10

Closed Form Performance
Distributions of a Discrete Time

GI®/D/1/N Queue with Correlated
Traffic

Demetres Kouvatsos, Rod Fretwell

University of Bradford

Computer Systems Modelling Research Group, University of Bradford,
Bradford BD7 1DP, U.K.

email: {D.D.Kouvatsos,R.J.Fretwell}@comp.brad.ac.uk

Abstract
A novel approach is applied to the study of a queue with general correlated traffic, in that
the only features of the traffic which are taken into account are the usual measures of its
correlation: the traffic is modelled as a batch renewal process. The batch renewal process
is a precise tool for investigation into effects of correlation because it is the least biased
choice of process which is completely determined by the infinite sets of measures of the
traffic’s correlation (c.g. indices of dispersion, covariances or corrclation functions).

The general effect of traffic correlation on waiting time, blocking probability and queue
length is well known from simulation studies and numerical analysis of a variety of models.
The contribution of this paper is to show that these effects are due to correlation alone (and
not to any other features of the traffic or of the models used) and to show explicitly how
the magnitudes of blocking, waiting time and queue length distribution are determined
by the degree of correlation in the traffic.

The study focuses upon a discrete time G19/D/1/N queue with single server, general
batch renewal arrivals process, deterministic service time and finite capacity N. Closed
form expressions for basic performance distributions, such as queue length and waiting
time distributions and blocking probability, are derived when the batch renewal process is
of the least biased form which might be expected to result from actual traflic measurements
at the interior of a network or of some individual traffic source.

The effect of varying degrees of traffic correlation upon basic performance distributions
is investigated and illustrative numerical results are presented. Comments on implications
of the results on analysis of general discrete time queueing networks with correlated traffic
are included.
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1 INTRODUCTION

ATM traffic is both bursty and correlated. Even for traffic sources described as being
(bursty) renewal processes, superposition of several such sources generally yields corre-
lated processes. The indices of dispersion have been proposed as appropriate characterisa-
tion of bursty, correlated traffic and Markov modulated processes as models of sources of
bursty traffic with correlation. Sriram and Whitt (1986) described superposition of bursty
sources (modelled by renewal processes) in terms of the indices of dispersion for inter-
vals (IDI). Heffes and Lucantoni (1986) model the superposition of bursty renewal pro-
cesses approximately by a 2-phase Markov modulated Poisson process (MMPP) matched
on three features of the indices of dispersion for counts (IDC) and mean arrival rate.
Gusella (1991) estimated indices of dispersion for measured LAN traffic and modelled the
traffic approximately by a 2-phase MMPP matched on three features of the IDC and the
SCV of one inter-arrival time. It should be noted that i) a 2-phase MMPP is defined by
only four parameters and cannot conform entirely to all the indices of dispersion which
may be used to characterise traffic of any particular source, ii) the IDI, .J,, and IDC,
1;, of a 2-phase MMPP tend to the same finite limit, i.e. I, = J, and iii) a batch
renewal process may be constructed for an arbitrary set of indices of dispersion (with
finite [, = Jw). If the indices of dispersion are all that is known about certain traffic
(as might result from measurements of real traffic) then a batch renewal process may be
constructed which incorporates all that information and no other: in that sense, batch
renewal processes provide a description of the traffic which is both complete and least
biased -— which models, such as MMPP, with limited parameterisation do not.

Fowler and Leland (1991) have reported LAN traffic with unbounded IDC (i.e. infinite
I.). However, it is to be expected that performance of restricted buffer systems with
deterministic service (as in ATM switches) would not be affected by the magnitude of IDC
for long intervals. Recently, Andrade and Martinez-Pascua (1994) have shown that queue
length distribution, etc. is affected by IDC only up to a certain size of interval (determined
by the buffer size) and “the value of the IDC at infinity has little importance.” So it may
be expected that, for practical purposes, the finite limit to IDI and IDC in batch renewal
processes would not be a disadvantage in traffic models.

The general effect of traffic correlation on waiting time, blocking probability and queue
length is well known from simulation studies and numerical analysis of a variety of models.
The contribution of this paper is to show that these effects are due to correlation alone (and
not to any other features of the traffic or of the models used) and to show explicitly how
the magnitudes of blocking, waiting time and queue length distribution are determined by
the degree of correlation in the traffic. The traffic is modelied as a batch renewal process
which is a precise tool for investigation into effects of correlation because it is the least
biased choice of process which is completely determined by the infinite sets of measures
of the traffic’s correlation (e.g. indices of dispersion, covariances or correlation functions).

Batch renewal processes are defined and their properties described in Section 2. In
Section 3, the relationships between the component distributions of the batch renewal
arrivals process and the queue length distribution, waiting time and blocking probability
in a finite buffer queue with deterministic service and censored batch renewal arrivals
process are presented. Such a queueing system is an appropriate model for an ATM
multiplexer or partitioned buffer switch.

The analysis is specialised in Section 4 to batch renewal processes in which the compo-
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nent distributions are shifted generalised geometric (shifted GGeo). This form of process
appears to be appropriate to measured traffic, especially where the usable data set be
limited by (say) the time for which the actual process may be regarded as being sta-
tionary. Closed form expressions for queue length distribution, waiting time and blocking
probability are given.

Section 5 presents analysis of the effects, on blocking probability, waiting time and
queue length, of varying degrees of correlation and illustrates the results by numerical
examples.

Finally, conclusions and proposals for extensions to the work, including those towards
approximate analysis of general queueing networks with correlated traffic, are given in
Section 6

2 BATCH RENEWAL PROCESSES

Definition A random sequence {£(¢) : t = ...,-2,-1,0,1,2,...} is stationary in the
wide sense (equivalently, stationary in Khinchin’s sense) if

® the random function £(f) has constant finite mean E[£(t)] = £ (which is independent
of t) and

® the correlation function Cov[£(2), £(s)] 4 E[(£(t) — £)(&(s) — €] is finite and depends
on the lag ¢ — s only.

Observe that Cov[£(t), £(t + €)] = Cov[£(t + ), £(t)], by symmetry of the definition, and
that Cov[£(t+0),£(2)] = Cov[€(t), £(t — )], by change of variable  to t — £. Consequently,
Cov[&(t). £(t + )] = Cov[E(t), £(t — €)] — only the magnitude of the lag is significant and
it is therefore necessary only to consider positive lags.

Consider an arrivals process which is a two dimensional wide sense stationary sequence
{alt),B®): t=...,-2,-1,0,1,2,...}, in which realisations of a(t) and 3(t) are drawn
from the positive integers. The ((f) are to be interpreted as the number of arrivals (i.e.
batch sizes) and the a(t) as the number of slots in intervals between successive batches
of arrivals. From {a(t), #(t)} may be derived two related sequences of interest

® the numbers of arrivals {N(t): t=...,-2,-1,0,1,2,...} at each epoch,
® the intervals {X(t): t=...,-2,-1,0,1,2,...} between successive arrivals.

To be specific, X (0) may be assigned o{0), X {8(1)} assigned (1), X (8(1)+3(2)) assigned
a(2), etc. and intermediate values, X (1) through X (8(1) — 1), etc., assigned 0. Similarly,
N(1) may be assigned (1), N{a(2)+1) assigned 3(2), etc. and intermediate values, N(2)
through N(w(2)), etc., assigned 0.

1t is generally true that

BINGY'] = T
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and, thence, generally true that

A Var[N(] b
I]_W(t)_]_bch +b—a

where a = E[a], b = E[8] and C} is the square coefficient of variation of 3 and I, is the
index of dispersion for counts (IDC) over one slot (i.e. at lag 0). Similarly,

s Var[X (1]

— 2 -
T =bC2+b-1

J1

where C2 is the square coefficient of variation of & and Ji, the index of dispersion for
intervals (IDI) for one interval (i.e. at lag 0). J; is the square coefficient of variation of X.

To determine the correlation functions for {N(t)} and {X(t)} more information about
{a(t), B(t)} is required.

Definition A batch renewal arrival process is a process in which there are batches of
simultaneous arrivals such that

® the numbers of arrivals in batches are independent identically distributed random
variables,

® the intervals between batches are independent identically distributed random vari-
ables.

® the batch sizes are independent of the intervals between batches.

It is shown, below, that a discrete time batch renewal arrival process may be constructed
to give any degree of correlation between numbers of arrivals at different epochs and, simul-
taneously, any degree of correlation between interarrivals times at arbitrary lags. Indeed,
there is a one-to-one correspondence between an arbitrary set of indices of dispersion (or,
equivalently, of correlation functions or covariances) and a batch renewal process. Further-
more, the corresponding batch renewal process is the least biased choice given only a set of
indices of dispersion or of correlation functions. (To say that a process be the “least biased
choice” means that, of all possible processes which satisfy the given conditions (e.g. set
of indices of dispersion), is chosen that process which involves least arbitrary additional
information. For example, in the case of a 2-dimensional joint probability distribution
P[X = n;,Y = ny] given only the marginal distributions P[X = n;] and P[Y = ny], the
least biased choice for the joint distribution is P[X = n;,} = ny] = P[X = n,|P[Y = ny)].
The effect is to treat X and Y as being independent. Any other choice would introduce
arbitrary information in the form of the dependence between X and Y'.)

2.1 Independence or Dependence at Various Lags
Consider a discrete time batch renewal process in which
® the distribution of batch size is given by the probability mass function (pmf) b(n),

n = 1,2,..., with mean b, square coeflicient of variation (SCV) C? and probability
generating function (pgf) B(z) = Y22, b(n)2", and
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® the distribution of intervals between batches is given by the pmfa(t),t = 1,2, ..., with
mean a, SCV C? and pgf A(w) = 12, a(t)w!

Observe that no loss in generality ensues from the assumption that a(0) = 0, 5(0) = 0.
It is readily seen that the stationary distribution of the number n of arrivals at an epoch
is given by the pmfv(n), n=0,1,...,

1—-- n=0

v(m) =1 a 1)
-b(n) n=1,2,
a

and the conditional probability v,(n; k) that there be n arrivals (n = 0,1,...) at an epoch,
given that there had been & arrivals (k = 0,1,...) at the epoch ¢ slots earlier (¢ = 1,2,...),
is

Sloee k=0
a—1 '
1— ¢y

veln: k) = a,—lb(n) n=12..., k=0

1— ¢ n=0k=12...

@e b(n) n=12...,k=12...

where @ is the probability that there be a batch at any epoch, given that there had been a
batch at the epoch ¢ slots earlier. The number of arrivals at an epoch is either independent
of or dependent on the number of arrivals at the epoch ¢ slots earlier according to whether
#¢ = 1/a or not. Obviously, ¢, satisfies the (convolution) relationship

1 (=0

"= (3)
S degalt) 0=1,2,...
to=l

and ¢, is generated from the pgf

1
Z(bfw T AW (4)

Note that ¢ is determined by a(1),...,a(¢) only (£ = 1,2,...) and so a(-) may be con-
structed to give independence or dependence arbitrarily at any specified lags.

The correlation functions (covariances) at lag ¢, ¢ = 1,2,..., are derived from equa-
tions (1) and (2) as

00 00 2
Cov[N({#).N(t+ 0] = E[NEN({t+0] - Z Z nkv(k)ve(n; k) — <—[£>

a
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= (2 (Bron) - ()
Fled 0

Hence, utilising equation (4), the variance and covariances are generated by

It

1+ A(w) 14w
A(w)_/\l—w (©)

K(w) 2 ; (Var[N] +2 iCov[N(t), N(t+8)] w‘) =bCE + b3

¢=1

where A = b/a. Observe that AK(z) is a pgf analog of the spectral density function for the
random sequence of the number of arrivals at successive epochs. Further, the relationship
between correlation functions (covariances) and indices of dispersion may be described by

K(w)=(1~w)?I'w)

where [(w) is the pgf of the indices of dispersion I; for counts and where the prime (')
indicates the derivative.

In an essentially similar way, it may be shown that the batch size distribution b(-)
may be constructed to give independence or dependence of intervals {(between individual
pairs of arrivals) arbitranly at any specified lags and that the correlation functions are
generated from

1+B(z) 14z

L()—X"(Var[x +2Zcov[‘x X (t+0)] 2 ) b2+ b B T

=1

(7

where L(w)/)? is a pgf analog of the spectral density function for the random sequence
of interarrival times,

L(z) = (1 — 2)2.0'(2)

where J(z) is the pgf of the indices of dispersion J,, for intervals and where the prime ()
indicates the derivative.

It may be shown that equations (6) and (7) together imply a one-to-one relationship
between the set of correlation functions or covariances (equivalently, indices of dispersion)
and the batch renewal process distributions of batch sizes and intervals between batches.

3 CENSORED GI¥/D/1/N QUEUE UNDER DEPARTURES FIRST
POLICY

Consider a G1°/D/1/N queue in discrete time in which arrivals to a full system are turned
away and simply lost (i.e. censored arrivals). Events (arrivals and departures) occur at
discrete points in time (epochs) only. The intervals between epochs are called slots and,
without loss of generality, may be regarded as being of constant duration. At an epoch
at which both arrivals and departures occur, the departing customers release the places,
which they had been occupying, to be available to arriving customers (departures first
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memory management policy). The service time for a customer is one slot and the first
customer arriving to an empty system (after any departures) receives service and departs
at the end of the slot in which it arrived (immediate service policy). By GI° arrivals process
is meant the intervals between batches are independent and of general distribution and the
batch size distribution is general (batch renewal process). Consider further two processes
embedded at points immediately before and immediately after each batch of arrivals.
Each process may be described independently by a Markov chain but the processes are
mutually dependent. Let

pn{(n) be the steady state probability that there be n = 0,1,..., N customers in the
system (either queueing or receiving service) during a slot (i.e. {py(n) :n =0,....N}
is the random observer’s distribution),

pa(n) be the steady state probability that a batch of arrivals ‘see’ n = 0,...,N — 1
customers in the system (i.e. {p4(n):n=0,..., N — 1} is the stationary distribution
of the Markov chain embedded immediately before batch arrivals),

pR{(n) be the steady state probability that there be n = 1,..., N customers in the
system immediately after a batch of arrivals to the queue (i.e. {pR(n):n=1,...,N}
is the stationary distribution of the Markov chain embedded immediately after batch
arrivals).

When, immediately following a batch of arrivals, the system contains & (k=1,...,N)
customers and the interval to the next batch is ¢ slots, then there will be one departure at
the end of each of the ¢ slots for which there remain customers in the system. If t < k that
next batch will ‘see’ k — ¢ customers. If ¢+ > & the system will become empty before the
next batch arrives. Similarly, when, immediately prior to admission of a batch of arrivals,
the system contains k (k = 0,..., N — 1} customers and the batch size is r, then the buffer
will become full if » > N — k. Otherwise there will be k + 7 customers immediately after
the batch arrives. Consequently, p4(+) and p&(-) are related by

pa(n) = kijt, =k "
Z pIDV(k)a(k_n) n = ], 7]\1_1
and
EPN(k)b(n -k n=1,..N-1
A = ®)
Y oon(k) Y b(r) n=N
k=0 r=N-k

The relationship betweenp% (-) and the random observer’s probability py(+) results from
the following considerations.
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If, immediately after the arrival of a batch, there be k customers in the system and the
interval between that and the next batch be ¢ slots (figure 1) then, during that interval
of ¢ slots,

if t < k the system visits the states k, ...,k — ¢ + 1 for one slot each,

if ¢ > k the system visits the states k,...,1 for one slot each and resides in state ¢ for
t — k slots.

revious next revious next
P

batch batch batch bai.ch
er_ _Ant o j_ jLL _______________ N U A0
k —n+ 1 slots k slots t — k slots

Figure 1 Ways in which state n (n > 0) and state 0 may be reached during an interval
between batches.

Any arbitrary slot must fall in the interval between two batches. The probability that
the interval be of length # is %ta(t) and the probability that the slot occupy any particular
position within the interval 1s 1/2.

Hence,
1 ¥ o0
=Y prk) Y (t—k)a(t) n=0
a k=1 t=k+-1
pn(n) = LN o (10)
“SpRk) Y. alt)  n=1,...N
a k=n t=k--n+1

3.1 Blocking Probability

If an arriving batch of size N— k + r see k customers in the system, then only the first
N — k members of the arriving batch may be admitted and r customers will be blocked.
The probability that the arriving batch see k customers is p4 (%), the probability that the
batch be of size N— k471 is (N— k+7)b(N~ k+r)/b and the probability of a customer
being in one of the r positions, given that the batch be of size N— k+r,is r/(N—k+ 7).
Therefore, the blocking probability =& is given by

o0

N-1 r
=3 pal Zg (N—k+r) (11)
k=0 =1
3.2 Waiting Time

The waiting time of a customer is given by its position in the queue at the instant at which
it arrive in the queue. Thus, given that there be k customers in the queue (including any
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in service) at the time of an arriving batch of size r, the customer in position ¢ — k in the
batch (1 <t —k <7 <N — k) will remain in the queue for ¢ slots.

Let bg(n), n = 1,...,k with mean b; be the effective arrival distribution given that an

arriving batch see k, k =1,..., N — 1, places available in the buffer.

b(n) 1<n<k

be(n) =4 S b(r) n=k (12)
0 otherwise

Then the mean by is given by

k k 00
bp =Y nb(n) = nbn)+k Y bn) (13)
n=1 n=l n=k+1
Then waiting time is distributed as w(t), t =1,..., N,
t-1 1 Nk 1 T
w(t) =Y pn(k)— D by wlr) = 3 pa(k)— 3 b(r) (14)
k=0 Y —— £=0 vk 57k

4 SHIFTED GGEO DISTRIBUTIONS OF BATCH SIZE AND
INTERVALS

This section presents particular forms of batch renewal arrivals process which appear to
be especially appropriate to models of traffic where there are relatively few measurements
from which the correlation functions (covariances) may be estimated. In such cases it is
natural to plot the logarithms of covariances against lags and fit a straight line to the
plot. Then, if

log Cov[X (1), X(t+0)} = -C —m?

(for some constants C' and m), equation (7) implies that the corresponding batch renewal
process has batch size distribution of the form

1-n n=1

b(n) = (15)
nw(l—v)"? n=2,...

in which

/\\2 ’—C
1= e

1
= e ()
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Similarly, if
log Cov[N(t), NGt+8)} ~ —C — mt

(for some constants C and m) equation (6) implies that the corresponding batch renewal
process has intervals between batches distributed as

1-0 =1
a(t) = { t (16)

or(l—7)t2 t=2,...

in which
-C

ag = ﬁe—j(—, (1 —_ e""‘)
)\2

T = m (1 - €7m)

Distributions of form (15) and (16) are known as shifted generalised geometric (shifted
GGeo).

This section first discusses the solution of GI%/D/1/N queues in which the intervals
between batches are distributed as a shifted GGeo. (A similar solution method may be
applied to GI°/D/1/N queues in which the batch sizes are distributed as a shifted GGeo.)
Then closed form expressions for queue length distribution, waiting time distribution
and blocking probability are derived for the interesting case when both batch sizes and
intervals are distributed as shifted GGeo.

4.1 GGeo%/D/1/N Queues

When the distribution of intervals between batches is shifted generalised geometric with
parameters o and 7 the correlation functions (covariances) for the numbers of arrivals per
slot are

b b\ Lo . La—1_,
Cov[V () N(t+ O] = L - (-) Ty =ity
a a T a

which shows, for given interval a between batches, the significance of the “correlation
factor” f3, 21-0-1.
Equation (8) becomes

Pﬁ(l)+021)3(k)(l~r)k‘2 n=90

A

PN(") = (17

N
(1~ o)ph(n+1) + o7 > pRk) (1 =72 =1 . N-2
k=n+2

(1—o)pR(N) n=N-1
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Consideration of the differences between the p4 (n) for successive values of n leads to the
difference relations below. Forn=1,...,N -3

(1-mpy(n+1l) —py(n) = (1 -o0—1)pR(n+2)— (1 - o)ph(n+1)
= (l—o—r)g:pﬁ(k)b(n-k%ﬂ)
k=0
~(1=0) Y. phR)b(n—k+1) (18)
k=0
and forn =90

(1-pxp(1) = py(0) = (1—0—7)pR(2) —7pR(1)
(1— 0 —7) [pA(0)b(2) + pA(1)b(1)] — 7o (0)b(1) (19)

The system of linear equations (18) and (19) establish ratios between p3(n) and p3{0)
(forn =1,..., N—2) which are independent of N and are the same as in the corresponding
unrestricted buffer GGeo®/D/1 system. Therefore, writing p”(n) for the steady state
probability that a batch of arrivals to the unrestricted queue ‘see’ n in the system,

py(n) = $p*(n) n=0,...,.N-2 (20)

for some normalising constant Z, and so, writing

for the generating function of p4(n), gives

o+1—b

e

PAz) = (21)

Given the distribution b(-) explicitly, equation (21) may (in principle) be solved, leading
(via equation (20)) to the solution of equation (17). Thence, relations (9), (10), (14) and
(11} give queue length distribution, waiting time distribution and blocking probability.
This method is shown, in the next subsection, when the batch size is distributed as GGeo.

4.2 GGeo%*“/D/1/N Queues

When both the intervals between batches and the batches are distributed as shifted Gen-
eralised Geometric equation (21) becomes

o—11

P = nz - (1 - 2)
o (1 ) e (- )
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1 {ov—m)(1 - (1 -v)2)

vio+{(l—-o—mn)—(c(l—n-v)+7)z

It follows immediately that
-1-(1 —x) n=0
v

1_ —
U Gl Ak L GRS R
vo+(l—o—1)n
where the geometric term x is

al—-n—-v)+n
I = —————— |
o+(l—0o—1)y

Then, from equation (17) for n = N, equation (9) and the distribution of batch sizes,

N--1 00
PR(N=1) = (1—opg=(1-0) 3 pak) ¥ b(r)
k=0 r=N-k
11-079 9
7 ;(l—z)zN

and so the normalising constant Z is seen to be

Z=1-2IN1
vo

Combining equations (20), (23) and (24) yields

11
==(1-1x) n=0

Zv

Ary_ ) Int+(l—-0—1)W 1
n)=4 2.~ " 71— x\z" =1,....,.N—
pa(n) Zuo+(1—o—r)n(1 o)™ n=1,..., 2
1nl-
72 U(l—x)zN'2 n=N-1
Zv o

Applying equation (9) to (26) yields

11—n
7z 49 net
)Dn = lQT(l—TI—V)-FV — n—2 — .
pn(n) Zua+(1—cr—r)n(1 z) n=2, N-1
izl(l—z)x”’2 n=N

(26)
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Applying equation (10) to (27) yields

11 1
- )= =(1—- ) =0
ZVO'+T(UV ™) Z( ) "
11 7
= — =1
ZI/0'+T(1 7 "
pn(n) = (28)

1np 7 1-(l-o-1)(1=-n-v)

- l-z)2"? n=2,...,N-1
Zvo+T c+(l-0~7)y (- )

L 7 l(l—m)mN“2 n=N
Zveo+To

Hence, mean queue length Ly is

1 71 1-(l-oc—-7){1-n—v)
Ly = Se=
N ZO'+TV((U+V)+TI ov —T1
_nl—(1—0-—7’)(1—n—l/)sz1
ov— TN
+N§a —a-r)x'“) (29)
o

From equations (11} and (26) the blocking probability =& is

N1 00 ’
1 ov—T 1-Z1-X
B S pA) S h(N—k+71) = = — NNt _ 30
= 2 (R 2 pUN = ko) = o — ) (30)
Hence
—7(5“41:———0(1_"“1/)4—7] as N —o oo
k o+ (l-o0-T)y

which illustrates the typical log-linear relationship between blocking probability =Zand
buffer size N.

From equation (13), the mean effective batch size given k buffer places available to
arrivals is given by

k-1 o0
be=(1=n)+mw) nl-v)"2+kp Y (1-v)" =1+ 1 (1 -(1- 1/)’“’1) (31)
n=2 n=k v
Hence, waiting time is distributed as
t—1 0
w(t) = Zpﬁ,(k.) Y b(r) (32)
k=0 by ok Sk
-2 (1 - p)ik-2
=(t>1) Y ph(k)—ert At —
>0 LW g ey A DT
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4.3 Infinite Buffer

In the limit as the buffer size N — oo, the expressions for mean queue length and waiting
time reduce to

1 1-1-o~-7)(1—n—
L=—" —((n+u)+n Sy L ”)) (33)
oc+TV oV — TN
and
1
(1-2) t=1
m=1"" e
w(t) =
U 1_(I—U_T)(l—n—y)(l—z)zt“z t=2,3,...
n+v o+(l1-0~1)p T
Hence, the mean waiting time becomes
W14 " 1—(1—0—7’)(1—7]—1/):£ (35)

n+v ov—1Tn A

5 EFFECTS OF CORRELATION

In view of the significance of the following terms in the analysis, it is convenient to
introduce symbols for them.

Ba 2 {1—0—71) as the geometric factor in the correlation function for numbers of arrivals
per slot (and in the IDC),

B, 2 {1 —n—v) as the geometric factor in the correlation function for intervals between
individual arrivals (and in the IDI),
1—n—- ] . N .
2 in_v)j_n as the geometric factor in the queue length distibution, asymptotic
o+(l—0—71)n
blocking probability, etc.

Further, it is convenient to investigation of queue behaviour when 3, or 3, be close to 1

to define additional symbols x, 2 (1 — 8,)"" and K, 2 (1-6)""

5.1 Choice of Reference System

The factors 3, and f3, appear to be good indicators of the type of correlation in the
GGeo®%* batch renewal process.

® A 3 value of 0 implies no correlation (in the number or time dimension, as appropriate).
If 3, = 0, the process is Batch Bernoulli and there is no correlation between numbers of
events at different epochs. If 8, = 0, the process is renewal and there is no correlation
between intervals (i.e. between the interval between one pair of successive events and
the interval between another pair of successive events).
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Figure 2 Waiting time (in slots) against correlation factors §, and sy = (1 — By) !
(vertical scale) of batch size and 3, and k, = (1 — 3,)"! (horizontal scale) of intervals
between batches for SCV of individual interarrival times J; = 6.25 x (1 — A).

® A positive (negative) value for the 3 implies positive (negative) correlation in the
appropriate (number or time) dimension. A greater magnitude of the 8 value implies
stronger (positive or negative) correlation in that dimension.

® Only if both 3, =0 and 3, = 0 is the process completely free of correlation.

In order to determine effects on queneing behaviour of correlation arising from a
GGeo®Y batch renewal arrivals process, the performance distributions and statistics
for the queue must be compared with those of a reference process which is free of correla-
tion but invariant in other significant characteristics. The GGeo®%* process is determined
by 4 parameters and, since two degrees of freedom are determined by the choice of the
factors 3, and (3, there remain 2 characteristics to be chosen to be invariant. An obvious
requirement is that the intensity A be invariant.

For the last remaining choice of invariant, it would appear natural, in view of ‘tra-
ditional’ traffic characterisation, to chose J;, the SCV of intervals between successive
arrivals. Figure 2 shows that, for 3, < 0, mean waiting time and (by Little’s Law) mean
queue length increase with 5, and with 8,, as would be expected. However, for 3, > 0,
mean waiting time and mean queue length increase with 3, but reduce as 3, increases.

Similar difficulties arise with other obvious choices of other statistics to be invariant:
the limiting values of the indices of dispersion I, = J; the mean queue length or mean
waiting time in an infinite buffer.

The best choice was found to be when both the mean batch size b and the mean interval
a between batches were invariant. This choice is intuitively appealing because the factor
s (equivalently &,) is closely related to the variability in batch sizes and the factor f,
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(equivalently k,) is closely related to the variability in both intervals between batches and
the individual interarrival times.

g a-—1 2 B _a-—1 3
C’L_—a (———l_ﬁa 1)— - (2ry — 1)

h—1 2 b—1
2 _ _1l= _
Ct = - (1 7 1) 7 (2ky — 1)

Finally the reference system was chosen to be that with the same mean batch size and
same mean interval between batches. Compare figure 3 with figure 2.

5.2 Results

Measures of interest are recast, below, in terms of the parameters a, b, k, and x.
The geometric term z in queue length distribution, etc.

a—>b

121_a(b—l)(fia~1)+(a—1)bnb

The normalising factor Z in queue length distribution, etc. (cf equation (25))

Z=1——b——:—}—:l“,NA1
a—1

The blocking probability 72 (cf equation (30))

1-Z1-A _la-bb-1 .,

Bﬁ _ A
™= T TN T Z 4 a=1”

Mean queue length (cf equation (29))

cuk R 1>fo1>

1 (b bb-1) N-1
LN_E<;+ Y (ko +rp— 11—z )+Na—
Mean waiting time W in the infinite buffer queue (cf equation (35))

alb—1)
a—b

W:1+——1——-—nb=1+ (ko +rp—1)
1-x

Figures 3, 4, 5, 6 and 7 illustrate the effects of varying correlation on mean waiting
time in the infinite buffer queue, the factor z which appears as a geometric term in queue
length distribution, etc., blocking probability against buffer size and mean queue length
in a finite buffer. All the illustrations are for an intensity A = 0.2. From the relations given
at the begining of this sub-section, in can be appreciated that results for other intensities
show similar forms.

Figure 3 shows the impact on waiting time in the infinite buffer queue. The numbers
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Figure 3 Waiting time (in slots) against correlation factors 3, and s, = (1 — 3) !
{vertical scale) of batch size and 8, and x, = (1 — 8,)~! (horizontal scale) of intervals
between batches for mean batch size b = 1.5, mean interval a = 7.5 slots between batches,
intensity A = 0.2.

on the contours give the waiting time as a number of slots. The right hand of the pair
of charts gives an expanded view of the upper right hand corner of the left hand chart
(Ba = 0.9, B, > 0.9). The charts show that waiting time increases increasingly rapidly
(and without limit) as either 3, or 8, approach unity.

Figure 4 shows the impact on the geometric term z of various degrees of correlation.
The numbers on the contours give the value of z. It is seen that, as either &, or x; increases
(Ba or 3, approaches 1), the value of  increases increasingly rapidly towards unity. For
relatively low intensity (A = 0.2 in the examples), the effect of variablity in batch size
(given by sy or f3) is stronger than that of variability in interval between batches (given
by &, or (,). This distinction is more pronounced when the mean batch size b is close to
unity, as comparison of the two charts of figure 4 shows.

Blocking probabilty is also markedly effected by correlation in either the time dimension
or in the number dimension. The two charts of figure 5 give blocking probability against
buffer size for various values of ,. The legend on each line is the value of 3,. The charts
show that blocking probability increases rapidly with correlation.

The effects of correlation on mean queue length in finitc buffers is shown figures 6 and
7. Each figure comprises two charts of mean queue length against buffer size for various
values of #,, the upper chart for k, = 1 (8, = 0, no correlation between interarrival times)
and the lower for x, =5 (8, = 0.5, moderate correlation between interarrival times). The
effects of positive correlation are marked. However, comparison of figures 6 and 7 shows
that the impact of positive correlation in interarrival times is greater when the mean batch
size is closer to unity.
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Figure 4 Geometric term z against correlation factors s, = (1 5) ! (vertical scale) of
batch size and &k, = (1 —/3,)" (horizontal scale) of intervals between batches for intensity
A =0.2 and, in the left hand chart, mean batch size b = 1.5, mean interval a = 7.5 slots
between batches and, in the right hand chart, mean batch size b = 1.05, mean interval
a = 5.25 slots between batches.
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Figure 5 Blocking probability against buffer size for mean batch size & = 1.5, mean
interval o = 7.5 slots between batches, intensity A = 0.2 with 4, = 0,0.5,0.8,0.9,0.95
(kp = 1,2,5,10,20) and, in the left hand chart, 3, = 0 (s, = 1) and, in the right hand
chart, 4, = 0.8 (k, = 5).
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Figure 6 Mean queue length against buffer size N for mean batch size b = 1.5, mean
interval a = 7.5 slots between batches, intensity A = 0.2 and various values of &,
(1,2,5,10,20,100 and, in the upper chart, x, = 1 and, in the lower chart, &, = 5.

6 CONCLUSIONS AND PROPOSALS FOR FURTHER WORK

A discrete time GI°/D/1/N queue with single server, general batch renewal arrivals pro-
cess, deterministic service time and finite capacity N is analysed. Closed form expressions
for basic performance distributions, such as queue length and waiting time distributions
and blocking probability, are derived when the batch renewal process is of the form which
might be expected to result from actual traffic measurements. Those closed form expres-
sions are used to show the effect of varying degrees of traffic correlation upon the basic
performance distributions and the results are illustrated by numerical examples.

It is seen that positive correlation has markedly adverse impact on crucial quality of
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Figure 7 Mean queue length against buffer size N for mean batch size b = 1.05, mean
interval @ = 5.25 slots between batches, intensity A = 0.2 and various values of &,
(1,2,5,10,20,100 and, in the upper chart, x, = 1 and, in the lower chart, x, = 5.

service (QoS) measures such as blocking probability and waiting time. Both correlation
of interarrival times and correlation of counts have similar impact.

The importance of the analysis is that it shows explicitly how the magnitudes of block-
ing, waiting time and queue length distribution are determined by the degree of correlation
in the traffic.

Characterisation of the departure process from a GI® /D/1/N queue is required in order
to investigate the transmission of correlation in traffic though a multiplexer or partitioned
buffer switch. Further research is required into effects of correlated traffic on the behaviour
of queuneing networks and, particularly, into propagation of correlation across networks of
ATM switches (shared buffer, space division e.g. banyan interconnection networks). These
are subjects of current study.
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APPENDIX 1 LEAST BIASED CHOICE OF PROCESS

In the notation of Section 2, the objective is to find the least biased choice for the wide
sense stationary process {( a(t),8(t)): t=...,-1,0,1,2,...} given only E[N(#)N(t+¢)]
and E[X ()X (¢t + ¢)] for all £.

It is shown, by the outline proof below, that the least biased choice is that the «(t) and
the S8(t) each be both stationary (in the strict sense) and independent.

First, introduce additional notation. Let

a{n,t) be Pla(t) =n] (n=1,2,...) with mean E[a{t)] = q,
( t) be P{3(t) = n] with mean E[3(2)] = b,
@e(t) be P[N( t+€ ) > 1|N(t) > 1] and
e(t) be P[X(t+€) > 1|X(t) > 1].

The method is first to show that ¢,(?) be stationary and that the 3(-) be independent of
each other: by similar reasoning, that 1(t) be stationary and that the () be independent
of each other. Then, using the independence of the (-} and the stationarity of @,(t), it
is readily seen that the o) be stationary also: by similar reasoning, that the 3(-) be
stationary also.

Now

E[N({)N(t + 0)] :ii kP[N(t) = k,N(t + ) = ]

Observe that only terms with n > 1 and k& > 1 contribute to the sums and so it is sufficient
to consider

PIN)=k>1,Nt+80=n>1] = P[N®) =k, NEt+0=nlN®)>1,N{t+E>1]
xP[N(t) > 1|N(t+ ¢) > 1]P[N(t) > 1] .

Now, P[N(t) > 1] is simply the probability of there being a batch at epoch t, i.e.
P[N(t) > 1] = 1/a, and P[N(t) > 1|N(t + £} > 1] is ¢,(t), by definition, and

P[N(t) =k, N(t+6) = n|N(t) > 1, N(t + ) > 1] = P[B(t,) = k, B(t2) = n]

where t; is the index in the sequence 8(-) which corresponds to the same batch as that
indexed by ¢ in the sequence N(-) and where ¢, is the index in the sequence B(-) which
corresponds to the same batch as that indexed by ¢ + ¢ in the sequence N(-).

A well known consequence of the Principle of Maximum Entropy is that, given only the
marginal distributions, the least biased choice for the joint distribution is the product of
the marginals. Thus, the least biased choice for the distribution P[3(t,} = k, B(ts) = n]
is

P[ﬂ(fl) = k, ,B(tQ) = TL] = P[ﬂ(tl) = k] P[ﬁ(tz = TL] = b(k, tl) [)(TL, tz)
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i.e. that 8(¢,) and f(t;) are independent. Hence, the least biased choice for process
{ a(t), B(t) } requires that E{N(#)N(t -+ ¢)] satisty

o0

E[N(#)N(t + 0)] =—¢g Zi K blk, 1) b ntz):éqﬁg(t)E[/j(t)]z:%qﬁg(t)bQ

But, because the process N(t) is wide sense stationary, E[N(¢)N(t+ ¢)] must be indepen-
dent of ¢. Consequently, ¢¢(t) is independent of £: ¢,(t) is stationary and may be written
de(t) = oo

Similarly, by consideration of E{X{#)X(t + ¢)], the a(-) are independent and t¢(t) is
stationary.

Thence, using the independence of a(t), a(t + €) and the stationarity of @e(t) = ¢¢

¢1 =Pla(t) = 1] = a(1,1)
so a{1,t) is independent of ¢,
¢y = Pla(t) = 2] + Pla(t) = 1, et + 1) = 1] = a(2,t) + a(1,1)?

0 a2,t) is independent of ¢, etc.

Thus, a(t) is stationary.

By similar argument on the independence of the $(¢) and the stationarity of ¥,(t), it
may be seen that () is stationary

Finally, because in process {(af(t),B(¢)) : t =...,—1,0,1,2,...} the sequences «(t)
and f(t) are stationary and mutually 1ndependent, the process { a(t), 8(t) } is a batch
renewal process by definition.



