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Closed-Form Recursive Estimation of MA 
Coefficients Using Autocorrelations and 

Third-Order Cumulants 

ANANTHRAM SWAMI AND JERRY M. MENDEL 

Abstract-We derive a simple, recursive, closed-form algorithm to 
estimate the parameters of an MA model of known order, using only 
the autocorrelation and the 1-D diagonal slice of the third-order cu- 
mulant of its response to excitation by an unobservable, non-Gaussian, 
i.i.d. process. The output may be corrupted by zero-mean, nonskewed 
white noise of unknown variance. The ARMA case is briefly discussed. 

I. INTRODUCTION 
Given a zero-mean, stationary random process x ( t ) ,  its third- 

order cumulant is defined as 

CJ~,, t 2 )  = E { x ( t ) x ( r  + t , ) x ( t  + t 2 ) } .  (1)  
Rigorous definitions of cumulants of arbitrary order may be found 
in [ l ] .  Cumulants of order k > 2 of a Gaussian process vanish, 
and as such, cumulants provide a measure of non-Gaussianity. The 
1-D diagonal slice of the third-order cumulant is obtained by set- 
ting t, = t2 in ( l ) ,  i.e., 

CX(.) = cX(7, 7) = E { x ( t ) x 2 ( t  + 7)). ( 2 )  
Rosenblatt [2] has shown that the transfer function of a finite- 

dimensional linear time-invariant (LTI), causal, exponentially sta- 
ble system can be identified from some kth ( k  > 2)-order cumulant 
of the output process, without invoking the minimum phase as- 
sumption, provided the input excitation is non-Gaussian and i.i.d. 

Giannakis [3] and Giannakis and Mendel [4] consider one-di- 
mensional slices of the kth-order cumulant and develop identifia- 
bility results for ARMA models. In [3] and [4], a recursive, but 
rather complicated, algorithm is developed to estimate the coeffi- 
cients of an MA ( q )  process, using both the autocorrelation and the 
cumulants. We develop a simple recursive algorithm that explicitly 
handles additive noise at the output. 
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11. MA PARAMETER ESTIMATION 
The output of a finite-dimensional, LTI, MA model satisfies the 

equation 
4 

k = O  
y ( n )  = c b ( k ) u ( n  - k ) .  

z ( n )  = y ( n )  + W(.). 

(3)  

The observed signal z ( t )  is given by 

( 4 )  

We assume the following. 
Assumption I :  Output noise w ( n )  is zero-mean, i.i .d.,  with 

zero third-order cumulant (possibly Gaussian), independent of 
y ( n ) ,  and has unknown variance U:. 

Assum tion 2. Input u ( k )  is i.i .d.,  with E{ u 2 ( k ) }  = U’ < 
andE(u‘(k)) = y # 0;  ( y I  < a. 

Assumption 3: b ( 0 )  = 1 and order q is known. 
Assumption 4: b ( q  - k )  # b ( q ) [ l  - b ( k ) ] ,  k = 0 ,  1, . . . , 

The autocorrelation and the diagonal slice of the third-order cu- 
q / 2 .  

mulant of z ( k )  are given by 
4 

k = O  
r 2 ( 7 )  = U’ C b ( k ) b ( k  + 7) + uih(7) ( 5 )  

4 

k = O  
q(7) = y b ( k ) b 2 ( k  + 7). 

Both r z ( r )  and ~ ~ ( 7 )  have finite support over [ -q, q].  Equation 
( 5 )  defines a set of nonlinear equations in the unknown MA coef- 
ficients for which a unique solution does not generally exist. New- 
ton-Raphson-type techniques may be used to solve (5); uniqueness 
is guaranteed only under a minimum phase assumption [5]. 

In [3] and [4], it is shown that 
4 u2 c b2(k)ry(7  - k )  = - b ( k ) c y ( 7  - k ) .  ( 7 )  

k = O  y k = O  

Based on (7), a recursive, but rather complicated, algorithm is de- 
veloped in [3], [4] to estimate the MA coefficients; based on (5) 
and ( 6 ) ,  we develop a simpler recursive algorithm. 

Evaluating (5) and (6) at 7 = + q  yields 

r , ( q )  = W q )  + &(q) ,  cz(q)  = y b 2 ( q ) ,  

G - q )  = y b ( q )  (8 )  
from which we obtain (see also [4]) 

b ( q )  = cz(q)/c,(-q); u2 = r z ( q ) c z (  -q) /cz (q) ;  

= C : ( - q ) / c , ( q ) .  ( 9 )  

Let 

R ( 7 )  = r 2 ( 7 ) / u 2  = 5 b ( k ) b ( k  + 7) + $6(7) (10)  
k = O  

4 

k = O  
C ( 7 )  = c2(7)/y = c b ( k ) b 2 ( k  + 7). (11) 

Theorem: For the MA model described in (3) and (4), operating 
underAssumptions 1-4, theMAparametersb(m),  m = 1 , 2 ,  . . . , 
q - 1 may be recursively estimated from the output correlation and 
third-order cumulant as 
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where 
m - I  

f ( r n )  := R ( q  - rn)  - C b ( k ) b ( k  + q - r n )  
k =  I 

= b ( q  - m )  + b(m)b(q)  (14) 
m - I  

g( rn)  := C ( q  - r n )  - c b(k)b2(k  + q - r n )  
k =  I 

= b2(q - r n )  + b ( m ) b 2 ( q )  (15)  
m - I  

h(rn) := C(rn - q )  - c b 2 ( k ) b ( k  + q - rn )  
k =  I 

= b(q - rn) + b2(rn)b(q).  ( 16) 
The recursion consists of evaluating (12)-(16) for rn = 1, . . . , 
q / 2 .  Note that b ( q ) ,  U’, and y have already been estimated via 
(9). 

Proof: If q = 1, ( 1 1) yields C (  0)  = 1 + b3 ( 1 ); hence, b ( 1 ) 
= [C(O) - l ] ’ /3 .  Hence, we assume q > 1 in the sequel. The 
equalities in (14)-( 16) follow from (10) and (1 1). Evaluating (14)- 
(16) at 7 = f ( q  - 1 )  yields 

f(l) = R ( q  - 1 )  = b ( q  - 1 )  + b ( l ) b ( q )  

h ( 1 )  = C ( 1  - q )  = b(q - 1) + b2( l )b (q) .  

b ( 1 )  = [ R ( q  - 1) - b(q - ww. 
C ( q  - 1 )  = b2(q - 1 )  + b ( q ) [ R ( q  - 1 )  - b(q - I ) ]  

C(1  - q )  = b ( q  - 1 )  + [ R y q  - 1 )  - 2R(q - 1) 

(17) 

(19) 

(20) 

g ( 1 )  = C ( q  - 1) = b 2 ( q  - 1) + b(1)b2(q)  (18) 

Next, we determine b ( q  - 1 )  from (17)-(19). From (17), 

Substituting for b( 1 ) from (20) into (18) and (19) yields 

(21)  

(22)  . b ( q  - 1 )  + b2(q - l ) I / b ( q ) .  
Finally, eliminating b2 ( q  - 1 ) from (21) and (22) and simplifying 
leads to 

Having obtained b(q  - I ) ,  b(  1 )  is obtained from (20). Thus, 
b(  1 )  and b ( q  - 1 )  can be obtained from b ( q ) ,  R ( q  - l ) ,  C(q 
- l ) ,  and C (  1 - q ) .  

, rn - 1 are known. 
From (IO) ,  it follows that b ( q  - k) ,  k = 0, 1, - . , rn - 1 are 
also known. Note that f ( r n ) ,  g( rn) ,  and h(rn)  in (14)-(16) are 
defined in terms of known quantities. Furthermore, the very right- 
hand sides of (14)-(16) are in the same form as (17)-(19) (with rn 
replacing unity). Solving (14)-(16) in the same manner as (17)- 
(19), for rn = 2. 3, . . * , q / 2  [the recursion stops at q / 2  since 
the coefficients are evaluated in pairs b(  r n )  and b ( q  - rn)], leads 

Our recursive algorithm for estimating the MA coefficients thus 
consists o f  1) estimating u2,  y. and b ( q )  from r , ( q )  and cz(  f q )  
via (9); 2) normalizing r , ( k )  and c z ( k )  via (10) and (11); and 3) 
evaluating (12)-(16) for rn = 1 ,  2 ,  . * * , q / 2 .  Finally, once the 
MA coefficients have been obtained, the noise variance U: may be 
obtained from 

Now, assume that b ( k ) ,  k = 0, 1, . 1 

to (12) and (13). 0 

4 

U: = R,(O)  - U’ 2 b2(rn). 
m = O  

Our method is considerably simpler than the one proposed in 141. 
The algorithm proposed here uses autocorrelation and cumulant lags 
in the range q / 2  5 I m 1 5 q only; thus, it is clear that our method 

will work for Gaussian or non-Gaussian colored noise if the noise 
can be modeled as an MA ( p)  process, with p < q / 2 .  If the mea- 
surement noise is modeled as i.i .d.,  then (12)-(16) may be evalu- 
ated for rn = q / 2  + 1, . . . , q ,  yielding additional estimates of 
b( rn) ,  rn = 1, . . . , q .  

The algorithm proposed here cannot be extended to the fourth- 
order cumulant because in that case, the b ( k ) ’ s  can only be ob- 
tained as solutions of pairs of quadratic equations in b ( k )  and b ( q  
- k) .  In [7], an MA parameter estimation algorithm based on cor- 
relation and an off-diagonal slice of the cumulant ofarbifray order 
is described. In [6], a closed-form solution based only on the kth- 
order cumulant is reported. 

Assumption 4 is required to avoid a zero-divided-by-zero prob- 
lem in (12); this assumption is also required in the algorithm in [3], 
[4]. If Assumption 4 does not hold, one can only obtain quadratic 
equations in b ( k )  and b ( q  - k) .  One could accept both solutions 
of the quadratic equation separately, thys obtaining two candidate 
MA models; the cumulant matching technique in [8] may then be 
used to decide between the two candidate models; note, however, 
that the method in [8] involves the rooting of an order q polyno- 
mial. 

For an ARMA ( p ,  q )  model, the AR parameters are estimated 
using correlations and cumulants, and the residual AR-compen- 
sated time series is computed. The residual time series is MA; 
hence, our MA estimation algorithm may be applied to the residual 
series. Note that the additive noise is now colored; hence, the au- 
tocorrelation of the residual series must be corrected for the noise 
contribution. 
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A Direct Algorithm for Computing 2-D AR Power 
Spectrum Estimates 

C. W .  THERRIEN AND H. T .  EL-SHAER 

Abstract-An algorithm for computing the parameters in a 2-D AR 
spectral estimate without prior estimation of the correlation is de- 
scribed. The algorithm utilizes the multichannel form of the Burg al- 
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