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Closed-form exact solutions for the periodic motion of the one-dimensional, undamped, quintic oscillator are derived from the
	rst integral of the nonlinear di
erential equation which governs the behaviour of this oscillator. Two parameters characterize this
oscillator: one is the coe�cient of the linear term and the other is the coe�cient of the quintic term. Not only the common case
in which both coe�cients are positive but also all possible combinations of positive and negative values of these coe�cients which
provide periodic motions are considered.�e set of possible combinations of signs of these coe�cients provides four di
erent cases
but only three di
erent pairs of period-solution.�e periods are given in terms of the complete elliptic integral of the 	rst kind and
the solutions involve Jacobi elliptic function. Some particular cases obtained varying the parameters that characterize this oscillator
are presented and discussed. �e behaviour of the periods as a function of the initial amplitude is analysed and the exact solutions
for several values of the parameters involved are plotted. An interesting feature is that oscillatory motions around the equilibrium
point that is not at � = 0 are also considered.

1. Introduction

Mathematical models based on nonlinear oscillators have
been widely used in physics, engineering, applied mathe-
matics, and related 	elds [1, 2]. �ese nonlinear systems
have been the focus of attention for many years and several
methods have been used to 	nd approximate solutions
to them [1, 3]. In conservative nonlinear oscillators the
restoring force is not dependent on time, the total energy
is constant [1], and any oscillation is stationary. �e aim
of this paper is to obtain closed-form exact periodic solu-
tions to the quintic equation corresponding to a nonlinear
oscillator described by a di
erential equation with 	h-
power nonlinearity. Due to the presence of the 	h-power
nonlinearity, this oscillator is di�cult to handle and has not
been studied as extensively as the Du�ng oscillator with
cubic nonlinearity. For this reason, several techniques have

been used to obtain analytical approximate expressions for
the period and the solution of the quintic oscillator. Lin
[4] proposed a new parameter iteration technique to solve
the Du�ng equation with strong and higher-order nonlin-
earity. Ramos [5] approximately solved the quintic equation
using some Lindstedt-Poincaré techniques. Pirbodaghi et
al. [6] obtained an accurate analytical approximate solution
to Du�ng equations with cubic and quintic nonlinearities
using the homotopy analysis method and homotopy Padé
technique. Wu et al. [7] approximately solved this nonlinear
oscillator using a method that incorporates salient features
of both Newton’s method and the harmonic balance method.
Later, Lai et al. [8] used a Newton-harmonic balancing
approach to obtain accurate approximate analytical higher-
order solutions for strong nonlinear Du�ng oscillators with
cubic-quintic restoring force.�ey also discussed the e
ect of
strong quantic nonlinearity on accuracy as compared to cubic

Hindawi
Advances in Mathematical Physics
Volume 2017, Article ID 7396063, 14 pages
https://doi.org/10.1155/2017/7396063

https://doi.org/10.1155/2017/7396063


2 Advances in Mathematical Physics

nonlinearity. Beléndez et al. [9] approximately solved the
quintic oscillator using a cubication method which allowed
them to obtain approximate analytical expressions for the
period and the solution in terms of elementary functions.
Scarpello and Ritelli [10] exactly solved the quintic oscillator,
but only when the coe�cient for the linear term is equal to
one and the coe�cient for the nonlinear term is positive.
Eĺıas-Zúñiga [11] derived the exact solution of the cubic-
quintic Du�ng equation based on the use of Jacobi elliptic
functions by the samemethod that he used to obtain the exact
solution of the mixed-parity Helmholtz-Du�ng oscillator
[12]. However, in both cases he did not solve the nonlinear
di
erential equation but assumed that its exact solution is
given by a rational equation which includes the cn Jacobian
elliptic function and 	ve unknown parameters that need to
be determined. Based on his pervious results, Eĺıas-Zúñiga
obtained the analytical approximate solution of the damped
cubic-quintic Du�ng oscillator [13] and also developed a
“quintication” method [14] to obtain approximate analyti-
cal solutions of conservative nonlinear oscillators. Recently,
Beléndez et al. [15] have exactly solved the unforced cubic-
quintic Du�ng oscillator, providing exact expressions for the
period and the solution, but only for oscillations around� = 0
and taken into account that the coe�cients for the linear and
the nonlinear terns are positive.

In this paper we obtain the closed-form exact expressions
for the period and the solution of the quintic Du�ng non-
linear oscillator modelled by the second-order di
erential

equation �2�/��2 + �1� + �5�5 = 0, where �1 and �5
are the coe�cients of the linear and the nonlinear terms,
respectively, considering all possible combinations of signs
of �1 and �5 that provide oscillatory motions. Unlike the
procedure considered by Eĺıas-Zúñiga [11, 12], we do not
assume an expression for the solution but solve the nonlinear
di
erential equation exactly as was done in [15]. �is is done
using elliptic functions so that, aer inversion, the solution� is provided as an explicit function of time t. When �1 = 0
and �5 > 0, the system becomes a truly nonlinear oscillator
[16] for which the exact expressions for the period and
the solution have been already obtained [17]. �e particular
situation in which coe�cients �1 and �5 are both positive is
the most common case analysed. However, we obtain closed-
form exact solutions not only for the case in which both
coe�cients are positive, but also for all possible combinations
of positive and negative values of these coe�cients which
provide periodic motions. �e set of possible combinations
of signs of these coe�cients gives rise to four di
erent cases.
In three of these combinations ((a) �1 ≥ 0, �5 > 0, and �0 > 0,
(b) �1 < 0, �5 > 0 and �0 > (−3�1/�5)1/4, and (d) �1 > 0,�5 < 0 and 0 < �0 < (−�1/�5)1/4) the system oscillates around
the equilibrium position � = 0 with � ∈ [−�0, �0], where�0 > 0 is the oscillation amplitude. However, there is still one

more case ((c) �1 > 0, �5 < 0, and 0 < �0 < (−3�1/�5)1/4
or −(−3�1/�5)1/4 < �0 < 0) in which the system does not
oscillate around the position x = 0 with � ∈ [−�0, �0], but
around the equilibrium position � = (−�1/�5)1/4 with � ∈[�1, �0]. �ree di
erent sets of closed-form expressions for
the exact period and solution were obtained. Following the

procedure considered by Lai and Chow [18], some examples
are analysed and plots including periods, solutions, or phase-
diagrams are presented and discussed.

2. Formulation and Solution Procedure

A quintic oscillator is an example of a conservative auto-
nomous oscillatory system, which is modelled by the follow-
ing second-order di
erential equation:

�2���2 + �1� + �5�5 = 0 (1)

with initial conditions � (0) = �0 > 0,���� (0) = 0. (2)

In (1) � and � are generalized dimensionless displacement
and time variables, and we assume that the coe�cients
for the linear and the nonlinear terms satisfy. In order to
obtain the exact period and periodic solution for (1), we take
into account that this is a conservative system and has the
following 	rst integral:

( ���� )2 + �1�2 + 13 �5�6 = �1�20 + 13 �60 (3)

which can be written as follows:

V
2 = ( ���� )2 = �1 (�20 − �2) + 13 �5 (�60 − �6) ≥ 0. (4)

�e dynamical study [19] of the nonlinear di
erential equa-
tion given in (1) showed that its motion is periodic in the
following situations:

(a) �1 ≥ 0, �5 > 0, and �0 > 0: the system oscillates
around the equilibrium position � = 0 and the
periodic solution � satis	es � ∈ [−�0, �0].

(b) �1 < 0, �5 > 0, and �0 > (−3�1/�5)1/4: the system
oscillates around the equilibrium position � = 0 and
the periodic solution � satis	es � ∈ [−�0, �0].

(c) �1 < 0, �5 > 0, and 0 < �0 < (−3�1/�5)1/4:
the system oscillates around the equilibrium position� = (−3�1/�5)1/4 and the periodic solution satis	es� ∈ [�1, �0] with 0 < �1 ≤ � ≤ �0 (or around
the equilibrium position � = −(−3�1/�5)1/4 with � ∈[�0, �1] when −(−3�1/�5)1/4 < �0 < 0).

(d) �1 > 0, �5 < 0, and 0 < �0 < (−�1/�5)1/4: the system
oscillates around the equilibrium position � = 0 and
the periodic solution � satis	es � ∈ [−�0, �0].

�e phase plots in Figure 1 illustrate four examples of these
situations: (a) �1 = 1, �5 = 3, and �0 = 1, (b) �1 = −1,�5 = 3 with �0 = 1.1 (�0 must be > 1), (c) �1 = −1, �5 = −3,
and �0 = 0.95 (�0 must be < 1), and (d) �1 = 1, �5 = −3,
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Figure 1: Phase space portraits for parameters values of (a) �1 = 1, �5 = 3, and �0 = 1; (b) �1 = −1, �5 = 3, and �0 = 1.1; (c) �1 = −1, �5 = 3,
and �0 = 0.95; and (d) �1 = 1, �5 = −3, and �0 = 0.5.
and �0 = 0.5 (�0 must be < 3−1/4 ≈ 0.7598). As can be
seen in these 	gures, for cases (a), (b), and (d) the system
oscillates around the equilibrium position � = 0, whereas for
case (c) the system oscillates around the equilibrium position� = (−�1/�5)1/4. In the following sections we obtain the exact
expressions for the period and the periodic solution for each
of these four cases.

3. Exact Solution When �1 ≥ 0, �5 > 0,
and �0 > 0

In this situation all the solutions are periodical and the phase
space diagram is made up of an in	nite number of closed

orbits, each of them for each value of the initial amplitude �0
(as can be seen in Figure 1(a)). �is system oscillates around
the equilibrium position � = 0 with � ∈ [−�0, �0], where�0 > 0 is the initial amplitude and the period, T, and periodic
solution, �, are dependent on the oscillation amplitude �0.
�is system corresponds to a nonlinear oscillator for which

the nonlinear function �(�) = �1� + �3�3 + �5�5 is odd; that
is, �(−�) = −�(�). From (4) we obtain

( ���� )2 = 1�1 (�20 − �2) + (1/3) �5 (�60 − �6) (5)
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and then

�� = ± ��√�1 (�20 − �2) + (1/3) �5 (�60 − �6) , (6)

where the sign (±) is chosen taking into account the sign of��/�� in each quadrant.
Taking into account that �5 > 0, from (6) we can write

√ �53 �� = ± ��√(3�1/�5) (�20 − �2) + (�60 − �6) (7)

and aer some mathematical operations we obtain

√ �53 �� = ± ��√(�20 − �2) (�4 + �20�2 + 3�1/�5 + �20) . (8)

Integrating (8) we obtain

√ �53 � = ± ∫�0
�

��√(�20 − �2) (�4 + �20�2 + 3�1/�5 + �20) . (9)

�e change of variable �2 = � gives

√ �53 � = ± ∫�20
�2

��√(�20 − �) � (�2 + �20� + 3�1/�5 + �20) . (10)

�is is an improper integral which contains a square root
of a four-degree polynomial in the denominator and so its
solution can be expressed as a function of an elliptic integral.

3.1. Calculation of the Exact Period. �e symmetry of the
problem indicates that the period of the oscillation T is four
times the time taken by the oscillator to go from � = 0 to� = �20. �erefore, from (10) it follows that

� = 2√ 3�5 ∫�20
�2

��√(�20 − �) � (�2 + �20� + 3�1/�5 + �20) . (11)

We consider the de	nite integral [20, section 3.145, formula
2, pages 270-271]

∫�
�

��√(� − �) (� − �) [(� − �)2 + �2] = 1√��
⋅ ! (2 arccot√ � (� − #)� (# − �) , (� − �)2 − (� − �)24�� ) ,

(12)

where � < � < �, !(%, &) is the incomplete elliptic integral
of the 	rst kind [20]

! (%, &) = ∫�
0

�'√1 − & sin2 ' , (13)

and �, �, and & are de	ned as

� = √(� − �)2 + �2,
� = √(� − �)2 + �2,

& = (� − �)2 − (� − �)24�� .
(14)

By comparing the integrals in (11) and (12) we obtain # = �20,� = �20, and = 0, as well as the following values for the
di
erent parameters which appear in (12)

� = − 12 �20,
� = 12 √ 12�1�5 + 3�20,
� = √ 3�5√�1 + �5�40,
� = 1√�5√3�1 + �5�40,

& = 12 − √3 (2�1 + �5�40)4√(�1 + �5�40) (3�1 + �5�40) .

(15)

As # = � = �20, then !(2 arccot 0, &) = !(*, &) = 2-(&),
where -(&) is the complete elliptic integral of the 	rst kind
de	ned as [20]

- (&) = ∫�/2
0

�'√1 − & sin2 ' . (16)

From (11) to (16) we conclude that the exact period of the
quintic nonlinear oscillator can be written in the compact
form

� = 4 ( 3�1�3)
1/4- (&�) , (17)

where &� takes the form
&� = 12 − �24 ( 3�1�3)

1/2
(18)

and coe�cients ��—which depend on �1, �5, and �0—are
de	ned as follows:

�� = 6�1 + �5�40. (19)

Figure 2 shows the period T as a function of the initial
amplitude �0 (17) when �1 = 1 and (a) �5 = 0.1, (b) �5 = 0.5,
(c) �5 = 5, and (d) �5 = 50.
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Figure 2: Exact periodT in (17) as a function of the initial amplitude�0 when �1 = 1 and (a) �5 = 0.1, (b) �5 = 0.5, (c) �5 = 5, and (d)�5 = 50.
3.2. Calculation of the Exact Solution. From (6) we obtain t as
a function of x for the following cases:

Trajectory 1 → 2 (0 ≤ � ≤ �/4 and �0 ≥ � ≥ 0), � is
positive and ��/�� is negative.
Trajectory 2 → 3 (�/4 ≤ � ≤ �/2 and 0 ≥ � ≥ −�0),� is negative and ��/�� is negative.
Trajectory 3 → 4 (�/2 ≤ � ≤ 3�/4 and −�0 ≤ � ≤ 0),� is negative and ��/�� is positive.
Trajectory 4 → 1 (3�/4 ≤ � ≤ � and 0 ≤ � ≤ �0), x is
positive and ��/�� is positive.

From (10), it follows that for trajectory 1 → 2 (0 ≤ � ≤ �/4
and �0 ≥ � ≥ 0) we have

2√ �53 � = ∫�20
�2

��√(�20 − �) � (�2 + �20� + 3�1/�5 + �20) . (20)

�e de	nite integral in (20) can be split as follows:

2√ �53 �
= ∫�20
0

��√(�20 − �) � (�2 + �20� + 3�1/�5 + �20)
− ∫�2
0

��√(�20 − �) � (�2 + �20� + 3�1/�5 + �20) .
(21)

�e values of the two integrals on the right-hand side of (21)
can be calculated taking into account (11) and (12) and their
values are

∫�20
0

��√(�20 − �) � (�2 + �20� + 3�1/�5 + �20)
= 2√ �53 �4 ,

∫�2
0

��√(�20 − �) � (�2 + �20� + 3�1/�5 + �20)
= 1√�� ! (2 arccot√ � (@2 − �2)��2 , &�) .

(22)

Substituting (22) into (21) gives

2√��√ �53 ( �4 − �)
= ! (2 arccot√ � (@2 − �2)��2 , &�) , (23)

and using (15)–(19), (23) can be written as

2- (&�) − ( �1�33 )1/4 �
= ! (2 arccot[[( �33�1)

1/4 ( �20 − �2�2 )1/2]] , &�) . (24)

�e inverse function of !(M, &) is the Jacobi amplitude M [21,
22]

!−1 (�, &) = M = am (�, &) (25)

whose cosine is the Jacobi cosine function, cn [21]

cosM = cos (am (�, &)) = cn (�, &) . (26)

In order to introduce an “arccos” function in (24)we take into
account that

2 arccot N = M, (27)

where

N = ( �33�1)
1/4 ( �20 − �2�2 )1/2 . (28)

From (28) we obtain

tan2
M2 = 1N2 . (29)
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Taking into account the relation

tan2
M2 = 1 − cosM1 + cosM (30)

we can 	nally write

cosM = N2 − 1N2 + 1 = √�3 (�20 − �2) − √3�1�2√�3 (�20 − �2) + √3�1�2 (31)

which allows us to write (24) as follows:

2- (&�) − 2 ( �1�33 )1/4 �
= ! (arccos( √�3 (�20 − �2) − √3�1�2√�3 (�20 − �2) + √3�1�2 ) , &�) (32)

and from (25), (26), and (32) we can write, aer some simpli-
	cations,

√�3�20 − (√�3 + √3�1) �2√�3�20 − (√�3 − √3�1) �2
= cn(2- (&�) − 2 ( 13 �1�3)1/4 �, &�)
= −cn(2 ( 13 �1�3)1/4 �, &�) ,

(33)

where the relation cn(2-(&) − �, &) = −cn(�, &) [22] has
been taken into account.

Finally we can write

�� (�) = �0 [[1

+ √ 3�1�3 ( 1 − cn ((1/2) ((8/3) �1�3)1/4 �, &�)1 + cn ((1/2) ((8/3) �1�2)1/4 �, &�) )]]
−1/2

(34)

which is valid for 0 ≤ � ≤ �/4.
From (7), it follows for trajectory 2 → 3 that

2√ �53 ∫	

/4

�� = 2√ �53 (� − �4 )
= − ∫�2
0

��√(�20 − �) � (�2 + �20� + 3�1/�5 + �20)
(35)

and for trajectory 3 → 4(�/4 ≤ � ≤ �/2)
2√ �53 ∫	


/2
�� = 2√ �53 (� − �2 )

= ∫�2
�20

��√(�20 − �) � (�2 + �20� + 3�1/�5 + �20) . (36)

Proceeding in the same manner as for trajectory 1 → 2, it is
follows that ��(�) = −��(�) which is valid for �/4 ≤ � ≤ 3�/4,
because � < 0 for these values of time.

Finally, for trajectory 4 → 1 we have

2√ �53 ∫	
3
/4

�� = 2√ �53 (� − 3�4 )
= ∫�2
0

��√(�20 − �) � (�2 + �20� + 3�1/�5 + �20)
(37)

and we obtain the same value for the solution as that given in
(34).

�e exact solution of the quintic oscillator can be written
as follows:

� (�) =
{{{{{{{{{{{{{{{{{

�� (�) 0 ≤ � ≤ �4
−�� (�) �4 ≤ � ≤ 3�4
�� (�) 3�4 ≤ � ≤ �

(38)

Taking into account the relation [22, formula 16.18.4, page
574]

1 − cn2�1 + cn2� = sn2��n2�
cn2� (39)

and (34) and (38), the exact periodic solution of the quintic
oscillator can be written in compact form as follows:

� (�) = �0cn (((1/3) �1�3)1/4 �, &�)
[cn2 (((1/3) �1�3)1/4 �, &�) + (3�1/�3)1/2 sn2 (((1/3) �1�3)1/4 �, &�) dn2 (((1/3) �1�3)1/4 �, &�)]1/2 (40)
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which is valid for all value of � andwhere cn, sn, and dn are the
basic Jacobi elliptic functions [20]. Figure 3 shows the plot of
the displacement � as a function of time � when �1 = 1, �5 =3, and �0 = 1. �is displacement was obtained using (40).
�is 	gure corresponds to the phase space portrait shown in
Figure 1(a).

4. Exact Solution When �1 < 0, �5 > 0, and �0 >(−3�1/�5)1/4
Equations (17) and (40) can be used to obtain the period
and the solution in case (b), �1 < 0, �5 > 0, and �0 >(−3�1/�5)1/4. Figure 4 shows the period � as a function of
the initial amplitude �0 (17) when �1 = −1 and (a) �5 = 1,
(b) �5 = 3, (c) �5 = 10, and (d) �5 = 50. Figure 5 shows
the plot of the displacement � as a function of time � when�1 = −1, �5 = 3, and�0 = 1.1.�is displacementwas obtained
using (40).�is 	gure corresponds to the phase space portrait
shown in Figure 1(b).

5. Exact Solution When �1 < 0, �5 > 0,
and 0 < �0 < (−3�1/�5)1/4

�e phase portrait in Figure 1(c) shows the behaviour of the

oscillator when 0 < �0 < (−3�1/�5)1/4 (�1 = −1, �5 = 3, and
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Figure 5: Exact solution � in (40) as a function of time t when �1 =−1, �5 = 3, and �0 = 1.1.
�0 = 19/20 = 0.95 < 1 = (−3�1/�5)1/4). As was previously
mentioned, now the system oscillates around the equilibrium

position � = (−�1/�5)1/4 and the periodic solution satis	es� ∈ [�1, �0] with 0 < �1 ≤ � ≤ �0.
5.1. Calculation of the Exact Period. We shall now obtain the
period and the solution for the right orbit in Figure 1(c) for
which � > 0 taking into account that �0 is the highest value
for �. From (7) and considering that � > 0, we obtain � as a
function of � as follows:

2√ �53 � = ∫�20
�2

��√(�20 − �) � (�2 + �20� + 3�1/�5 + �20) (41)

which can be written as

2√ �53 � = ∫�20
�2

��√(�20 − �) (� − �1) � (� − �2) , (42)

where �1 and �2 are de	ned by the following equations:

�1 = 12√�5 (√−3 (4�1 + �5�40) − √�5�40)
= 12√�5 (√−3�4 − √�0) , (43)

�2 = − 12√�5 (√−3 (4�1 + �5�40) + √�5�40)
= − 12√�5 (√−3�4 + √�0) , (44)

where �2 and �4 are de	ned in (19).
For the right orbit in Figure 1(c) it is easy to verify that it

satis	es

�20 ≥ � ≥ �1 > 0 > �2. (45)
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Now the period, T, and the periodic solution, �, are depen-
dent on �0 and � ∈ [�1, �0], where �1 = √�1 and �1 is given
in (43). �e following integral is valid for � ≥ � ≥ Y > Z > �
[20, 6th edition, Formula 3.147, Integral 7, page 272]:

∫�
�

�#√(� − #) (# − Y) (# − Z) (# − �)
= 2√(� − Z) (Y − �) ! (^, _) ,

(46)

where !(^, _) is the incomplete elliptic integral of the 	rst
kind de	ned in (13) and ^ and _ are given by the following
equations:

^ = arcsin√ (Y − �) (� − �)(� − Y) (� − �) ,
_ = (� − Y) (Z − �)(� − Z) (Y − �) .

(47)

We have � = �20, Y = �1, Z = 0, and � = �2.
�en the value of the integral in (42) is

2√ �53 � = 2√�20 (�1 − �2)
⋅ ! (arcsin√ (�1 − �2) (�20 − �2)(�20 − �1) (�2 − �2) , �2 (�1 − �20)�20 (�1 − �2) ) .

(48)

As can be seen in Figure 1(c), the period of the oscillation is

twice the time taken by the oscillator to go from � = �20 to� = �1. �erefore,

� = 2 ( −3�0�4)
1/4- (&) , (49)

where & is given by

& = 12 + �22 ( −3�0�4)
1/2 . (50)

�0, �2, and �4 are de	ned in (19) and -(&) is the complete
elliptic integral of the 	rst kind de	ned in (16). Figure 6 shows
the period T as a function of the initial amplitude �0 (49)
when �1 = −1, 0 < �0 < (−3�1/�5)1/4 and (a) �5 = 1,
(b) �5 = 3, (c) �5 = 10, and (d) �5 = 50. �is 	gure
corresponds to the right orbit in the phase space portrait
shown in Figure 1(c). Figure 7 shows the variation in the
period as a function of the initial position when �1 = −1
and �5 = 3, (a) �0 > (−3�1/�5)1/4 = 1, Section 4 (17), and

(b) 0 < �0 < (−3�1/�5)1/4 = 1, Section 3 (49). As can be
seen the motion is not periodic when the initial position is� = (−3�1/�5)1/4.
5.2. Calculation of the Exact Solution. In order to obtain the
solution � as a function of time �, from (48) it follows that

(�1 − �2) (�20 − �2)(�20 − �1) (�2 − �2)
= sn2(√ 13 �5�20 (�1 − �2)�, �2 (�1 − �20)�20 (�1 − �2) )

(51)

and taking into account (19), (43), (44), and (50), (51) allows
us to obtain the solution as follows:

� (�) = �0 [[
1 − (1/2 + (�2/2) (−3/�0�4)1/2) sn2 ((− (1/3) �0�4)1/4 �, &)1 − (1/2 − (1/2) (−3�0/�4)1/2) sn2 ((− (1/3) �0�4)1/4 �, &) ]]

1/2 . (52)

When �1 < 0 and �5 > 0, (49) and (52) are valid provided
that the initial position �0 satis	es the condition 0 < �0 <(−3�1/�5)1/4, except for the equilibrium point (when �0 =(−�1/�5)1/4).

�e expressions for the period and the exact solution for
the le orbit in Figure 1(c), that is, for � < 0, can be obtained
following the same procedure as that used for � > 0 and are
not included here.

Figure 8(a) shows the plot of the displacement � as a func-
tion of time � when �1 = −1, �5 = 3, and �0 = 19/20 = 0.95.

�is displacement was obtained using (52). In this example,
and from (43), we obtain

�1 = √�1 = 120 √ 12 (−361 + √249037) ≈ 0.415385. (53)

As can easily be veri	ed in Figure 8(a), the oscillatorymotion
of this system is bounded between �1 ≈ 0.415385 and
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Figure 6: Exact period T in (49) as a function of the initial
amplitude �0 when �1 = −1, 0 < �0 < (−3�1/�5)1/4 and (a) �5 = 1,
(b) �5 = 3, (c) �5 = 10, and (d) �5 = 50.

T

0.0
0

4

6

8

2

0.5 1.0 1.5 2.0
x0

Figure 7: Exact periodT as a function of the initial position�0 when�1 = −1 and �5 = 3, (a) �0 > (−3�1/�5)1/4 = 1, Section 4 (17), and

(b) �0 < (−3�1/�5)1/4 = 1, Section 3 (49). As can be seen the motion
is not periodic when the initial position is � = (−3�1/�5)1/4.
�0 = 0.95 and the equilibrium point is located at � = (−�1/�5)1/4 = 3−1/4 ≈ 0.759839. Figure 8(b) shows the displace-
ment � as a function of time � when �1 = −1, �5 = 3, and

�0 = 120 √ 12 (−361 + √249037) ≈ 0.415385. (54)

In this situation we obtained �1 = √�1 = 19/20 = 0.95.
It is easy to verify that in this case the system is equivalent

to a mixed-parity nonlinear oscillator.�e change of variable

# = � − (− �1�5)
1/4

(55)

gives

�2#��2 − 4�1# − 10 (−�1�1/35 )3/4 #2 + 10 (−�1�5)1/2 #3
− 5 (−�1�1/35 )1/4 #4 + �5#5 = 0. (56)

�e system modelled by (56) oscillates around the equilib-
rium position # = 0 and the periodic solution # satis	es

# ∈ [#1, #0] with #1 = �1 − (−�1/�5)1/4 and #0 = �0 −(−�1/�5)1/4. Figure 9 shows the phase portrait when �1 = −1,�5 = 3, and #0 = �0 − (−�1/�5)1/4 = 0.95 − 3−1/4 ≈ 0.190164.
As can be seen the system oscillates around the equilibrium
point # = 0.
6. Exact Solution When �1 > 0, �5 < 0,

and 0 < �0 < (−�1/�5)1/4
For case (d) it is necessary to obtain the equation for the

period again since if �5 < 0, the root √�5/3 is not a real
number and so (7) cannot be used. In order to obtain the
exact solution when �1 > 0, �5 < 0, and 0 < �0 < (−�1/�5)1/4
in which case the system oscillates around the equilibrium
position � = 0 and the periodic solution � satis	es � ∈[−�0, �0], we proceed as follows. From (6) we can write

√− �53 �� = ± ��√(−3�1/�5) (�20 − �2) + (�60 − �6) . (57)

6.1. Calculation of the Exact Period. We can consider the
same four trajectories that we analysed at the beginning of

Section 3.2. Doing the change of variable �2 = �, it follows
that for trajectory 1 → 2 (0 ≤ � ≤ �/4 and �0 ≥ � ≥ 0) we
have

2√− �53 �
= ∫�20
�2

��√(�20 − �) � (−�2 − �20� − 3�1/�5 − �20)
(58)

which can be written as

2√− �53 � = ∫�20
�2

��√(`1 − �) (�20 − �) � (� − `2) , (59)

where `1 and `2 are de	ned by the following equations:

`1 = 12√−�5 (√3 (4�1 + �5�40) − √−�5�40)
= 12√−�5 (√3�4 − √−�0) ,

`2 = − 12√−�5 (√3 (4�1 + �5�40) + √−�5�40)
= − 12√�5 (√3�4 + √−�0) .

(60)

It is easy to verify that it satis	es

`1 > �20 ≥ � > 0 > `2. (61)

Now the period, T, and the periodic solution, �, are depen-
dent on �0 and � ∈ [−�0, �0]. �e following integral is valid
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Figure 9: Phase space portrait for the mixed-parity nonlinear

oscillator in (56) when �1 = −1, �1 = 3 and #0 = �0 − (−�1/�5)1/4 =0.95 − 3−1/4 ≈ 0.190164. As can be seen the system oscillates around
the equilibrium point # = 0.
for � > Y ≥ � > Z > � [20, 6th edition, Formula 3.147, Integral
5, page 272]:

∫�
�

�#√(� − #) (Y − #) (# − Z) (# − �)
= 2√(� − Z) (Y − �) ! (a, �) , (62)

where !(a, �) is the incomplete elliptic integral of the 	rst
kind de	ned in (13) and a and � are given by the following
equations:

a = arcsin√ (� − Z) (Y − �)(Y − Z) (� − �) ,

� = (Y − Z) (� − �)(� − Z) (Y − �) .
(63)

We have � = `1, Y = �20, Z = 0, and � = `2. �en the value of
the integral in (59) is

2√− �53 � = 2√`1 (�20 − `2)
⋅ ! (arcsin√ `1 (�20 − �2)�20 (`1 − �2) , �20 (`1 − `2)`1 (�20 − `2) ) .

(64)

As can be seen in Figure 1(d), the period of the oscillation is
four times the time taken by the oscillator to go from � = 0
and � = �20. �erefore,

� = 4 ( 63�2 − √−3�0�4)
1/2- (&�) , (65)

where &� is given by

&� = ( 12 − 3�22√−3�0�4)
−1 . (66)

�0, �2, and �4 are de	ned in (19) and -(&) is the complete
elliptic integral of the 	rst kind de	ned in (16). Figure 10
shows the period T as a function of the initial amplitude �0
(65) when �1 = 1, 0 < �0 < (−�1/�5)1/4 and (a) �5 = −1,
(b) �5 = −3, (c) �5 = −10, and (d) �5 = −50. �is 	gure
corresponds to the right orbit in the phase space portrait
shown in Figure 1(d).
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6.2. Calculation of the Exact Solution. In order to obtain the
solution � as a function of time t, from (64) it follows that

! (arcsin√ `1 (�20 − �2)�20 (`1 − �2) , �20 (`1 − `2)`1 (�20 − `2) )
= √− 13 �5`1 (�20 − `2)�

(67)

and then

`1 (�20 − �2)�20 (`1 − �2)
= sn2 (√− 13 �5`1 (�20 − `2)�, �20 (`1 − `2)`1 (�20 − `2) ) (68)

and taking into account (19), (60), (66), and (68) we 	nally
obtain

� (�) = �0cn (((1/2) �2 − (1/6) √−3�0�4)1/2 �, &�)
[1 + (2/ (1 + (−3�4/�0)1/2)) sn2 (((1/2) �2 − (1/6) √−3�0�4)1/2 �, &�)]1/2 . (69)

It is easy to verify that (69) is also valid for trajectories 2 → 3
(�/4 ≤ � ≤ �/2 and 0 ≥ � ≥ −�0), 3 → 4 (�/2 ≤ � ≤3�/4 and −�0 ≤ � ≤ 0), and 4 → 1 (3�/4 ≤ � ≤ � and0 ≤ � ≤ �0), where the exact period T is given in (65). It is
important to point out that when �1 > 0 and �5 < 0, (65) and
(69) are valid provided that the initial amplitude �0 satis	es
the condition 0 < �0 < (−�1/�5)1/4. Figure 11 shows the plot
of the displacement� as a function of time twhen �1 = 1, �5 =−3, and �0 = 0.5. �is displacement was obtained using (69).
�is 	gure corresponds to the phase space portrait shown in
Figure 1(d).

7. Discussion

In this section we brie�y discuss the derived solutions
presented in this paper compared to the exact one derived
by Eĺıas-Zúñiga [11], providing a discussion in which both
solutions are compared for all the cases discussed in the
manuscript. As it was pointed out in the introduction, Eĺıas-
Zúñiga does not solve the nonlinear di
erential equation
exactly as we have done here, but he assumes an expression
for the solution. He proposed a solution for (1) with the initial
conditions given in (2) which can be written as follows:

�2 (�) = 1� + Ycn2 (b�, &) . (70)

Substituting (70) into (1) it is possible to obtain the values for�, Y, b, and&, whose expressions in terms of �1, �5, and �0 are
� = − 2�5�5�20 ± √3√−�5 (4�1�5 + �5�40) ,
Y = 1 − ��20�20 ,

& = 1 − �2�401 + 2��20 ,

b = √− �1 + 2��1�201 + ��20 + �2�40 .
(71)

Eĺıas-Zúñiga also concluded that the corresponding exact
period of oscillation � of this nonlinear oscillator is given by
[11, Eq. (15), page 2576]

� = 4- (&)b (72)

and pointed out that, depending on the system parameter
values of �1, �5, and �0, we can have real, complex, or
imaginary values for �, Y, b, and &. Now we are going to
compare the exact period and solutions presented in this
paper with Eĺıas-Zúñiga’s paper for all the cases discussed in
the manuscript.

7.1. Exact Solution When �1 ≥ 0, �5 > 0, and �0 > 0. We
have obtained the exact period given in (17) and we have
written the exact periodic solution of the quintic oscillator in
the compact form given in (40). For this case, Eĺıas-Zúñiga
exact period is given in (72) and the exact solution has to be
written as a piecewise function as follows:

� (�) =
{{{{{{{{{{{{{{{{{

(� + Ycn2 (b�, &))−1/2 0 ≤ � ≤ �4
− (� + Ycn2 (b�, &))−1/2 �4 ≤ � ≤ 3�4
(� + Ycn2 (b�, &))−1/2 3�4 ≤ � ≤ �.

(73)

When �1 = 1, �5 = 3, and �0 = 1 we obtain

� = −0.25 ± 0.661438c,Y = 1.25 ∓ 0.661438c,b = 0.405233 ∓ 1.63224c,& = 0.5625 ± 0.826797c
(74)
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Figure 11: Exact solution � in (69) as a function of time t when �1 =1, �5 = −3, and �0 = 0.5.

and (72) gives for the period of this nonlinear oscillator the
following value:

� = 1.89604 ± 3.37321c (75)

which is not a real number and cannot correspond to a period
of an oscillatory system. �e period we have obtained in this
paper by using (17) is T = 3.79208 s, which is the correct
period. Substituting the values for �, Y, b, and & given in
(74) into (73) and plotting � as a function of time, we obtain
Figure 3, and it is possible to conclude that the solution given
in (40) and the piecewise solution given in (73) are the same
exact solution. However, the equation for the exact period
given in (72) [11, Eq. (15), page 2576] does not give the exact
period.

7.2. Exact Solution When �1 < 0, �5 > 0, and �0 >(−3�1/�5)1/4. �e exact period is given in (17) and the exact
periodic solution is given in (40). For this case, Eĺıas-Zúñiga
exact period is given in (72) and the exact solution is written
as a piecewise function given in (73).

When �1 = −1, �5 = 3, and �0 = 1.1 we obtain

� = −1.3036 ± 0.674788c,Y = 2.13004 ∓ 0.674788c,b = 0.171154 ∓ 1.107c,& = 0.817588 ± 0.575804c
(76)

and (72) gives for the period of this nonlinear oscillator the
following value:

� = 2.8212 ± 5.85337c (77)

which is not a real number and cannot correspond to a period
of a physical oscillatory system.�e period we have obtained
in this paper by using (17) isT = 5.64241 s, which is the correct
period. Substituting the values for �, Y, b, and & given in
(76) into (73) and plotting � as a function of time, we obtain
Figure 5, and it is possible to conclude that the solution given
in (40) and the piecewise solution given in (73) are the same
exact solution. However, the equation for the exact period
given in (72) [11, Eq. (15), page 2576] does not give the exact
period.

7.3. Exact Solution When �1 < 0, �5 > 0, and 0 < �0 <(−3�1/�5)1/4. We have obtained the exact period given in
(49) and the exact periodic solution given in (52). For this
case, Eĺıas-Zúñiga exact period is given in (72) and the exact
solution can be written as follows:

� (�) = 1√� + Ycn2 (b�, &) . (78)

When �1 = −1, �5 = 3, and �0 = 0.95 we obtain

� = −0.930194,Y = 2.03823,b = 0.885853c,& = −0.434817
(79)

and (72) gives for the period of this nonlinear oscillator the
following value:

� = −6.46749c (80)

which is an imaginary number and cannot correspond to a
period of an oscillatory system.�e period we have obtained
in this paper by using (49) is T = 3.90327 s, which is the
correct period. Substituting the values for �, Y, b, and& given
in (79) into (78) and plotting� as a function of time,we obtain
Figure 8(a), and it is possible to conclude that the solution
given in (52) and the solution given in (78) are the same exact
solution. However, the equation for the exact period given in
(72) [11, Eq. (15), page 2576] does not give the exact period.

7.4. Exact Solution When �1 > 0, �5 < 0, and 0 < �0 <(−�1/�5)1/4. We have obtained the exact period given in (65)
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and the exact periodic solution given in (69). For this case,
Eĺıas-Zúñiga exact period is given in (72) and the exact
solution is written as a piecewise function given in (73).

When �1 = −1, �5 = 3, and �0 = 0.5 we obtain

� = 1.1747,Y = 2.8253,b = 1.07253c,& = 0.575648
(81)

and (72) gives for the period of this nonlinear oscillator the
following value:

� = −7.80654c (82)

which is an imaginary number and cannot correspond to a
period of an oscillatory system.�e period we have obtained
in this paper by using (65) is T = 6.69369 s, which is the
correct period. Substituting the values for �, Y, b, and& given
in (81) into (73) and plotting� as a function of time, we obtain
Figure 11, and it is possible to conclude that the solution we
obtained (69) and the solution given in (73) are the same exact
solution. However, the equation for the exact period given in
(72) [11, Eq. (15), page 2576] does not give the exact period.

7.5. Why the Period Given in [11, Eq. (15), page 2576] Does
Not Give the Exact Period? As we have previously pointed
out, Eĺıas-Zúñiga concludes that “since the Jacobian elliptic
function cn(b�, &) has a period in b� equal to 4-(&), we
may see that the corresponding exact period of oscillation
T is given by � = 4-(&)/b” [11, page 2576]. As we have
just proved, this equation for the period gives complex and
imaginary values for the period of a physical oscillator but
not real numbers. However, if Eĺıas-Zúñiga’s equations for the
exact solution have been proven correct, where is the error in
the expression for the period? �e answer of this question is
that not only the Jacobian elliptic function cn(b�, &) has a
period in b� equal to 4-(&), but also periods 4c-�(&) and2-(&) + 2c-�(&), where -�(&) = -(1 − &) [22].

When �1 = 1, �5 = 3, and �0 = 1, Eĺıas-Zúñiga’s period
would have to be

� = − 4c-� (&)b = − 4c- (1 − &)b = 3.79208 s (83)

which gives the correct period. When �1 = −1, �5 = 3, and�0 = 1.1, Eĺıas-Zúñiga’s period would have to be

� = − 4c-� (&)b = − 4c- (1 − &)b = 5.64241 s (84)

which corresponds to the correct period for these numerical
parameters. When �1 = −1, �5 = 3, and �0 = 0.95, the correct
expression for Eĺıas-Zúñiga’s period would have to be

� = −2- (&) + 2c-� (&)b = −2- (&) + 2c- (1 − &)b= 3.90327 s (85)

which is the correct period. Finally, when �1 = 1, �5 = −3,
and �0 = 0.5, the correct expression for Eĺıas-Zúñiga’s period
would have to be

� = 4c-� (&)b = 4c- (1 − &)b = 6.69369 s (86)

which corresponds to the correct period for these parameters.

8. Conclusions

Closed-form expressions for the exact periods and solutions
of the nonlinear quintic oscillator have been obtained for
all possible oscillatory motions of this nonlinear system.
Unlike Eĺıas-Zúñiga’s procedure [11, 12], we do not assume
any expression for the solution but exactly solve the nonlinear
di
erential equation, which allows us to obtain the period
and, aer inversion, the solution for this conservative nonlin-
ear oscillator. As shown, there are four possible combinations
of coe�cients �1 and �5 which provide periodic motions. In
three of them ((a) �1 ≥ 0, �5 > 0, and �0 > 0, (b) �1 < 0,�5 > 0, and �0 > (−3�1/�5)1/4 > 0, and (d) �1 > 0,�5 < 0, and 0 < �0 < (−�1/�5)1/4) the system oscillates
around the equilibrium position x = 0 with � ∈ [−�0, �0].
However, there is one more case ((c) �1 > 0, �5 < 0, and 0 <�0 < (−3�1/�5)1/4) in which the system oscillates around the

equilibrium position � = (−�1/�5)1/4 with � ∈ [�1, �0]. In all
cases the exact periods are given in terms of a complete elliptic
integral of the 	rst kind and the exact solutions are expressed
in terms of Jacobi elliptic functions. We also showed that
making a convenient change of variable to a new variable# = � − (−�1/�5)1/4 it is possible to verify that case (c) is
equivalent to a mixed-parity nonlinear oscillator oscillating
around the equilibrium position # = 0. Finally, our exact
solutions are comparedwith the exact ones obtained by Eĺıas-
Zúñiga [11].
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Du�ng equation,” Applied Mathematics and Computation, vol.
193, no. 2, pp. 303–310, 2007.

[6] T. Pirbodaghi, S. H. Hoseini, M. T. Ahmadian, and G. H. Far-
rahi, “Du�ng equations with cubic and quintic nonlinearities,”
Computers & Mathematics with Applications, vol. 57, no. 3, pp.
500–506, 2009.

[7] B. S. Wu, W. P. Sun, and C. W. Lim, “An analytical approximate
technique for a class of strongly non-linear oscillators,” Inter-
national Journal of Non-Linear Mechanics, vol. 41, no. 6-7, pp.
766–774, 2006.

[8] S. K. Lai, C.W. Lim, B. S.Wu, C.Wang, Q. C. Zeng, and X. F. He,
“Newton-harmonic balancing approach for accurate solutions
to nonlinear cubic-quintic Du�ng oscillators,” Applied Mathe-
matical Modelling, vol. 33, no. 2, pp. 852–866, 2009.

[9] A. Beléndez, G. Bernabeu, J. Francés, D. I. Méndez, and S.
Marini, “An accurate closed-form approximate solution for
the quintic Du�ng oscillator equation,” Mathematical and
Computer Modelling, vol. 52, no. 3-4, pp. 637–641, 2010.

[10] G. M. Scarpello and D. Ritelli, “Exact solution to a 	rst-	h
power nonlinear unforced oscillator,” Applied Mathematical
Sciences, vol. 4, no. 69-72, pp. 3589–3594, 2010.
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