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Abstract 

A novel approach is applied to the study of a queue with general correlated traffic, in that 

the only features of the traffic which are taken into account are the usual measures of its 

correlation: the traffic is modelled as a batch renewal process. The batch renewal process 

is a precise tool for investigation into effects of correlation because it is the least biased 

choice of process which is completely determined by the infinite sets of measures of the 
traffic's correlation (e.g. indices of dispersion, covariances or correlation functions). 

The general effect of traffic correlation on waiting time, blocking probability and queue 

length is well known from simulation studies and numerical analysis of a variety of models. 

The contribution of this paper is to show that these effects are due to correlation alone (and 

not to any other features of the traffic or of the models used) and to show explicitly how 

the magnitudes of blocking, waiting time and queue length distribution are determined 

by the degree of correlation in the traffic. 

The study focuses upon a discrete time GlG/D/I/N queue with single server, general 

batch renewal arrivals process, deterministic service time and finite capacity N. Closed 

form expressions for basic performance distributions, such as queue length and waiting 

time distributions and blocking probability, are derived when the batch renewal process is 

of the least biased form which might be expected to result from actual traffic measurements 

at the int.erior of a network or of some individual traffic source. 

The effect of varying degrees of traffic correlation upon basic performance distributions 

is investigated and illustrative numerical results are presented. Comments on implications 

of the results on analysis of general discrete time queueing networks with correlated traffic 

are included. 
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1 INTRODUCTION 

ATM traffic is both bursty and correlated. Even for traffic sources described as being 

(bursty) renewal processes, superposition of several such sources generally yields corre­

lated processes. The indices of dispersion have been proposed as appropriate characterisa­

tion of bursty, correlated traffic and Markov modulated processes as models of sources of 

bursty traffic with correlation. Sriram and Whitt (1986) described supprposition of bursty 

sources (modelled by renewal processes) in terms of the indices of dispersion for inter­

vals (IDI). Heffes and Lucantoni (1986) model the superposition of bursty renewal pro­

cesses approximately by a 2-phase Markov modulated Poisson process (MMPP) matched 

on three features of the indices of dispersion for counts (IDC) and mean arrival rate. 

Gusella (1991) estimated indices of dispersion for measured LAN traffic and modelled the 

traffic approximately by a 2-phase MMPP matched on three fraturrs of thp IDC and thp 

SCV of one inter-arrival time. It should be noted that i) a 2-phasp MMPP is defined by 

only four parameters and cannot conform entirrly to all thr indices of disprrsion which 

may bp used to characterise traffic of any particular source, ii) thr IDI, .In, and IDC, 

If, of a 2-phase MMPP tend to the same finite limit, i.e. 100 = Joo , and iii) a batch 

renewal process may be constructed for an arbitrary set of indices of dispersion (with 

finite f 00 = J (0)' If the indices of dispersion are all that is known about certain traffic 

(as might result from measurements of real traffic) then a batch renewal process may he 

constructed which incorporates all that information and no other: in that sense, batch 

rpIH'wal processes provide a description of thp traffic which is both complete and lpast 

biased - which models, such as MMPP, with limited parameterisation do not. 

Fowler and Leland (1991) have reported LAN traffic with unbounded IDC (i.e. infinite 

fool. However, it is to be expected that performance of restricted buffer systems with 

detrrministic service (as in ATM switches) would not be affected by the magnitude of IDC 

for long intervals. Recently, Andrade and Martinez-Pascua (1994) have shown that queue 

Ipngth distribution, etc. is affected by IDC only up to a crrtain sizp of interval (determined 

by the buffer size) and "the value of the IDC at infinity has littlp importancp." So it may 

be pxppcted that, for practical purposes, the finite limit to IDI and IDC in batch renewal 

processes would not be a disadvantage in traffic models. 

The general effect of traffic correlation on waiting time, blocking probability and qupuP 

If'ngth is well known from simulation studies and numerical analysis of a variety of models. 

The contribution ofthis paper is to show that these effects are due to correlation alone (and 

not to any other features of the traffic or of the models used) and to show f'xplicitly how 

the magnitudes of blocking, waiting time and queue length distribution are determined by 

the degree of correlation in the traffic. The traffic is modelled as a batch renewal process 

which is a precise tool for investigation into effects of correlation becausp it is thf' lpast 

biased choice of process which is completely determillf~d by thp infinitf' spts of measures 

of the traffic's correlation (e.g. indices of dispersion, covariancPH or correlation functions). 

Batch renewal processes are defined and their properties described in Sf'ctioll 2. In 

Section 3, the relationships between the component distributions of the batch renewal 

arrivals process and the queue length distribution, waiting time and blocking probability 

in a finite buffer queup with deterministic service and censored batch renrwal arrivals 

process are presented. Such a queueing system is an appropriate model for an ATM 

multiplexer or partitioned buffer switch. 

Thp analysis is specialised in Section 4 to batch rpnewal processes in which the compo-
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nent distributions are shifted generalised geometric (shiftpd GGeo). This form of proeess 

apppars to bp appropriate to measured traffic, especially where the usable data set be 

limited by (say) thp time for which the actual process may be regarded as being sta­

tionary. Closed form expressions for queue length distribution, waiting time and blocking 

probability are given. 

Section 5 presents analysis of the effects, on blocking probability, waiting time and 

queue length, of varying degrees of correlation and illustrates the results by numerical 

rxamples. 

Finally, conelusions and proposals for extensions to the work, including those towards 

approximate analysis of general queueing networks with correlated traffic, are given in 

Section 6 

2 BATCH RENEWAL PROCESSES 

Definition A random sequence {~(t) : t = ... , -2, -1,0,1,2, ... } is stationary in the 

wide sensr (equivalently, stationary in Khinchin's sense) if 

• the random function ~(t) has constant finite mean E[~(t)] = ~ (which is independent 

of t) and 

• the correlation function Cov[W),~(s)] ~ E[(~(t) -O(~(s) -~] is finite and depends 

on the lag t - s only. 

Observe that Cov[~(t), W + e)l = Cov[~(t + e),~(t)], by symmetry of the drfinition, and 

that Cov[W+f),W)] = Cov[~(t),W-f)], by change of variable t to t-f. Consequently, 
Cov[~(t), ~(t + (i)l = Cov[~(t), ~(t - (i)l ~ only the magnitude of the lag is significant and 

it is therefore necessary only to consider positive lags. 

Consider an arrivals process which is a two dimensional wide sense stationary sequence 

{a(t),(3(t): t = ... ,-2,-1,0,1,2, ... }, in which realisations ofa(t) and (J(t) are drawn 

from the positive integers. The f3(t) are to be interpreted as the numbpr of arrivals (Lp. 

batch sizes) and the art) as the number of slots in intervals between successive batches 

of arrivals. From {a(t), (3(t)} may be derived two related sequences of interest 

• thp numbers of arrivals {N(t) : t = ... , -2, -1,0,1,2, ... } at each epoch, 

• the intervals {X (t) : t = ... , -2, -1,0, 1, 2, ... } between successive arrivals. 

To be specific. X{O) may be assigned a{O), X{,8(I)) assigned a(I). X(;3(1)+,8(2)) assigned 

n(2), etc. and intermediate values. X(I) through X(f3{l) - 1), etc., assigned O. Similarly, 

N(I) may be assigned /3(1)' N{a(2) + 1) assigned f3(2), etc. and intermediate values, N(2) 
through N(a(2)), etc., assigned O. 

It is generally true that 

E[N(tn = E[,8(t)"] 
E[a(t)] 
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and, tlll'nce, gE'nerally true that 

~ Var[N(t)] _ bC2 b _ ~ 
IJ - E[N(t)] - b + a 

where a = E[a], b = E[j3] and C~ is the square coefficient of variation of j3 and IJ is th!' 

index of dispersion for counts (IDC) over one slot (i.e. at lag 0). Similarly, 

.1 ~ Var[X(t)] = bC2 + b - 1 
I E[X(t)]2 a 

when' C~ is the square coefficient of variation of a and .ft, the index of disprrsion for 

intervals (IDI) for one interval (i.e. at lag 0) . .11 is the square coefficient of variation of X. 

To determine the correlation functions for {N(t)} and {X(t)} marl' information about 

{(~(tU3(t)} is required. 

Definition A batch renewal arrival process is a process in which there are batches of 

simultaneous arrivals such that 

• the numbers of arrivals in batches are independent identically distributed random 

variables, 

• th!' intf'rvals betw!'en batches are indep!'ndent identieally distributed random vari­

ables. 

• the batch sizes are independent of the intervals between batches. 

It is shown, below, that a discrete time batch renewal arrival process may be constructed 

to give any degree of correlation between numbers of arrivals at different epochs and, simul­
t.aneously, any degree of correlation between interarrivals times at arbitrary lags. Indeed, 

there is a one-to-one correspondence between an arbitrary set of indices of dispersion (or, 

equivalently, of correlation functions or covariances) and a batch renewal process. Further­

more, the corresponding batch renewal process is the least biased choice given only a set of 

indices of dispersion or of correlation functions. (To say that a process be the "least biased 

choice" means that, of all possible processes which satisfy the given conditions (e.g. set 

of indices of dispersion), is chosen that process which involves least arbitrary additional 

information. For example, in the case of a 2-dimensional joint probability distribution 

P[X = nl, Y = n2] given only the marginal distributions P[X = nl] and PlY = n2], the 

least. biased choice for the joint distribution is P[X = nt, Y = 1L2] = P[X = ndP[Y = n2]' 
The effect is to treat X and Y as being independent. Any other choice would introduce 

arbitrary information in the form of the dependence betwrrn X and Y.) 

2.1 Independence or Dependence at Various Lags 

Considrr a discrete time batch renewal process in which 

• the distribution of batch size is given by the probability mass function (pmf) b(n), 
n = 1,2, ... , with mran b, squarr coefficirnt of variation (SCV) Ct and probability 

generating function (pgf) B(z) = L~=I b(n)zn, and 
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• the distribution of intervals between batches is given by the pmf a(t), t = 1,2, ' , " with 

mean a, SCV C; and pgf A(w) = I:~l a(t)w t , 

Observe that no loss in generality ensues from the assumption t.hat a(O) = 0, b(O) = 0, 

It is readily seen that. the stationary distribution of the number 71 of arrivals at an epoch 

is given by the pmf v(71), 71 = 0,1., '" 

l
l-~ 71=0 

v(n) = 1 a 

- b(n) 71 = 1,2, .. , 
a. 

(1) 

and the conditional probability vern; k) that there be 71 arrivals (n = 0,1", ,) at an epoch, 

givpn that there had been k arrivals (k = 0, 1", ,) at the epoch £ slots earlier (£ = 1,2", ,), 

lR 

vern; k) = 

1- <pe 
1 - -- n = 0, k = 0 

a-1 

~-=- ~e b(n) n = 1,2, .. " k = 0 

1- <Pe 

<Pe b( n) 

n = 0, k = 1,2" , , 

n = 1,2."" k = 1,2"" 

(2) 

where <Pf is t.he probability that. there be a batch at any epoch, given t.hat there had been a 

batch at the epoch e slots earlier. The number of arrivals at an epoch is either independent 

of or dependent on the number of arrivals at the epoch e slots earlier according to whetiH'r 

<Pe = 1/a or not, Obviously, <Pe satisfies the (convolution) relationship 

<Pe = { Ie 

L (Pe-t a(t) 
t-[ 

£=0 

(3) 
1'=1,2, .. , 

and <Pe is generated from the pgf 

'Xl 1 

E<Pf We =I_A(w)' 
(4) 

Note that <Pf is determined by a.(!)"", ate) only (€ = 1,2", ,) and so aC) may be con­

structed to give independence or dependence arbitrarily at any specified lags, 

The correlation functionR (covariances) at lag e, e = 1,2"", are derived from equa­

tions (1) and (2) as 

Cov[N(t), N(t + I')l 00 00 (b)2 
E[N(t)N(t + {i)l - E[N(t)l2 = ~ E n k u(A) I/e(n; k) - -;; 
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( 00 b(k)) (00 ) (b)2 E k---;;: ~ ncPib(n) - -;; 

b2 
( 1) ~ cPl--;; (5) 

Hence, utilising equation (4), the variance and covariances are generated by 

K(w) ~ ± (Var[N] + 2 ~ Cov[N(t), N(Hf)] wi) = bC; + b ~ ~ ~~:~ - ,\ ~ ~: (6) 

where'\ = b/a. Observe that '\K(z) is a pgf analog of the spectral density function for the 

random sequence of the number of arrivals at successive epochs. Further, the relationship 

between correlation functions (covariances) and indices of dispersion may be described by 

K(w) = (1 - W)2 I'(w) 

where I(w) is the pgf of the indices of dispersion It for counts and where the prime (') 

indicates the derivative. 

In an essentially similar way, it may be shown that the batch size distribution b(·) 
may be constructed to give independence or dependence of intervals (between individual 

pairs of arrivals) arbitrarily at any specified lags and that the correlation functions are 

generated from 

L(z) = ,\2 (var[X] + 2 f: Cov[X(t), X(Hf)] i) = bC; + b 1 + Bn _ 1 + z (7) 
e~l 1 - B z 1 - z 

where L(W)/,\2 is a pgf analog of the spectral density function for the random sequence 

of interarrival times, 

L(z) = (1 - Z)2 ./'(z) 

where ./(z) is the pgf of the indices of dispersion I n for intervals and where the primp (') 

indicatps the derivative. 

It may be shown that equations (6) and (7) together imply a one-to-one relationship 

between the set of correlation functions or covariances (equivalently, indices of dispersion) 

and the batch renewal process distributions of batch sizes and intervals between batches. 

3 CENSORED GIG/D/l/N QUEUE UNDER DEPARTURES FIRST 
POLICY 

Consider a GIG/D/1/N queue in discrete time in which arrivals to a full system are turned 

away and simply lost (i.e. censored arrivals). Events (arrivals and departures) occur at 

discrete points in time (epochs) only. The intervals between epochs are called slots and, 

without loss of generality, may be regarded as being of constant duration. At an epoch 

at which both arrivals and departures occur, the departing customers release the places, 

which they had been occupying, to be available to arriving customers (departures first 
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memory management policy). The service time for a customer is one slot and the first 

customer arriving t.o an empty system (after any departures) receives service and departs 

at the end ofthe slot in which it arrived (immediate service policy). By GIG arrivals process 

is meant the intervals between batches are independent and of general distribution and the 

batch size dist.ribution is general (batch renewal process). Consider further two processes 

embedded at points immediately before and immediately after each batch of arrivals. 

Each process may be described independently by a Markov chain but the processes are 

mutually dependent.. Let 

PN(n) be the steady state probability that there be n = 0,1, ... , N customers in the 

system (either queueing or receiving service) during a slot (i.e. {PN(n) : n = 0, ... , N} 

is the random observer's distribution), 

p~(n) be the steady state probability that a batch of arrivals 'see' n = 0, ... , N - 1 

customers in the system (i.e. {p~(n) : n = 0, ... , N - I} is the stationary distribution 

of the Markov chain embedded immediately before batch arrivals), 

p~(n) be the steady state probability that there be n = 1, ... , N customers in the 

system immediately after a batch of arrivals to the queue (i.e. {p~(n) : n = 1, ... , N} 
is the stationary distribution of the Markov chain embedded immediately after batch 

arrivals). 

When, immediately following a batch of arrivals, the system contains k (k = 1, ... , N) 

customers and the interval to the next batch is t slots, then there will be one departure at 

the end of each of the t slots for which there remain customers in the system. If t ~ k that. 

next batch will 'see' k - t customers. If t > k the system will become empty before the 

next batch arrives. Similarly, when, immediately prior to admission of a batch of arrivals, 

the system contains k (k = 0, ... , N -1) customers and the batch size is r, then the buffer 

will become full if r 2 N - k. Otherwise there will be k + r customers immediately after 

the batch arrives. Consequently, p~(.) and pJJ(.) are related by 

p~(n) ~ { 

N 00 

LP~(k) La(t) n=O 
k=J t=k 

(8) N 

L p~(k)a(k - n) n = 1, ... ,N-l 
k=n+J 

and 

pg(n) ~ I n-J 

L p~(k)b{n - k) n = 1, ... ,N-l 
k=O 

(9) 
N-l 00 

L p~{k) L b{r) n=N 
k~O r=N-k 

The relationship betweenp~ (.) and the random observer's probabilit.y PN (.) results from 
the following considerations. 
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If, immediately after the arrival of a batch, there be k customers in the system and the 

interval between that and the next batch be t slots (figure 1) then, during that interval 

of t slots, 

if t :::: k the system visits the states k, ... , k - t + 1 for one slot each, 

if t > k the system visits the states k, . .. , 1 for one slot each and resides in st.ate 0 for 

t - k slot.s. 

previous 
batch 

t 
~ .. 

next 
batch 

t 
....... ~.~ 

k - n + 1 slots 

previous 
batch 

t k 
~ .. 

k slots 

next 
bat.ch 

o t 
................ ~ 

t - k slots 

Figure 1 Ways in which state n (n > 0) and state 0 may be reached during an interval 

between batches. 

Any arbitrary slot must fall in the interval between two batches. The probability that. 

t.he int.erval be of length t is ~ta(t) and the probability that the slot occupy any particular 

position within t.he interval is lit. 
Hence, 

1 N 00 

- I>~(k) 2: (t - k)a(t) 
a k~l t~k" 1 

1 N 00 

- 2: p~(k) 2: art) 
a k~n t=k--n+l 

n=O 

(10) 

n=l, .... N 

3.1 Blocking Probability 

If an arriving batch of size N - k + r see k customers in the system, then only the first 

N - k members of the arriving batch may be admitted and r customers will be blocked. 

The probability t.hat. the arriving batch see k customers is p~(k), the probabilit.y t.hat the 

batch be of size N - k + r is (N - k + r) b(N - k + r)lb and the probability of a customer 

being in one of the r positions, given that the batch be of size N - k + r, is r I(N - k + r). 
Therefore, t.he blocking probability 7l'~ is given by 

(11) 

3.2 Waiting Time 

The waiting time of a customer is given by it.s position in t.he queup at the inst.ant. at. which 

it. arrive in thl' queue. Thus, given that there be k cust.omers in the queue (including any 



Closed form peljormance distributions of a discrete time G/g/DIJIN queue 149 

in Hervicf') at the time of an arriving batch of size T, the customf'r in position t - k in the 

batch (1 ~ t - k ~ T ~ N - k) will remain in the queue for t slots. 

Let bk(n), n = 1, ... , k with mpan bk be the pfff'ctive arrival distribution given that an 

arriving batch see k, k = 1, ... , N - 1, places available in the buffer. 

1 
b(n) 1 ~ n < k 

bk(71) = ~ b(1') n = k 

o otherwise 

Then the mean bk is given by 

k k 00 

bk = L 71bk(71) = L 71b(71) + k L b(n) 
n=l n~kll 

Then waiting time is distributed as w(t), t = 1, ... , N, 

t-I 1 N--k t-I 1 00 

w(t) = LP~(k)-b - L bN-k(T) = LP~(k)-b - L b(1') 
k~.O N-k r=t-k k=O N-k r=t- k 

4 SHIFTED GGEO DISTRIBUTIONS OF BATCH SIZE AND 
INTERVALS 

(12) 

(13) 

(14) 

This section presents particular forms of batch rrnewal arrivals process which appear to 

bE' especially appropriate to models of traffic where there are rf'lativply frw mrasurements 

from which the correlation functions (covariances) may be estimated. In such cases it is 

natural to plot the logarithms of covariances against lags and fit a straight line to the 

plot. TIH'Il, if 

logCov[X(t),X(t+f)] ~ -C - me 

(for some constants C andm), equation (7) implies that the corresponding batch renewal 

process has batch size distribution of the form 

{

I-I] 

b(71) = 
T]v(1 - v)n-2 

71=1 
(15) 

71 = 2, ... 

in which 

T] 

v 
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Similarly, if 

10gCov[N(t), N(Hl')] c::; -C - ml' 

(for some constants C and m) equation (6) implies that the corresponding batch renewal 

process has intervals between batches distributed as 

art) = { 
I-a t=1 

aT(I- T)I-2 t = 2, ... 
(16) 

in which 

Distributions of form (15) and (16) are known as shiftpd grneralised geomf'tric (shifted 

GGeo). 

This section first discusses the solution of GIG/D/l/N queues in which the intervals 

between batches are distributed as a shifted GGeo. (A similar solution method may be 

applied to GIG/D/l/N queues in which the batch sizes are distributed as a shifted GGeo.) 

Then closed form expressions for queue length distribution, waiting time distribution 

and blocking probability are derived for the interesting case wlH'n both batch sizps and 

intervals are distributed as shifted GGeo. 

4.1 GGeoG/D/1/N Queues 

When the distribution of intervals between batches is shifted generalised geometric with 

parameters a and T the correlation functions (covariances) for the numbers of arrivals per 

slot are 

il (b)Z za e 2 a - 1 f Cov[N(t), N(t + l')] = -(h - - =,\ - (1 - a - T)' = ,\ --(3a 
a a T a 

which shows, for given interval a between batches, the significance of the "correlation 

factor" /'Ja ~ 1 - a - T. 

Equation (8) becomes 

N 

p~(1) + a LP~(k)(l- T)k-2 n = 0 
k=2 

N 

(l-a)p~(n+l)+aT L p~(k)(I_T)kn-2 n=1, ... ,N-2 
(17) 

k=n+Z 

(1 - a)p~(N) n=N-l 
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COll~ideration of the differences between the p~ (n) for successive values of n leads to the 

difference relations below. For n = 1, ... ,N - 3 

(1- a - T)p~(n+2) - (1- a)p~(n+1) 
.. +1 

(1 - a - T) L p~(k)b(n-k+2) 
n 

-(1- a) L p~(k)b(n-k+l) (18) 
k=O 

and for n = 0 

(1- a - T)p~(2) - Tp~(I) 

(1- a - T) [p~(0)b(2) + p~(1)b(l)l- Tp~(O)b(1) (19) 

The system of linear equations (18) and (19) establish ratios between p~(n) and p~(O) 

(for n = 1, ... , N -2) which are independent of N and are the same as in the corresponding 

unrestricted buffer GGeoG /D/l system. Therefore, writing pA(n) for the steady state 

probability that a batch of arrivals to the unrestricted queue 'see' n in the system, 

p~(n) = ipA(n) n = O, ... ,N - 2 (20) 

for some normalising constant Z, and so, writing 

00 

pA(z) = L p~(n)zn 
n=O 

for the generating function of pA ( n), gives 

A a+T-b 
p (z) = B(z) 1 - B(z) 

1 - (1 - a - T)-- - T----'--
Z l-z 

(21) 

Given the distribution b(-) explicitly, equation (21) may (in principle) be solved, leading 

(via equation (20)) to the solution of equation (17). Thence, relations (9), (lO), (14) and 

(11) give queue length distribution, waiting time distribution and blocking probability. 

This method is shown, in the next subsection, when the batch size is distributed as GGeo. 

4.2 GGeoGGeo/D /l/N Queues 

When both the intervals between batches and the batches are distributed as shifted Gen­

eralised Geometric equation (21) becomes 

'1/ a - T-

V 

1 - T (1 + 'l/z ) _ (1 _ a _ T) (1 _ -'.-'1/(..,-1 -_z),--) 
1 - (1 - v)z 1 - (1 - v)z 
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(av - 771)(1 - (1 - v)z) 

-;; (a + (1 - a - T)T]) - (a(1 - T] - v) + rl)z 

It follows immediately that 

{ 

~(1 - x) 

pA(n) = v 

T]T+(I-a-T)v( ) n-l 
- ---7:------7- 1 - x X 
va + (1 - a - T)T] 

where the geometric term x is 

a(1 - 11- v) + rl 
:r: = -a-'-+-(7":I--'---a--'--T--:)-'-T] . 

n=O 

n = 1,2, ... 

(22) 

(23) 

Then, from equation (17) for n = N, equation (9) and the distribution of batch sizes, 

N-l 00 

p~(N - 1) = (1 - a)p~ = (1 - a) L p~(k) L b(r) 
k=O 

II-aT] N2 
----(1 - x)x -
Z a v 

r=N-k 

and so the normalising constant Z is seen to be 

Z = 1 - !.!.!..xN - 1 

va 

Combining equations (20), (23) and (24) yields 

1 1 
--(1- x) n=O 
Zv 

p~(n) = 1 T] T + (1 - a - T)V ( ) n-l 
-- 1- x x 
Z // a + (1 - a - T)1] 

n = 1, .. . ,N - 2 

1 1] 1 - a ( ) N-2 
---- 1-.T x 
Z// a 

n =N-l 

Applying equation (9) to (26) yields 

11-1] 
--(I-x) n=1 
Z v 

pZ(n) = 
1 1] T(1 - 1] - v) + v ( ) n-2 
-- 1- x X 
Zva + (1- a - T)1] 

n = 2, .. . ,N-l 

1 1] 1 ) N 2 ---(1- x x -
Zva 

n=N 

(21) 

(25) 

(26) 

(27) 
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Applying !'quation (10) to (27) yields 

1 1 1 1 
-;:----(av - TTJ) = -(1 - A) 
Zva+T Z 

1 1 T 
---(I-x) 
Zva+T 

n=O 

n=1 

ITJ T 1-(I-a-T)(I-TJ-v) _ 
----'----:--'-'-----:--'------'- (1 - x) xn 2 n = 2, ... , N - 1 

Zva+T a+(I-a-T)TJ 

1 TJ T 1 N-2 
-----(1 - x)x 
Zva+Ta 

H!'nc!', mean queue length LN is 

1 T 1 ( 1 - (1 - a - T)(1 - 1) - v) 
- --- (TJ + v) + 1)-----'--'--'---
Z a + T V av - TTJ 

1 - (1- 0'- T)(1 - TJ - IJ) _ 
-1) x N 1 

av - TTJ 

+N~(1- a - T)X N - 1 ) 

n=N 

From equations (11) and (26) the blocking probability 7r~ is 

B_~1 A(,.)~rb(N k' )_1 TJ aV-T1) N_I_ 1 - Z1 - A 
7rN - ~ PN ,. ~- - ,+r - ------x - ----

k=O r=1 b Z TJ + v av Z A 

Hence 

7r~+l 0'(1 - TJ - v) + 1) 
----+x= as N--+oo 
7r~ a+(l-a-T)TJ 

(28) 

(29) 

(30) 

which illustrates the typical log-linear relationship between blocking probability 7r~and 

buffer sizE' N. 

From equation (13), the mean effective batch size givE'n k buffer places available to 

arrivals is givpn by 

k-I 00 

bk = (1- TJ) + rw L n(l-v)n-2 + k1)v L(1-v)n-2 = 1 + ~ (1- (l-v)k-l) (31) 
n=2 n=k 

H!'nC(" waiting time is distributed as 

t-l 1 00 

w(t) = LP~(k)-b - L b(r) (32) 
k=O N -,k r~t-k 

t 2 A TJ(1 - v)t-k-2 A 1 

= (t > 1) t1/N(k) 1 + ~ (1- (l-v)N--k-l) + PN(t - 1) 1 + ~ (1- (1 _ v)N-t) 



154 Part Four Queueing Models 

4.3 Infinite Buffer 

In the limit a~ the buffer size N --t 00, the expressions for mean queue length and waiting 

time reduce to 

L = _T _ ~ (( 7J + v) +1)_1_-.....:(_1 _-_(j_------'T )....:.( I_---'-7J_-_v-'-) ) 
17 + T // (jV - T7J 

and 

1 
-(I-x) 
7J+ v 

t = 1 

w(t) 0 { 

_7J_ I - (1 - 17 - T)(I - 7J - v) (1 _ x)xt2 t = 2,3, ... 
7J+v (j+(I-(j-T)7J 

Hence, the mean waiting time becomes 

1/ 1 - (1 - 17 - T)(I - 7J - v) L 
W=I+-- =-

7J + v (jV - T7J A 

5 EFFECTS OF CORRELATION 

(33) 

(34) 

(35) 

In view of the significance of the following terms in the analysis, it is convenient to 

introduce symbols for them. 

/3a ~ (1- 17 - T) as the geometric factor in the correlation function for numbers of arrivals 

per slot (and in the IDC), 

/3b ~ (1 - 1/- v) as the geometric factor in the correlation function for intervals between 

individual arrivals (and in the IDI), 

L'. 17(1 - 7J - v) +1) h . f . h I h d' 'b . . 
x = ( ) as t e geometnc actor 1Il t e queue engt IStI utlOn, asymptotIc 

17+ l-(j-T7J 
blocking probability, etc. 

Further, it is convenient to investigation of queue behaviour when /3a or /3b be close to 1 

to define additional symbols Ka ~ (1 - /3a)-1 and ~b ~ (1 - /3bt 1. 

5.1 Choice of Reference System 

The factors /3a and /3b appear to be good indicators of the type of correlation in the 

GGeoGGeo batch renewal proce~s . 

• A /3 value of ° implies no correlation (in the number or time dimension, as appropriate). 

If /3a = 0, the process is Batch Bernoulli and there is no correlation between numbers of 

events at different epochs. If /3b = 0, the process is renewal and there is no correlation 

between intervals (i.e. between the interval between one pair of successive events and 

the interval between another pair of successive events). 
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Figure 2 Waiting time (in slots) against eorrelation factors IJb and Kb = (1 - iJb)-1 

(vertical scale) of batch size and iJa and Ka = (1 - iJa)-1 (horizontal scale) of intervals 

betwepn batches for SCV of individual interarrival times J1 = 6.25 x (1 - >.) . 

• A positivp (negativp) value for t.he iJ implies positive (negative) correlat.ion in the 

appropriate (number or time) dimension. A greater magnitude of the fJ value implies 

stronger (positive or negativp) correlation in that dimension . 
• Only if bot.h fJa = ° and fJb = ° is the process completely free of correlation. 

In order to detprmine efferts on queueing behaviour of correlation ansmg from a 

GGeoGGeo batch renewal arrivals process, tht' performance distributions and statistics 
for the queue must be compared with those of a reference process which is frpf' of correla­

tion but invariant in other significant characteristics. The GGeoGGeo procpss is dl'tf'rmined 

by 4 parameters and, since two degrees of freedom are determined by the choicp of thl' 

factors fJa and fJb, there remain 2 characteristics to bl' chosen to be invariant. An obvious 

requirement. is that t.he intensity>. be invariant.. 

For thr last rrmaining choice of invariant, it. would appear natural, in view of 't.ra­

ditional' traffic charact.erisation, to chose J1, the SCV of int.ervals between successiw 

arrivals. Figurr 2 shows that, for f3a < 0, mean waiting time and (by Little's Law) mean 

queue lengt.h incrpase wit.h f3a and with f3b, as would be expected. However, for Ila > 0, 

mean waiting t.imp and mean queue length increase with f3a but reduce as IJb increases. 

Similar difficulties arise with other obvious choices of ot.her statistics t.o bp invariant: 

thp limit.ing values of t.he indices of dispersion 100 = Joo ; t.he mpan queue length or mean 

waiting time in an infinite buffpf. 

Thl' brst choicl' was found to be when both the mean batch size b and the mean interval 

a. brtw!'l'n batcilf's werp invariant.. This choic!' is intllitivply appealing becallsP t.he factor 

/3b (equivalently K,b) is closely related to the variability in batch sizes and thp factor fla 



156 Part Four Queueing Models 

(pquivalpntly Ka) is closely related to the variability in both intervals between batches and 

thr individual interarrival times. 

C2 = -- --, -1 = --(2K.a -1) a-l( 2 ) a-I 
(l a 1 - /3a a 

C; = -- -- - 1 = --(2K'b - 1) b-l( 2 ) b-l 
b 1 - (3b b 

Finally the refprence system was chosen to be that with the same mean batch size and 

samp mpan interval betwpen batches. Compare figure 3 with figurp 2. 

5.2 Results 

Measures of interest are recast, below, in terms of thr parameters a, b, Ka and tib' 

TIl!' geomrtric term x in queue length distribution, etc. 

a-b 
x = 1 - ---,-----,-,-------,---,----,---

a (b - 1)( "'a - 1) + (a - 1) b "'b 

The normalising factor Z in queue length distribution, etc. (cf equation (25)) 

Z = 1 _ b - 1 .TN ~ 1 

a-I 

Thp blocking probability 1l'~ (cf equation (30)) 

B 1 - Z 1 - A 1 a - b b - 1 N~l 

1l'N = ----z--A- = Z-a- a-I x 

Mean qupue length (cf equation (29)) 

1 (b b(b-l)( )( N~l) iI-l( N~l) 
LN = -Z - + --b- "'a + "'b - 1 1 - x + N-- "'a -l)x 

a a- a-I 

Mean waiting time W in the infinite buffer queue (cf equation (35)) 

1 a(b - 1) 
W = 1 + -- - K'b = 1 + ---("'a + "'b - 1) 

I-x a-b 

Figures 3, 4, 5, 6 and 7 illustrate thp effects of varying correlation on mean waiting 

time in the infinite buffer quem', the factor x which appears as a geometric term in queue 

length distribution, etc., blocking probability against buffer size and mean queue length 

in a finite buffer. All the illustrations are for an intensity A = 0.2. From the relations given 

at the bpgining of this sub-spction, in can be appreciated that results for other intrnsities 

show similar forms. 

Figure 3 shows thp impact on waiting time in the infinite buffer queue. The numbers 
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Figure 3 Waiting time (in slots) against correlation factors f3b and Kb = (1 - f3b)-[ 

(vertical scale) of batch size and !3a and Ka = (1 - !3a) - [ (horizontal seale) of intervals 

between batches for mean batch size b = 1.5, mean interval a = 7.5 slots between batches, 

intensity ,\ = 0.2. 

on the contours give the waiting time as a number of slots. The right hand of the pair 

of charts gives an expanded view of the upper right hand corner of the left hand chart 

((3" 2': 0.9, !3b 2': 0.9). The charts show that waiting time increases increasingly rapidly 

(and without limit) as either f3a or f3b approach unity. 

Figure 4 shows the impact on the geometric term x of various degrees of correlation. 

The numbers on the contours give the value of x. It is seen that, as either Ka or Kb increasps 

(fla or f3b approaches 1), the value of x increases increasingly rapidly towards unity. For 

relativPly low intensity (,\ = 0.2 in the examples), the effect of variablity in batch size 

(given by Kb or f3b) is stronger than that of variability in interval between batches (given 

by Ka or (Ja). This distinction is more pronounced when the mean batch size b is dose to 

unity, as comparison of the two charts of figure 4 shows. 

Blocking probabilty is also markedly effected by correlation in either the time dimension 

or in the number dimension. The two charts of figure 5 give blocking probability against 

buffer size for variolls values of (3b. The legend on each line is the value of /3b. The charts 

show that blocking probability increases rapidly with correlation. 

The effects of correlation on mean queue length in finite buffers is shown figures 6 and 

7. Each figure comprises two charts of mean queue length against buffer size for various 

values of Kb, the upper chart for Ka = 1 (!3a = 0, no correlation between interarrival times) 

and the lowpr for Ka = 5 (f3b = 0.5, moderatp correlation between interarrival times). The 

effects of positive correlation are marked. However, comparison of figures 6 and 7 shows 

that the impact. of positive correlation in interarrival times is greater when the mean batch 

size is doser to unity. 
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Figure 4 Geometric term x against correlation factors Kb = (1 - f3b t 1 (vertical scale) of 

bat.ch size and Ka = (1 - fla) -1 (horizontal seale) of intervals between batches for intensity 

A = 0.2 and, in the left hand chart, mean batch size b = 1.5, mean interval a = 7.5 slot.s 

bet.ween batches and, in the right hand chart., mean batch size b = 1.05, mean interval 

a = 5.25 slots between batches. 
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Figure 5 Blocking probability against buffer size for mean batch size b = 1.5, mean 

interval a = 7.5 slots between batches, intensity A = 0.2 with ,6b = 0,0.5, D.S, 0.9, 0.95 

(ri'b = 1,2,5,10,20) and, in the left hand chart, 13a = 0 (Ka = 1) and, in the right hand 

chart, /3a = 0.8 (Ka = 5). 
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Figure 6 Mean queue length against buffer size N for mean batch size b = 1.5, mean 

interval a = 7.5 slots between batches, intensity .x = 0.2 and various values of "'b 

(1,2,5,10,20,100 and, in the upper chart, "'a = 1 and, in the lower chart, "'a = 5. 

6 CONCLUSIONS AND PROPOSALS FOR FURTHER WORK 

A discrete time GIG /D/l/N queue with single server, general batch renewal arrivals pro­

cess, deterministic service time and finite capacity N is analysed. Closed form expressions 

for basic performance distributions, such as queue length and waiting time distributions 

and blocking probability, are derived when the batch renewal process is of the form which 

might be expected to result from actual traffic measurements. Those closed form expres­

sions are used to show the effect of varying degrees of traffic correlation upon the basic 

performance distributions and the results are illustrated by numerical examples. 

It is seen that positive correlation has markedly adverse impact on crucial quality of 
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Figure 7 Mean queue length against buffer size N for mean batch size b = 1.05, mean 

interval a = 5.25 slots between batches, intensity >. = 0.2 and various values of Kb 

(1,2,5,10,20,100 and, in the upper chart, Ka = 1 and, in the lower chart, Ka = 5. 

service (QoS) measures such as blocking probability and waiting time. Both correlation 

of interarrival times and correlation of counts have similar impact. 

The importance of the analysis is that it shows explicitly how the magnitudes of block­

ing, waiting time and queue length distribution are determined by the degree of correlation 
in the traffic. 

Characterisation of the departure process from a GIG /D/1/N queue is required in order 

to investigate the transmission of correlation in traffic though a multiplexer or partitioned 

buffer switch. Further research is required into effects of correlated traffic on the behaviour 

of queueing networks and, particularly, into propagation of correlation across networks of 

ATM switches (shared buffer, space division e.g. banyan interconnection networks). These 
are subjects of current study. 
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APPENDIX 1 LEAST BIASED CHOICE OF PROCESS 

In the notation of Section 2, the objective is to find the least biased choice for t.he wide 

sense stationary process {( a(t), P(t) ) : t = ... , -1,0,1,2, ... } given only E[N(t)N(t+ e)] 
and E[X(t)X(t + e)] for all e. 

It is shown, by the outline proof below, that the least biased choice is that the art) and 

the /3(t) each be both stationary (in the strict sense) and independent. 

First, introduce additional notation. Let 

a(n, t) be Platt) = n] (n = 1,2, ... ) with mean E[a(t)] = a, 

b(n, t) be P[f3(t) = n] with mean E[f3(t)] = b, 

c/J,(t) be P[N(t + e) 2:: IfN(t) 2:: 1] and 

'1f->t(t) be P[X(t + e) 2:: IfX(t) 2:: 1]. 

The method is first to show that (Mt) be stationary and that the P(·) be independent of 

('ach othpr: by similar reasoning, that 'l/;e( t) be stationary and that the a(·) be independent 

of each other. Then, using the independence of the a(.) and the stationarity of ¢e(t), it 

is readily seen that the a(·) be stationary also: by similar reasoning, that the {:I ( .) be 

stationary also. 

Now 

00 00 

E[N(t)N(t + f)] = L L nk P[N(t) = k,N(t + e) = n] 
n~lkc~l 

Observe that only terms with n ~ 1 and k ~ 1 contribute to the sums and so it is sufficient 

to consider 

P[N(t) = k ~ 1, N(t + e) = n 2:: 1] P[N(t) = k, N(t + e) = nfN(t) 2:: 1, N(t + e) 2:: 1] 

xP[N(t) ~ IfN(t + f) 2:: I]P[N(t) ~ 1] . 

Now, P[N(t) 2:: 1] is simply the probability of there being a batch at epoch t, i.e. 

P[N(t) 2:: 1] = l/a, and P[N(t) 2:: IfN(t + e) 2:: 1] is ¢e(t), by definition, and 

P[N(t) = k, N(t + e) = n f N(t) 2:: 1, N(t + e) 2:: 1] = P[!3(ttl = k, f3(tz) = n] 

where tl is the index in the sequence f3(.) which corresponds to the same batch as that 

indexed by t in the sequence N (.) and where t2 is the index in the sequence f3(.) which 

corresponds to the same batch as that indexed by t + e in the sequence N (.). 

A well known consequence of the Principle of Maximum Entropy is that, given only the 

marginal distributions, the least biased choice for the joint distribution is the product of 

til(' marginals. Thus, th!' least biased choice for the distribution P[f3(t l ) = k, f3(t2) = n] 
is 

P[!:I(t l ) = k, f3(t 2 ) = n] = P[f3(ttl = k] P[P(tz = n] = b(k, t l ) b(n, tz) 
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i.e. that f3(ttl and f3(t 2) are independent. Hence, the least biased choice for process 

{a(t), IJ(t) } requires that E[N(t)N(t + f)] satisfy 

1 0000 1 1 
E[N(t)N(t + f)] = - rP,(t) L L n k b(k, ttl b(n, t2) = - rP,(t) E[f3(t)]2 = - rP,(t) b2 

a n=lk=l a a 

But, because the process N(t) is wide sense stationary, E[N(t)N(t+e)] must be indepen­

dent of t. Consequently, rP,(t) is independent of t: rPt(t) is stationary and may be written 

rPe(t) = rPe. 
Similarly, by consideration of E[X(t)X(t + f)], the a(-) are independent and lJ>e(t) is 

stationary. 

Thence, using the independence of a(t), a(t + f) and the stationarity of rPt(t) = rPe 

rPl = P[a(t) = 1] = a(l, t) 

so a(l, t) is independent of t, 

<1>2 = P[a(t) = 2] + P[a(t) = 1, a(t + 1) = 1] = a(2, t) + a(l, t)2 

so a(2, t) is independent of t, etc. 

Thus, a(t) is stationary. 

By similar argument on the independence of the {3(t) and the stationarity of 1/!e(t), it 

may be seen that {3(t) is stationary. 

Finally, because in process {(a(t),{3(t)): t = ... ,-1,O,1,2, ... } the sequences a(t) 
and {3(t) are stationary and mutually independent, the process {a(t), {3(t)} is a batch 

renewal process by definition. 


