∈{0,1}

{∣
∣
∣yRqD −

√
EmhRqD

(

1 − 2b̃Rq

)∣
∣
∣

2
} (4)

b) Step 2 (Network Layer): The hard–decision estimates

ĉ = [ĉ1, ĉ2, ĉ3, ĉ4] =
[

b̂S1D, b̂S2D, b̂R1D, b̂R2D

]

are input to

the network layer, which uses a MLSE–optimum decoder [12]

with full–CSI to retrieve the bits emitted by the sources:

[

b̂S1
, b̂S2

]

=

[

c
(ĵ)
1 , c

(ĵ)
2

]

= arg min
c
(j̃) with j̃=1,2,3,4

{
4∑

i=1

wi

∣
∣
∣
∣
ĉi − c

(j̃)
i

∣
∣
∣
∣

}

(5)

where, as far as Scenario 4 is concerned, we have:

i) wi = ln [(1 − Ψi)/Ψi]; ii) Ψ1 = PS1D, Ψ2 =
PS2D, Ψ3 = PS1R1

+ PR1D − 2PS1R1
PR1D, and

Ψ4 = PR2D + PS1R2
+ PS2R2

− 2PS1R2
PS2R2

−
2PR2D (PS1R2

+ PS2R2
− 2PS1R2

PS2R2
); and iii) c

(j)
i is the

i–th element of c
(j), which is the j–th codeword of the code-

book C =
{
c
(1), c(2)

c
(3), c(4)

}
= {0000, 0101, 1011, 1110}.

III. CLOSED–FORM COMPUTATION OF THE ABEP

By direct inspection of the codebook C of Scenario 4 and

from (5), the ABEP of S1 and S2 can be computed as:
{

ABEPS1
= APEP

(
c
(1) → c

(3)
)

+ APEP
(
c
(1) → c

(4)
)

ABEPS2
= APEP

(
c
(1) → c

(2)
)

+ APEP
(
c
(1) → c

(4)
) (6)

where APEP
(
c
(1) → c

(j)
)

for j = 2, 3, 4 is the

Average (over fading channel statistics) Pairwise Er-

ror Probability (APEP), i.e., APEP
(
c
(1) → c

(3)
)

=
E
{
PEP

(
c
(1) → c

(3)
)}

, and:

PEP
(
c
(1) → c

(j)
)
= Pr

{
D(1) > D(j)

}

= Pr

{
4∑

i=1
wi

∣
∣
∣ĉi − c

(1)
i

∣
∣
∣ >

4∑

i=1
wi

∣
∣
∣ĉi − c

(j)
i

∣
∣
∣

}
(7)

The computation of APEP
(
c
(1) → c

(j)
)

is almost the same

for j = 2, 3, 4. Thus, for the sake of concision, we report the

analytical derivation only for APEP
(
c
(1) → c

(3)
)
.

A. Computation of PEP
(
c
(1) → c

(3)
)

By introducing the RV D(1,3) = D(1) − D(3) =
∑4

i=1 d
(1,3)
i with d

(1,3)
i = wi

[∣
∣
∣ĉi − c

(1)
i

∣
∣
∣−

∣
∣
∣ĉi − c

(3)
i

∣
∣
∣

]

, the

PEP
(
c
(1) → c

(3)
)

can be explicitly written as:

PEP
(

c
(1) → c

(3)
)

= Pr
{

D(1,3) > 0
}

=

∫ +∞

0
g

D(1,3) (ξ) dξ (8)

The PDF, gD(1,3) (·), of RV D(1,3), can be computed an-

alytically from the following considerations: i) D(1,3) is the

summation of four RVs, i.e., d
(1,3)
i for i = 1, 2, 3, 4; ii) the

RVs d
(1,3)
i are independent because relays and destination

work independently and receive the signals in non–overlapping

time–slots; and iii) from (4), it follows that ĉi for i =
1, 2, 3, 4 are four Bernoulli–distributed RVs with PDF given

by gĉi
(ξ) = (1 − Ψi) δ (ξ) + Ψiδ (ξ − 1). Accordingly, we

obtain gD(1,3) (ξ) =
(

g
d
(1,3)
1

⊗ g
d
(1,3)
2

⊗ g
d
(1,3)
3

⊗ g
d
(1,3)
4

)

(ξ),

where g
d
(1,3)
i

(ξ) = (1 − Ψi) δ (ξ + wi) + Ψiδ (ξ − wi) for

i = 1, 3, 4 and g
d
(1,3)
2

(ξ) = δ (ξ). Thus, by substituting

gD(1,3) (·) in (8) and exploiting the properties of the Dirac

delta function, we obtain, after some algebra, the PEP in (9)

on top of this page. In particular, in
(a)
≈ we have taken into

account that (for i = 1, 2, 3, 4): i) H (w1 + w3 + w4) = 1 and

H (−w1 − w3 − w4) = 0 since wi > 0; and ii) 1 − Ψi ≈ 1
for high–SNRs, i.e., when Ψi ≪ 1.

Finally, from the definition of wi in Section II-C, (9) can

be shown to be equivalent to:

PEP
(
c
(1) → c

(3)
)

= Ψ1Ψ3Ψ4

+ min {Ψ1, Ψ3Ψ4}
︸ ︷︷ ︸

Υ
(3,4)
1

+ min {Ψ3, Ψ1Ψ4}
︸ ︷︷ ︸

Υ
(1,4)
3

+min {Ψ4, Ψ1Ψ3}
︸ ︷︷ ︸

Υ
(1,3)
4

(10)

B. Computation of APEP
(
c
(1) → c

(3)
)

The next step is to remove the conditioning over fading

channel statistics, i.e., computing APEP
(
c
(1) → c

(3)
)

=
E
{
PEP

(
c
(1) → c

(3)
)}

. From (10), we have:

APEP
(
c
(1) → c

(3)
)
= E {Ψ1}E {Ψ3}E {Ψ4}
+ E

{

Υ
(3,4)
1

}

+ E
{

Υ
(1,4)
3

}

+ E
{

Υ
(1,3)
4

}
(11)

Under the assumption of i.i.d. Rayleigh fading (see Section

II), E {Ψi} for i = 1, 3, 4 can be computed in closed–form as

E {Ψ1} = P̄ , E {Ψ3} = 2P̄−2P̄ 2, and E {Ψ4} = 3P̄−6P̄ 2+

4P̄ 3. On the other hand, the exact computation of Ῡ
(3,4)
1 =

E
{

Υ
(3,4)
1

}

, Ῡ
(1,4)
3 = E

{

Υ
(1,4)
3

}

, and Ῡ
(1,3)
4 = E

{

Υ
(1,3)
4

}

is quite cumbersome. Thus, to get useful and insightful results,

we resort to simple but accurate approximations for their

computation. Due to space constraints, in this section we focus

our attention only on Ῡ
(1,3)
4 , as Ῡ

(3,4)
1 and Ῡ

(1,4)
3 can be

computed with similar steps.

In particular, Appendix I shows that Υ
(1,3)
4 can be tightly

approximated as follows:

Υ
(1,3)
4 = min {Ψ4, Ψ1Ψ3} ≈ Q

(√

γ̄ max
{

γ3h, k
(1,3)
4 γd−2h

}
)

(12)

where we have defined: i) γ2h =
(
γ−1

S1R1
+ γ−1

R1D

)
−1

, ii) γ3h =
(
γ−1

S1R2
+ γ−1

S2R2
+ γ−1

R2D

)
−1

, iii) γd−2h = γS1D +γ2h, and iv)

k
(1,3)
4 =

√
3. Furthermore, it is worth mentioning that γ2h and

γ3h are the end–to–end SNRs of an equivalent two– and three–

hop network with ideal channel inversion at the relay [13].

From (12), Ῡ
(1,3)
4 can be re–written as follows:

Ῡ
(1,3)
4 ≈ E

{

Q

(√

γ̄ max
{

γ3h, k
(1,3)
4 γd−2h

})}

= 1√
2π

∫ +∞
0 exp

(

− t2

2

)

G
γ
(1,3)
4

(
t2

γ̄

)

dt

(13)



Ῡ
(1,3)
4 ≈ 1

2
− 1

2

√

2σ2
0 γ̄

6 + 2σ2
0 γ̄

−

√
√
√
√

2k
(1,3)
4 σ2

0 γ̄

2 + 2k
(1,3)
4 σ2

0 γ̄
+

1

2

√
√
√
√

2k
(1,3)
4 σ2

0 γ̄

4 + 2k
(1,3)
4 σ2

0 γ̄
+

√
√
√
√
√

2k
(1,3)
4 σ2

0 γ̄
(

2 + 6k
(1,3)
4

)

+ 2k
(1,3)
4 σ2

0 γ̄
− 1

2

√
√
√
√
√

2k
(1,3)
4 σ2

0 γ̄
(

4 + 6k
(1,3)
4

)

+ 2k
(1,3)
4 σ2

0 γ̄
(19)

Ῡ
(1,4)
3 ≈ 1

2
− 1

2

√

2σ2
0 γ̄

4 + 2σ2
0 γ̄

+
1

4

√
√
√
√

2k
(1,4)
3 σ2

0 γ̄

6 + 2k
(1,4)
3 σ2

0 γ̄
− 3

4

√
√
√
√

2k
(1,4)
3 σ2

0 γ̄

2 + 2k
(1,4)
3 σ2

0 γ̄
− 1

4

√
√
√
√
√

2k
(1,4)
3 σ2

0 γ̄
(

6 + 4k
(1,4)
3

)

+ 2k
(1,4)
3 σ2

0 γ̄
+

3

4

√
√
√
√
√

2k
(1,4)
3 σ2

0 γ̄
(

2 + 4k
(1,4)
3

)

+ 2k
(1,4)
3 σ2

0 γ̄

(20)

Ῡ
(3,4)
1 ≈ 1

2
− 1

2

√

2σ2
0 γ̄

2 + 2σ2
0 γ̄

− 3

2

√
√
√
√

2k
(3,4)
1 σ2

0 γ̄

4 + 2k
(3,4)
1 σ2

0 γ̄
+

√
√
√
√

2k
(3,4)
1 σ2

0 γ̄

6 + 2k
(3,4)
1 σ2

0 γ̄
−

√
√
√
√
√

2k
(3,4)
1 σ2

0 γ̄
(

6 + 2k
(3,4)
1

)

+ 2k
(3,4)
1 σ2

0 γ̄
+

3

2

√
√
√
√
√

2k
(3,4)
1 σ2

0 γ̄
(

4 + 2k
(3,4)
1

)

+ 2k
(3,4)
1 σ2

0 γ̄
(21)

where γ
(1,3)
4 = max

{

γ3h, k
(1,3)
4 γd−2h

}

, and the last equality

comes from, e.g., [14, Eq. (8)].

By exploiting the independence of channel fading,

G
γ
(1,3)
4

(·) can be re–written as:

G
γ
(1,3)
4

(x) = Pr
{

max
{

γ3h, k
(1,3)
4 γd−2h

}

< x
}

= Gγ3h (x) Gγd−2h

(

x

k
(1,3)
4

) (14)

where Gγd−2h
(·) can be explicitly written as:

Gγd−2h (x) = Pr
{
γS1D + γ2h < x

}

= Eγ2h

{

GγS1D
(x − ξ| γ2h = ξ)

}
(15)

with GγS1D
( ·| γ2h) being the CDF of γS1D conditioned on

γ2h, and Eγ2h
{·} being the expectation computed only over

γ2h. In particular, GγS1D
( ·| γ2h) can be computed in closed–

form for Rayleigh fading as follows [12]:

GγS1D
(x − ξ| γ2h = ξ) =

⎧

⎨

⎩

1 − exp

(

− x

2σ2
0

)

exp

(

ξ

2σ2
0

)

if x > ξ

0 elsewhere
(16)

Thus, from (15) and (16) we have:

Gγd−2h (x) =
∫ +∞
0 GγS1D

(x − ξ| γ2h = ξ) gγ2h (ξ) dξ

= Gγ2h (x) − exp

(

− x

2σ2
0

)
∫ x

0 exp

(

ξ

2σ2
0

)

gγ2h (ξ) dξ

(17)

From (14) and (17), we conclude that to compute (13)

we need closed–form expressions of the PDF and the CDF

of CSI–assisted multi–hop networks. These functions are

available in closed–form for a variety of fading channel

models [13]. Among the many possibilities available in the

literature, in this paper we find very useful for the subsequent

development to resort to the upper bound in [15, Eq. (11)]. In

particular, for a n–hop network we have:

gγnh (ξ) ≈ n

2σ2
0

exp

(

− n

2σ2
0

)

and Gγnh (ξ) ≈ 1−exp

(

− n

2σ2
0

)

(18)

Finally, by substituting (18) with n = 2 in (17), and (18)

with n = 3 in (14), we can solve (13) in closed–form after

some algebra. The final result is shown in (19) on top of this

page. Likewise, Ῡ
(1,4)
3 and Ῡ

(3,4)
1 can be obtained by using

the same methodology, as shown in (20) and (21) on top of

this page, respectively, where k
(3,4)
1 = k

(1,4)
3 =

√
3.

We close this section by mentioning that

APEP
(
c
(1) → c

(2)
)

and APEP
(
c
(1) → c

(4)
)

can be

computed with similar analytical steps. However, the

analytical derivation is not reported due to space constraints.

IV. DIVERSITY ANALYSIS

The aim of this section is to study and to understand the

behavior of the system under analysis for high–SNR (i.e.,

for γ̄ ≫ 1). The main goal is to develop a very simple yet

insightful and accurate framework to compare the performance

of the network codes in Section II-B, as well as to understand

the impact of realistic source–to–relay channels. The asymp-

totic ABEP, i.e., ABEP∞, can be obtained by performing

Taylor series expansion of all the terms yielding the APEPs in

Section III. For example, a tight high–SNR approximation of

(19)–(21) can be obtained, after simple but lengthly analytical

computations, from the known result:
√

aγ̄

b + aγ̄

γ̄≫1→ 1 − b

2a
γ̄−1 +

3b2

8a2
γ̄−2 − 5b3

16a3
γ̄−3 + o

(
γ̄−3

)
(22)

Due to space constraints, we are unable to report all the

details of the derivation. However, in Table I we summarize

the final result for all the network codes described in Section

II-B, as well as for two case studies: i) ideal source–to–relay–

channels, which provides a benchmark (lower–bound) on the

achievable performance, as the relays can perfectly decode

the received bits and there is no error propagation [11]; and

ii) the actual scenario with faded and noisy source–to–relay–

channels we have introduced in Section II and studied in

Section III, respectively. These results are substantiated in

Section V through Monte Carlo simulations.

Even though very simple, the formulas in Table I provide

important insights about the system behavior. More specif-

ically, the following conclusions can be drawn. i) As far

as ideal source–to–relay channels are concerned, we notice

that there is no gain in using XOR–based network coding

(Scenario 2) with respect to performing just relaying (Scenario

1). On the other hand, network coding based on Unequal Error

Protection (UEP) coding [11], i.e., Scenario 3 and Scenario

4, provides much better performance for at least one source,

which achieves diversity equal to three. Furthermore, the

performance of that source is improved without deteriorating

the performance of the other source. ii) As far as realistic

source–to–relay channels are concerned, we observe that error

propagation at the relays produces a slightly different behavior.

More specifically, we notice that XOR–based network coding

outperforms the scenario when the relays just forward the

received bits. In other words, even the simple XOR–based

network coding introduces a coding gain. However, the most

remarkable result that can be deduced from Table I is that

XOR–based network coding is highly robust to the error

propagation caused by erroneous decoding at the relays. In

fact, by comparing the setups with ideal and realistic source–

to–relay channels we notice that the same asymptotic ABEP

is achieved. In other words, cooperation and network coding

together allow us to offset the potential performance degra-

dation caused by forwarding wrong bits. This result is very



TABLE I

ABEP FOR HIGH–SNR, i.e., ABEP∞ = (Gcγ̄∞)−Gd , WHERE Gc AND Gd ARE CODING AND DIVERSITY GAINS, RESPECTIVELY, AND γ̄∞ = 2σ2
0 (Em/N0).

Ideal source–to–relay channels Realistic source–to–relay channels

ABEP(S1)
∞

ABEP(S2)
∞

ABEP(S1)
∞

ABEP(S2)
∞

Scenario 1
[(√

8/3
)

γ̄∞

]
−2 [(√

8/3
)

γ̄∞

]
−2 [(√

4/3
)

γ̄∞

]
−2 [(√

4/3
)

γ̄∞

]
−2

Scenario 2
[(√

8/3
)

γ̄∞

]
−2 [(√

8/3
)

γ̄∞

]
−2 [(√

8/3
)

γ̄∞

]
−2 [(√

8/3
)

γ̄∞

]
−2

Scenario 3
[(√

8/3
)

γ̄∞

]
−2 [(

3
√

32/31
)

γ̄∞

]
−3 [(√

8/9
)

γ̄∞

]
−2 [(

3
√

8/31
)

γ̄∞

]
−3

Scenario 4
[(

3
√

32/31
)

γ̄∞

]
−3 [(√

8/3
)

γ̄∞

]
−2 [(

3
√

8/31
)

γ̄∞

]
−3 [(√

8/9
)

γ̄∞

]
−2

interesting as it is obtained without resorting to any error

detection or correction mechanisms at the relays. Another

important outcome is that, for at least one source, full–diversity

is still achieved by exploiting UEP–based network coding. In

this case, however, we notice that the performance for realistic

source–to–relay channels is slightly worse than for ideal

source–to–relay channels. In addition, the price to be paid to

let one source achieving diversity three is worse performance

for the other source, if compared to XOR–based network

coding. In other words, UEP–based network coding design

seems to well exploit the principle of cooperation: the nodes

in the network cooperate to let some sources achieving the

target ABEP at the expense of some performance and power

losses for the other nodes. It is important to emphasize that no

performance degradation can be noticed for ideal source–to–

relay channels. This highlights, once again, the importance of

considering realistic propagation and networking operations to

properly design the network.

V. NUMERICAL RESULTS – FRAMEWORK VALIDATION

In this section, we provide some numerical results to

substantiate analytical frameworks and claims in Section III

and Section IV, respectively. A detailed description of the

simulation setup is available in Section II, while the simulation

parameters can be found in the caption of each figure.

Some examples are shown in Figs. 2–5, where we compare

Monte Carlo simulations with the analytical framework in

Section III, and the asymptotic analysis in Table I. It is worth

mentioning that, even though only Scenario 4 is considered in

Section III, the figures substantiate our analytical derivation

for all the other network codes. Furthermore, for the sake of

completeness, each figure reports the ABEP for ideal source–

to–relay channels too. In fact, even though this setup was

studied in [11], no diversity analysis was conducted therein.

The numerical examples in Figs. 2–5 substantiate the tightness

of the asymptotic frameworks in Table I for this case study

as well. Overall, we notice that the proposed frameworks

are very accurate for all network codes and case studies. In

particular, we can capture both the coding and diversity gains

of the cooperative network under analysis. As expected, the

framework in Section III is more accurate for low/medium–

SNRs than the results in Table I. However, it seems less

insightful and less flexible for system optimization. As far the

system behavior with respect to the adopted network code or

the effect of realistic source–to–relay channels is concerned,

the figures confirm findings and conclusions in Section IV.

VI. CONCLUSION

In this paper, we have provided a general yet simple and

accurate methodology to compute in closed–form the ABEP

of network–coded cooperative networks with realistic wireless

fading channels. The methodology is simple enough to be used

for various network codes, and provides frameworks that are

simple and accurate enough to understand the system behavior,

as well as for a possible end–to–end optimization. Monte Carlo

simulations have substantiated our theoretical findings, and

have shown that some network codes might be more robust

than others to the error propagation problem, as well as that

there is a trade–off between robustness to errors on the source–

to–relay channels and the diversity gain of any active source.
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APPENDIX I

PROOF OF (12)

From (10), by definition we have Υ
(1,3)
4 =

min {Ψ4,Ψ1Ψ3}. The tight approximation in (12) can

be obtained from the following considerations.

• By carefully looking at the definitions of Ψi for i =
1, 3, 4 in Section II-C, we can readily notice that: i) Ψ1 is

the error probability of a direct link and cannot be sim-

plified further; ii) Ψ3 can be seen as the error probabil-

ity of an equivalent Decode–and–Forward (DF) link related

to the S1–to–R1 and R1–to–D wireless links, which can

be accurately approximated, for high–SNRs, by an equiva-

lent two–hop Amplify–and–Forward (AF) link, i.e., Ψ3 ≈
Q

(√

γ̄
(
γ−1

S1R1
+ γ−1

R1D

)
−1

)

= Q (
√

γ̄γ2h) [13]; and iii)

Ψ4 can be seen as the error probability of two equivalent

concatenated DF links related to the S1–to–R2 and S2–

to–R2 wireless links, as well as this latter equivalent DF

link and the R2–to–D wireless link. The combination of

these two equivalent DF links can be accurately approx-

imated by an equivalent three–hop AF link, i.e., Ψ4 ≈
Q

(√

γ̄
(
γ−1

S1R2
+ γ−1

S2R2
+ γ−1

R2D

)
−1

)

= Q (
√

γ̄γ3h) [13].

• By replacing the Q–function with its weak Chernoff

bound (Q (x) ≤ (1/2) exp
(
−x2

/
2
)

< exp
(
−x2

/
2
)

[12]), i.e., Q (x) ∼ exp
(
−x2

/
2
)
, we have Ψ1Ψ3 ≈

Q (
√

γ̄γS1D) Q (
√

γ̄γ2h) ∼ exp (−(γ̄γS1D + γ̄γ2h)/2) ∼
Q

(√

γ̄ (γS1D + γ2h)
)

. However, the Chernoff bound can

well capture only the slope (i.e., diversity gain) of the Q–

function but it cannot capture the coding gain, which results

in an error. To compensate for this error, we introduce a correc-

tion term, k
(1,3)
4 , i.e., Ψ1Ψ3 ≈ Q

(√

γ̄k
(1,3)
4 (γS1D + γ2h)

)

.

• The accurate computation of k
(1,3)
4 is crucial to get a very

tight approximation for high–SNRs. The criterion we use to
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Fig. 2. ABEP against Em/N0 for Scenario 1 (σ2
0 = 1).
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Fig. 3. ABEP against Em/N0 for Scenario 2 (σ2
0 = 1).

compute k
(1,3)
4 is the so–called first–moment–matching, i.e.,

k
(1,3)
4 is estimated by imposing, for high–SNRs, the equality

E {Ψ1Ψ3} = E

{

Q

(√

γ̄k
(1,3)
4 (γS1D + γ2h)

)}

, which turns

out to be equivalent to:

E
{
Q

(√
γ̄γS1D

)}
E
{
Q

(√
γ̄γ2h

)}
= E

{

Q

(√

γ̄k
(1,3)
4

(
γS1D + γ2h

)
)}

(23)

which, in turn, by using the high–SNR parametrization in [16],

reduces to:
(
4σ2

0 γ̄
)−1 (

2σ2
0 γ̄

)−1
= (3/8)

(

k
(1,3)
4 σ2

0 γ̄
)−2

(24)

from which we can get k
(1,3)
4 =

√
3.

• By exploiting the considerations above, Υ
(1,3)
4 can be re–

written as:

Υ
(1,3)
4 ≈ min

{

Q (
√

γ̄γ3h) , Q

(√

γ̄k
(1,3)
4

(
γS1D + γ2h

)
)}

= Q

(√

max
{

γ̄γ3h, γ̄k
(1,3)
4

(
γS1D + γ2h

)}
)

(25)

where the last identity follows by taking into account that the

Q–function is monotonically decreasing for increasing values

of its argument.

The result in (25) concludes the proof of (12). �
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