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Closed Form Prediction Intervals Applied for Disease Counts

Hsiuying WANG

The prediction interval is an important tool in medical appli-

cations for predicting the number of times a disease will occur

in a population. The performance of the existing prediction in-

tervals, however, is unsatisfactory when the true proportion is

near a boundary. Since the true proportion can be very small in

real applications, in this article, we propose improved predic-

tion intervals with better coverage probability than the existing

methods. Their predictive distributions are compared in terms

of the Kullback–Leibler distance and the intervals are compared

using a hearing screening medical example.

KEY WORDS: Binomial distribution; Coverage probability;

Prediction interval; Predictive distribution.

1. INTRODUCTION

The prediction interval (PI) is a very useful tool to predict

future observations. We consider predicting the disease count

in a population for medical applications. Since the number of

diseased patients in a population follows a binomial distribu-

tion, in this article, we investigate prediction intervals for the

binomial distribution.

The construction of prediction intervals for continuous dis-

tributions has been extensively studied in the literature (Pa-

tel 1989; Hall and Rieck 2001; Basu, Ghosh, and Mukerjee

2003; Hamada, Johnson, and Moore 2004; Lawless and Fre-

dette 2005; Olive 2007; Cai et al. 2008). However, compared

with the continuous distributions, there are fewer investigations

for discrete distributions. The most widely used closed form

prediction interval for a binomial random variable was pro-

posed by Nelson (1982). Another prediction interval with a

closed form was proposed by Bain and Patel (1993). In addi-

tion, prediction intervals with associated numerical calculation

to achieve a desired coverage probability were introduced by

Patel and Samaranayake (1991) and Wang (2008). Although the

last two approaches can provide accurate coverage probabilities

for the prediction intervals, they heavily rely on numerical cal-

culations and can not provide closed forms. Since a prediction

interval with a closed form can be easily employed in applica-

tions, in this article, we explore approximate prediction inter-

vals with a closed form.

The coverage probabilities for the Nelson interval and the

Bain and Patel interval do not perform well when the true bino-

mial proportion is near the boundaries because their coverage

Hsiuying Wang is Professor, Institute of Statistics, National Chiao Tung Univer-

sity, Hsinchu, Taiwan (E-mail: wang@stat.nctu.edu.tw). The author thanks the

editor, the associate editor, and referees for helpful comments. The work was

supported by the National Science Council and National Center for Theoretical

Sciences in Taiwan.

probabilities are much lower than the nominal level as the bino-

mial proportion goes to 0 or 1. In addition, the average coverage

probabilities of these two intervals, averaged over the parame-

ter space, are also unsatisfactory. When the sample size is not

large, the average coverage probabilities of these two intervals

are much lower than the nominal level based on a simulation

study.

In this article, two improved prediction intervals are pro-

posed by inverting the score test and by adjusting an existing

interval. The coverage probabilities of these two proposed pre-

diction intervals are significantly higher than those of the exist-

ing intervals when the true proportion is close to the boundaries.

In addition, the two new intervals are evaluated by compar-

ing their corresponding predictive distributions in terms of the

Kullback–Leibler distance. The calculation results show that

the distance between the score predictive distribution and the

binomial distribution is smaller than that between the adjusted

predictive distribution and the binomial distribution.

2. EXISTING PREDICTION INTERVAL

We present several existing prediction intervals in this sec-

tion. The first of these is the prediction interval for a binomial

random variable constructed by Nelson (1982), which was re-

viewed by Hahn and Meeker (1991). Suppose that the past data

consist of X successes out of n trials from a B(n,p) distribu-

tion with a success probability p, 0 < p < 1. Let Y be the future

number of successes out of m trials from a B(m,p) distribution.

A large-sample approximate level γ two-sided prediction inter-

val (L(X),U(X)) for the future number Y of occurrences based

on the observed value of the number X of the past occurrences

for the binomial distribution constructed by Nelson (1982) is

Ŷ ± z(1+γ )/2(mp̂(1 − p̂)(m + n)/n)1/2, (1)

where p̂ = X/n and Ŷ = mp̂ when X,n − X,Y , and m − Y all

are large. Here z(1+γ )/2 denotes the upper (1 + γ )/2 quantile

of the standard normal distribution. Note that the true coverage

probability of the interval (L(X),U(X)) at p = p0 is defined

as the probability Pp0
(L(X) < Y < U(X)).

The second level γ prediction interval was proposed by Patel

and Samaranayake (1991). This uses the form (0,X + d) as an

upper prediction interval or (X − d,m) as a lower prediction

interval for Y , where d is a positive integer. To guarantee that

the coverage probability of the upper prediction interval (0,X+
d) is greater than or equal to γ , the exact coverage probability

of the interval is derived and it is necessary to find a d such that

its coverage probability is greater than or equal to γ for all p. It

turns out that the derivation of d is to find the smallest integer d

satisfying

inf
0≤p≤1

n
∑

x=0

(

n

x

)

px(1−p)n−x

(

x+d
∑

y=0

(

m

y

)

py(1−p)m−y

)

≥ γ.
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The value of d can be exactly derived only for the case of m = n

and an approximated value of d can be obtained numerically for

the case of m �= n. A similar argument is applied for the lower

prediction bound.

The third approximate level γ prediction interval was pro-

posed by Bain and Patel (1993). This approach considers a con-

ditional distribution for some functions of X and Y to eliminate

the unknown parameter, and then uses the conditional distribu-

tion to derive the predictive limits.

The interval has the form

(TL − X,TU − X), (2)

where

TL = (2X1v + sw) −
√

s2w2 + 4X1w(n − X1)

2(v2 + w)
,

TU = (2X2v + sw) +
√

s2w2 + 4X2w(n − X2)

2(v2 + w)
,

s = n + m, v = n/s, w = z2
(1+γ )/2v(1 − v)/(s − 1), X1 = X −

1/2, and X2 = X + 1/2.

In addition to these existing prediction intervals, Wang

(2008) proposed procedures to calculate the minimum cover-

age probability and average coverage probability for a predic-

tion interval. Based on those procedures, the factor z(1+γ )/2

can be adjusted to obtain the prediction interval with either a

desirable minimum coverage probability or a desirable average

coverage probability.

As mentioned in the Introduction, in this article we mainly

focus on the intervals with closed forms. The performance

of the two existing prediction intervals with closed forms (1)

and (2) in terms of their coverage probabilities is discussed as

follows.

Figures 1 and 2 give the coverage probabilities and expected

lengths of the Nelson and the Bain and Patel prediction intervals

for different sample size n when m is fixed at 50. It is seen

that the coverage probabilities of these existing intervals are far

from the nominal level when p is near the boundaries. Since the

true binomial proportion in real applications may be close to the

boundaries, the behavior near a boundary is important. When p

is not close to the boundaries, the coverage probability of the

Nelson interval is lower than the nominal level 0.95. In contrast,

the coverage probability of the Bain and Patel interval is higher

than the nominal level 0.95 when p is not near a boundary, but it

is lower than 0.95 for p near boundaries when the sample size is

not large enough. Overall, in addition to the poor performance

for p near the boundaries, the existing methods cannot achieve

the desirable coverage probability or are too conservative.

Analyzing the Nelson interval, the form is derived from the

fact that

Y − mp̂
√

p̂(1 − p̂)m(m + n)/n
(3)

is approximately N(0,1) distributed. This is similar to the con-

struction of the Wald confidence interval for a binomial propor-

tion p, which is

p̂ ± z(1+γ )/2

√

p̂(1 − p̂)/n. (4)

Figure 1. Coverage probabilities and expected lengths of the 95%

level Nelson prediction intervals for the Binomial distributions with

n = 10 (dotted line), n = 50 (dashed line), and n = 1000 (solid line).

The online version of this figure is in color.

It is well known that the coverage probability of the Wald inter-

val is much lower than the nominal level for a binomial distri-

bution when the true proportion is close to a boundary (Wang

2007). This unsatisfactory property also occurs at the predic-

tion interval construction if we simply employ the Wald ap-

proach. To obtain prediction intervals with better performance

when the true proportion is near a boundary, we can use similar

approaches, such as the score approach or the Agresti–Coull

approach (Agresti and Coull 1998) for improving the cover-

age probabilities of confidence intervals (Brown, Cai, and Das-

Gupta 2001), to solve the problem. Agresti and Caffo (2000)

and Pires and Amado (2008) also provided some discussions

and comparisons of the confidence intervals for the binomial

proportion. In the next section, two improved confidence inter-

vals in the literature for the binomial distribution are introduced,

and improved prediction intervals based on similar approaches

are proposed.

The American Statistician, August 2010, Vol. 64, No. 3 251
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Figure 2. Coverage probabilities and expected lengths of the 95%

level Bain and Patel prediction intervals for the Binomial distributions

with n = 10 (dotted line), n = 50 (dashed line), and n = 1000 (solid

line). The online version of this figure is in color.

3. IMPROVED PREDICTION INTERVALS

In this section, we introduce two alternative confidence in-

tervals for a binomial proportion and use similar approaches to

construct improved prediction intervals for a binomial random

variable.

The two alternative confidence intervals discussed by Agresti

and Coull (1998), Brown, Cai, and DasGupta (2002), Wilson

(1927), and Wang (2007) are as follows:

1. The Wilson interval. Let X̃ = X + z2
(1+γ )/2/2 and ñ = n +

z2
(1+γ )/2. Let p̃ = X̃/ñ, q̃ = 1− p̃, p̂ = X/n, and q̂ = 1− p̂.

The level γ Wilson interval has the form

CIW(X) = p̃ ± z(1+γ )/2n
1/2

ñ

(

p̂q̂ +
z2
(1+γ )/2

4n

)1/2

.

2. The Agresti–Coull interval. The level γ Agresti–Coull inter-

val is

CIAC(X) = p̃ ± z(1+γ )/2(p̃q̃)1/2ñ−1/2,

where the notations are as in the case 1 for the Wilson inter-

val.

The Wilson and Agresti–Coull intervals successfully in-

crease the coverage probability for p near boundaries, com-

pared with the Wald confidence interval. The Wilson interval

is derived by replacing p̂ by p in the Wald interval, and then

solving p from the equation p = p̂ ± z(1+γ )/2

√
p(1 − p)/n,

which is the inversion of the score test. The Agresti–Coull inter-

val uses the approach of adding two successes and two failures

to adjust the Wald interval.

Remark 1. There are two other confidence intervals, likeli-

hood ratio and Bayesian credible intervals, discussed by Brown,

Cai, and DasGupta (2002). Since the likelihood ratio interval

does not have a closed form and the minimum coverage prob-

ability of the credible interval is zero (Wang 2007), we do not

consider these two intervals here.

To construct the first proposed prediction interval, we employ

an approach similar to the construction of the Wilson interval.

We replace p̂ by (X + Y)/(m + n) in the denominator of (3)

and use the fact that the random variable

Y − mp̂
√

(X+Y)
(n+m)

(

1 − (X+Y)
(n+m)

)

m(m+n)
n

(5)

is approximately N(0,1) distributed. To avoid the poor cover-

age probability when the parameter is near the boundaries, we

invert
{

y :y = mp̂ ± z(1+γ )/2

√

W(x,y)
}

(6)

to derive the prediction limits instead of inverting
{

y :y = mp̂

± z(1+γ )/2

√

(x + y)

(n + m)

(

1 − (x + y)

(n + m)

)

m(m + n)

n

}

, (7)

where

W(x,y) =
(x + z2

(1+γ )/2/2 + y)

(n + z2
(1+γ )/2 + m)

×
(

1 −
(x + z2

(1+γ )/2/2 + y)

(n + z2
(1+γ )/2 + m)

)

m(m + n)

n
.

Note that the form of W(x,y) adds z2
(1+γ )/2/2 to x and z2

(1+γ )/2

to n in the square root term in (7). This modification prevents

the interval (6) from shrinking to the empty set when x = y = 0.

The two solutions of y in (6) are the proposed lower predic-

tion limit Ls(X) and the upper prediction limit Us(X), which

are

A

C
± B

C
, (8)
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where

A = mn
[

2xz2
(1+γ )/2

(

n + z2
(1+γ )/2 + m

)

+
(

2x + z2
(1+γ )/2

)

(m + n)2
]

,

B =
(

mn(m + n)z2
(1+γ )/2

(

m + n + z2
(1+γ )/2

)2

×
(

2(n − x)
[

n2
(

2x + z2
(1+γ )/2

)

+ 4mnx + 2m2x
]

+ nz2
(1+γ )/2

[

n
(

2x + z2
(1+γ )/2

)

+ 3mn + m2
])

)1/2
,

and

C = 2n
[(

n + z2
(1+γ )/2

)(

m2 + n
(

n + z2
(1+γ )/2

))

+ mn
(

2n + 3z2
(1+γ )/2

)]

.

Since this approach is similar to constructing the score confi-

dence interval, we call this interval the score prediction interval.

In addition to the above approach, to avoid the poor perfor-

mance of p near the boundaries, we can adjust the usual pre-

diction interval (1) by replacing p̂ with p̃, which leads to the

second proposed interval (La(X),Ua(X)):

Ŷ ± z(1+γ )/2(mp̃(1 − p̃)(m + n)/n)1/2. (9)

Note that here we do not consider replacing p̂ in Ŷ by p̃ because

the expectation Ep(Y − mp̃) is not zero. If we replace p̂ in Ŷ

by p̃, the Kullback–Leibler distance discussed in Section 4 di-

verges as the sample size increases. This interval basically uses

a method similar to the Agresti and Coull confidence interval,

where p̃ is used as an estimator of p instead of p̂ to overcome

the problem of the poor behavior of the Wald interval. We call

the second proposed interval the adjusted prediction interval.

The performance of the score and adjusted prediction inter-

vals is presented in Figures 3 and 4. The coverage probabilities

of the proposed intervals are decreasing in p when the propor-

tion is near 0 and are increasing in p when the proportion is

near 1. The coverage probabilities are close to the nominal level

for p in an interval with a center at p = 0.5. The proposed inter-

vals have the advantage of higher coverage probability when p

is near the boundaries in which case the performance of the cov-

erage probabilities of the existing intervals is unsatisfactory. In

addition, the score interval has shorter expected length than the

other intervals.

Remark 2. The coverage probabilities presented in Fig-

ures 1–4 are the exact coverage probabilities calculated by the

definition. Since the performance of the coverage probabili-

ties is significantly different for different intervals when p goes

to the boundaries, to clarify the presentation, we use different

scales for the y-axis in these figures.

Remark 3. Since the value of Y is from 0 to m, suitable

modifications for the intervals (8) and (9) are [max(0,Ls(X)),

min(Us(X),m)] and [max(0,La(X)),min(Ua(X),m)], respec-

tively. However, since the existing intervals do not use a mod-

ified form, for a fair comparison, we still use the original form

of the proposed interval for investigation in this study.

Figure 3. Coverage probabilities and expected lengths of the 95%

level score prediction intervals for the Binomial distributions with

n = 10 (dotted line), n = 50 (dashed line), and n = 1000 (solid line).

The online version of this figure is in color.

4. PREDICTIVE DISTRIBUTION

The new prediction intervals can be evaluated by the crite-

rion of the predictive distribution estimation. The true distribu-

tion of Y is the binomial distribution. Since the two proposed

intervals are constructed using the normal approximation, the

degree of approximation can be measured by comparing these

normal approximations with the true binomial distribution.

There is a large literature on the predictive distribution esti-

mation; see, for example, the works of Aitchison (1975), Mur-

ray (1977), Ng (1980), Lejeune and Faulkenberry (1982), Har-

ris (1989), and Lawless and Fredette (2005). One method of

constructing a predictive distribution from a predictive limit is

treating α prediction limits as the α quantiles in the predictive

distribution function.
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Figure 4. Coverage probabilities and expected lengths of the 95%

level adjusted prediction intervals for the Binomial distributions with

n = 10 (dotted line), n = 50 (dashed line), and n = 1000 (solid line).

The online version of this figure is in color.

Note that the true probability mass function of the future ob-

servation Y is

fp(y) =
(

m

y

)

py(1 − p)m−y . (10)

Based on (6) and (9), let f s(y|x) and f a(y|x) denote the

predictive densities derived by the score and adjusted predictive

limits using the plug-in estimators, which indicates that f s(y|x)

and f a(y|x) are the density functions of the normal distribu-

tions N(mp̂,W(x, y)) and N(mp̂, p̃(1 − p̃)m(m + n)/n).

An approach to evaluate a predictive distribution is to mea-

sure the goodness of the predictive distribution in terms of the

Kullback–Leibler distance between f̃ (y|x) and fp(y),

EX

(

m
∑

y=0

fp(y) log

{

fp(y)

f̃ (y|x)

}

)

, (11)

where f̃ (y|x) is a predictive density estimator. See, for exam-

ple, the article by Lawless and Fredette (2005).

Remark 4. Note that the variances of the two normal ap-

proximations are not close to that of the binomial distribution

B(n,p) when n is not large enough. It is mainly because the

mean mp̂ is a random variable, but not a constant mp. Since

the mean of mp̂ is mp, we still can use the Kullback–Leibler

distance between a predictive distribution and the binomial dis-

tribution to evaluate the performance of the predictive distribu-

tion.

The Kullback–Leibler distances of f s(y|x) and f a(y|x)

to (10) are

EX

(

m
∑

y=0

fp(y) log

{

fp(y)

f s(y|x)

}

)

(12)

and

EX

(

m
∑

y=0

fp(y) log

{

fp(y)

f a(y|x)

}

)

. (13)

Comparisons of the Kullback–Leibler distances for different

sample sizes are shown in Figure 5. It can be seen that the pre-

dictive distribution derived from the score intervals can approx-

imate the true binomial distribution more accurately than that

derived from the adjusted interval.

Theorem 1 shows that the variance of the distribution with

respect to the density function f s(y|x) is closer to the true vari-

ance than that of the distribution with respect to f a(y|x). This

can provide an intuitive explanation for the results in Figure 5.

Theorem 1. The variance of the true distribution for Y ,

mp(1−p), is closer to the expectation of the variance estimator

W(X,Y ) than to the expectation of p̃(1 − p̃)m(m+n)/n. That

is,

∣

∣E(W(X,Y )) − mp(1 − p)
∣

∣

<
∣

∣E(p̃(1 − p̃)m(m + n)/n) − mp(1 − p)
∣

∣. (14)

The proof of Theorem 1 can be obtained by straightforward

calculations.

Note that here we do not list the Kullback–Leibler distance

of the predictive distribution derived from the Nelson interval

because its Kullback–Leibler distance is divergent. Since the

predictive density function derived from it is

1
√

2πp̂(1 − p̂)m(m + n)/n

× e−(Y−mp̂)2/(2p̂(1−p̂)m(m+n)/n), (15)

when x = 0, the denominator of (15) is equal to zero. Thus,

it leads to an infinite Kullback–Leibler distance. From the

Kullback–Leibler distance criterion, the proposed intervals with

finite Kullback–Leibler distances are better than the Nelson in-

terval. In addition, since the derivation of the Bain and Patel

interval is not directly derived by the normal approximation,

we cannot directly obtain its predictive distribution.
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Figure 5. Kullback–Leibler distances of the score (solid line) and

adjusted predictive distributions (dashed line) from the true bi-

nomial distribution when the sample sizes are (1) n = m = 10,

(2) n = 50,m = 10, and (3) n = m = 50. The online version of this

figure is in color.

5. APPLICATIONS

In this article, we take the example of a hearing screening

program for all births with transient evoked otoacoustic emis-

sions in all eight maternity hospitals in the state of Rhode Island

over a 4-year period during 1993–1996 as an application of the

binomial prediction interval. The goal of this hearing screen-

ing program is to ensure that all infants and toddlers with hear-

ing loss are identified as early as possible and provided with

timely and appropriate audiological, educational, and medical

intervention. This example contains hearing screening data col-

lected prospectively for 47,991 normal nursery liveborns born

in Rhode Island between January 1, 1993 and December 31,

1996 (Vohr et al. 1998). The prediction interval can be used

to predict the number of children with hearing loss for future

years. Since the time period considered here is not large, we

can assume that the number of children with hearing loss fol-

lows the same binomial distribution in each year.

Table 1 lists the numbers of all births and infants with perma-

nent hearing loss, respectively, for each year during 1993–1996.

To compare the performance of the prediction intervals,

we use the observations of the two years 1993 and 1994 for

the normal nursery liveborns to predict the number of in-

fants with hearing loss for the future two years 1995 and

1996. The total number of the normal nursery liveborns for

1993 and 1994 is 23,061, and the total number of the in-

fants with hearing loss for these two years is 23. Assume

that the number of the infants with hearing loss follows a bi-

nomial distribution. The level 0.9 Nelson interval, Bain and

Patel interval, score interval, and adjusted interval, based on

the first two year observations, for the number of the in-

fants with hearing loss for the future two years 1995 and

1996 are (13.07,36.66), (13.52,39.36), (14.27,38.36), and

(12.73,37.00), respectively, where z(1+γ )/2 = 1.64 in these

prediction intervals. However, according to the data, the true

total number of the infants with hearing loss of the future two

years 1995 and 1996 was 38, which does not belong to the Nel-

son interval or the adjusted interval, but it does fall into the Bain

and Patel interval and the score interval.

To predict the number of the infants with hearing loss for the

year 1995 based on the data from 1993 and 1994, we obtain that

the 0.9 level Nelson prediction interval, Bain and Patel inter-

val, score prediction interval, and adjusted prediction interval

are (5.4,19.92), (5.4,21.55), (5.96,20.83), and (5.19,20.13),

respectively. The Bain and Patel, score, and adjusted intervals

cover the true number 20, but the Nelson interval does not cover

the true number 20.

It reveals that the performance of the score predictive inter-

val is better than the Nelson interval in this application which

Table 1. Screening demographics between 1993 and 1996.

Year

1993 1994 1995 1996 Total

Normal nursery liveborns 9885 13,176 12,694 12,236 47,991

Identified with

permanent hearing loss 11 12 20 18 61

The American Statistician, August 2010, Vol. 64, No. 3 255

D
o

w
n
lo

ad
ed

 b
y
 [

N
at

io
n
al

 C
h
ia

o
 T

u
n
g
 U

n
iv

er
si

ty
 ]

 a
t 

2
0
:0

0
 2

4
 A

p
ri

l 
2
0
1
4
 



assumes that the model that the binomial distribution in each

year is the same is true. A comparison of the score and adjusted

prediction intervals reveals that the theoretical comparison of

Kullback–Leibler distances for the two predictive distributions

is consistent with the comparison from this application exam-

ple.

6. CONCLUSION

This article proposes two improved prediction intervals, the

score prediction interval and the adjusted prediction interval,

with closed forms for predicting disease count. Both of them

can increase the coverage probability when p is close to the

boundaries compared with the existing prediction intervals.

A simulation study shows the score interval has the shortest ex-

pected length of these intervals. The two new intervals are also

evaluated in terms of the Kullback–Leibler distance through the

predictive distributions. The comparison shows the predictive

distribution corresponding to the score interval can approximate

the binomial distribution better than that corresponding to the

adjusted prediction interval.

In addition, to obtain more accurate results, we can employ

the procedure of Wang (2008) to derive an appropriate value

of z(1+γ )/2 such that the prediction intervals can achieve either

a desired minimum coverage probability or a desired average

coverage probability.

[Received June 2009. Revised June 2010.]
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