[11] G. W. Stewart, Introduction to Matrix Computations. New York: Academic, 1973.
[12] S. Y. Kung, "A new identification and model reduction algorithm via singular value decomposition," in Proc. 12th Asilomar Conf. Circuits, Syst., Comput., 1978, pp. 705-714.
[13] B. C. Moore, "Principal component analysis in linear systems: Controllability, observability and model reduction," IEEE Trans. Automat. Contr., vol. AC-26, pp. 17-32, 1981.
[14] L. Pernebo and L. M. Silverman, "Model reduction via balanced state respresentation," IEEE Trans. Automat. Contr., vol. AC-27, pp. 382-387, Apr. 1982.
[15] A. C. Kot, S. Parthasarathy, D. W. Tufts, and R. J. Vaccaro, "Statistical performance of single sinusoid frequency estimation in white noise using state-variable balancing and linear prediction," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, pp. 16391642, Nov. 1987.

Closed-Form Recursive Estimation of MA Coefficients Using Autocorrelations and Third-Order Cumulants

ANANTHRAM SWAMI and JERRY M. MENDEL

Abstract-We derive a simple, recursive, closed-form algorithm to estimate the parameters of an MA model of known order, using only the autocorrelation and the 1-D diagonal slice of the third-order cumulant of its response to excitation by an unobservable, non-Gaussian, i.i.d. process. The output may be corrupted by zero-mean, nonskewed white noise of unknown variance. The ARMA case is briefly discussed.

I. Introduction

Given a zero-mean, stationary random process $x(t)$, its thirdorder cumulant is defined as

$$
\begin{equation*}
C_{x}\left(t_{1}, t_{2}\right)=E\left\{x(t) x\left(t+t_{1}\right) x\left(t+t_{2}\right)\right\} . \tag{1}
\end{equation*}
$$

Rigorous definitions of cumulants of arbitrary order may be found in [1]. Cumulants of order $k>2$ of a Gaussian process vanish, and as such, cumulants provide a measure of non-Gaussianity. The 1-D diagonal slice of the third-order cumulant is obtained by setting $t_{1}=t_{2}$ in (1), i.e.,

$$
\begin{equation*}
c_{x}(\tau)=C_{x}(\tau, \tau)=E\left\{x(t) x^{2}(t+\tau)\right\} \tag{2}
\end{equation*}
$$

Rosenblatt [2] has shown that the transfer function of a finitedimensional linear time-invariant (LTI), causal, exponentially stable system can be identified from some k th ($k>2$)-order cumulant of the output process, without invoking the minimum phase assumption, provided the input excitation is non-Gaussian and i.i.d.

Giannakis [3] and Giannakis and Mendel [4] consider one-dimensional slices of the k th-order cumulant and develop identifiability results for ARMA models. In [3] and [4], a recursive, but rather complicated, algorithm is developed to estimate the coefficients of an MA (q) process, using both the autocorrelation and the cumulants. We develop a simple recursive algorithm that explicitly handles additive noise at the output.

Manuscript received August 25, 1987; revised January 19, 1989. This work was performed at the University of Southern California, Los Angeles, under National Science Foundation Grant ECS-8602531 and the Naval Ocean Systems Center under Contract N66001-85-D-0203.

The authors are with the Signal and Image Processing Institute, Department of Electrical Engineering-Systems, University of Southern California, Los Angeles, CA 90089.

IEEE Log Number 8930545.

II. MA Parameter Estimation

The output of a finite-dimensional, LTI, MA model satisfies the equation

$$
\begin{equation*}
y(n)=\sum_{k=0}^{q} b(k) u(n-k) \tag{3}
\end{equation*}
$$

The observed signal $z(t)$ is given by

$$
\begin{equation*}
z(n)=y(n)+w(n) \tag{4}
\end{equation*}
$$

We assume the following.
Assumption 1: Output noise $w(n)$ is zero-mean, i.i.d., with zero third-order cumulant (possibly Gaussian), independent of $y(n)$, and has unknown variance σ_{w}^{2}.
Assumption 2: Input $u(k)$ is i.i.d., with $E\left\{u^{2}(k)\right\}=\sigma^{2}<\infty$ and $E\left\{u^{3}(k)\right\}=\gamma \neq 0 ;|\gamma|<\infty$.

Assumption 3: $b(0)=1$ and order q is known.
Assumption 4: $b(q-k) \neq b(q)[1-b(k)], k=0,1, \cdots$, $q / 2$.

The autocorrelation and the diagonal slice of the third-order cumulant of $z(k)$ are given by

$$
\begin{align*}
& r_{z}(\tau)=\sigma^{2} \sum_{k=0}^{q} b(k) b(k+\tau)+\sigma_{w}^{2} \delta(\tau) \tag{5}\\
& c_{z}(\tau)=\gamma \sum_{k=0}^{q} b(k) b^{2}(k+\tau) \tag{6}
\end{align*}
$$

Both $r_{z}(\tau)$ and $c_{2}(\tau)$ have finite support over $[-q, q]$. Equation (5) defines a set of nonlinear equations in the unknown MA coefficients for which a unique solution does not generally exist. New-ton-Raphson-type techniques may be used to solve (5); uniqueness is guaranteed only under a minimum phase assumption [5].

In [3] and [4], it is shown that

$$
\begin{equation*}
\sum_{k=0}^{q} b^{2}(k) r_{y}(\tau-k)=\frac{\sigma^{2}}{\gamma} \sum_{k=0}^{q} b(k) c_{y}(\tau-k) \tag{7}
\end{equation*}
$$

Based on (7), a recursive, but rather complicated, algorithm is developed in [3], [4] to estimate the MA coefficients; based on (5) and (6), we develop a simpler recursive algorithm.

Evaluating (5) and (6) at $\tau= \pm q$ yields

$$
\begin{gather*}
r_{z}(q)=\sigma^{2} b(q)+\sigma_{w}^{2} \delta(q), \quad c_{z}(q)=\gamma b^{2}(q) \\
c_{z}(-q)=\gamma b(q) \tag{8}
\end{gather*}
$$

from which we obtain (see also [4])

$$
\begin{gather*}
b(q)=c_{z}(q) / c_{z}(-q) ; \quad \sigma^{2}=r_{z}(q) c_{z}(-q) / c_{z}(q) \\
\gamma=c_{z}^{2}(-q) / c_{z}(q) \tag{9}
\end{gather*}
$$

Let

$$
\begin{align*}
& R(\tau)=r_{z}(\tau) / \sigma^{2}=\sum_{k=0}^{q} b(k) b(k+\tau)+\frac{\sigma_{w}^{2}}{\sigma^{2}} \delta(\tau) \tag{10}\\
& C(\tau)=c_{z}(\tau) / \gamma=\sum_{k=0}^{q} b(k) b^{2}(k+\tau) \tag{11}
\end{align*}
$$

Theorem: For the MA model described in (3) and (4), operating under Assumptions 1-4, the MA parameters $b(m), m=1,2, \cdots$, $q-1$ may be recursively estimated from the output correlation and third-order cumulant as

$$
\begin{align*}
b(q-m) & =\frac{f(m)}{2}+\frac{b(q) h(m)-g(m)}{2[b(q)-f(m)]} \tag{12}\\
b(m) & =\frac{f(m)-b(q-m)}{b(q)} \tag{13}
\end{align*}
$$

where

$$
\begin{align*}
f(m) & :=R(q-m)-\sum_{k=1}^{m-1} b(k) b(k+q-m) \\
& =b(q-m)+b(m) b(q) \tag{14}\\
g(m): & =C(q-m)-\sum_{k=1}^{m-1} b(k) b^{2}(k+q-m) \\
& =b^{2}(q-m)+b(m) b^{2}(q) \tag{15}\\
h(m) & :=C(m-q)-\sum_{k=1}^{m-1} b^{2}(k) b(k+q-m) \\
& =b(q-m)+b^{2}(m) b(q) \tag{16}
\end{align*}
$$

The recursion consists of evaluating (12)-(16) for $m=1, \cdots$, $q / 2$. Note that $b(q), \sigma^{2}$, and γ have already been estimated via (9).

Proof: If $q=1$, (11) yields $C(0)=1+b^{3}(1)$; hence, $b(1)$ $=[C(0)-1]^{1 / 3}$. Hence, we assume $q>1$ in the sequel. The equalities in (14)-(16) follow from (10) and (11). Evaluating (14)(16) at $\tau= \pm(q-1)$ yields

$$
\begin{align*}
& f(1)=R(q-1)=b(q-1)+b(1) b(q) \tag{17}\\
& g(1)=C(q-1)=b^{2}(q-1)+b(1) b^{2}(q) \tag{18}\\
& h(1)=C(1-q)=b(q-1)+b^{2}(1) b(q) \tag{19}
\end{align*}
$$

Next, we determine $b(q-1)$ from (17)-(19). From (17),

$$
\begin{equation*}
b(1)=[R(q-1)-b(q-1)] / b(q) \tag{20}
\end{equation*}
$$

Substituting for $b(1)$ from (20) into (18) and (19) yields

$$
\begin{equation*}
C(q-1)=b^{2}(q-1)+b(q)[R(q-1)-b(q-1)] \tag{21}
\end{equation*}
$$

$$
\begin{align*}
C(1-q)= & b(q-1)+\left[R^{2}(q-1)-2 R(q-1)\right. \\
& \left.\cdot b(q-1)+b^{2}(q-1)\right] / b(q) \tag{22}
\end{align*}
$$

Finally, eliminating $b^{2}(q-1)$ from (21) and (22) and simplifying leads to

$$
\begin{equation*}
b(q-1)=\frac{R(q-1)}{2}+\frac{b(q) C(1-q)-C(q-1)}{2[b(q)-R(q-1)]} \tag{23}
\end{equation*}
$$

Having obtained $b(q-1), b(1)$ is obtained from (20). Thus, $b(1)$ and $b(q-1)$ can be obtained from $b(q), R(q-1), C(q$ $-1)$, and $C(1-q)$.

Now, assume that $b(k), k=0,1, \cdots, m-1$ are known. From (10), it follows that $b(q-k), k=0,1, \cdots, m-1$ are also known. Note that $f(m), g(m)$, and $h(m)$ in (14)-(16) are defined in terms of known quantities. Furthermore, the very righthand sides of (14)-(16) are in the same form as (17)-(19) (with m replacing unity). Solving (14)-(16) in the same manner as (17)(19), for $m=2,3, \cdots, q / 2$ [the recursion stops at $q / 2$ since the coefficients are evaluated in pairs $b(m)$ and $b(q-m)$], leads to (12) and (13).

Our recursive algorithm for estimating the MA coefficients thus consists of: 1) estimating σ^{2}, γ, and $b(q)$ from $r_{2}(q)$ and $c_{z}(\pm q)$ via (9); 2) normalizing $r_{z}(k)$ and $c_{z}(k)$ via (10) and (11); and 3) evaluating (12)-(16) for $m=1,2, \cdots, q / 2$. Finally, once the MA coefficients have been obtained, the noise variance σ_{w}^{2} may be obtained from

$$
\begin{equation*}
\sigma_{w}^{2}=R_{z}(0)-\sigma^{2} \sum_{m=0}^{q} b^{2}(m) \tag{24}
\end{equation*}
$$

Our method is considerably simpler than the one proposed in [4]. The algorithm proposed here uses autocorrelation and cumulant lags in the range $q / 2 \leq|m| \leq q$ only; thus, it is clear that our method
will work for Gaussian or non-Gaussian colored noise if the noise can be modeled as an MA (p) process, with $p<q / 2$. If the measurement noise is modeled as i.i.d., then (12)-(16) may be evaluated for $m=q / 2+1, \cdots, q$, yielding additional estimates of $b(m), m=1, \cdots, q$.

The algorithm proposed here cannot be extended to the fourthorder cumulant because in that case, the $b(k)$'s can only be obtained as solutions of pairs of quadratic equations in $b(k)$ and $b(q$ $-k$). In [7], an MA parameter estimation algorithm based on correlation and an off-diagonal slice of the cumulant of arbitrary order is described. In [6], a closed-form solution based only on the k thorder cumulant is reported.
Assumption 4 is required to avoid a zero-divided-by-zero problem in (12); this assumption is also required in the algorithm in [3], [4]. If Assumption 4 does not hold, one can only obtain quadratic equations in $b(k)$ and $b(q-k)$. One could accept both solutions of the quadratic equation separately, thus obtaining two candidate MA models; the cumulant matching technique in [8] may then be used to decide between the two candidate models; note, however, that the method in [8] involves the rooting of an order q polynomial.

For an ARMA (p, q) model, the AR parameters are estimated using correlations and cumulants, and the residual AR-compensated time series is computed. The residual time series is MA; hence, our MA estimation algorithm may be applied to the residual series. Note that the additive noise is now colored; hence, the autocorrelation of the residual series must be corrected for the noise contribution.

Acknowledgment

The authors wish to thank G. Giannakis for stimulating discussions on this and related topics.

References

[1] D. R. Brillinger, "An introduction to polyspectra," Ann. Math. Statist., vol. 36, pp. 1351-1374, 1965.
[2] M. Rosenblatt, "Linear processes and bispectra," J. Appl. Prob., vol. 17, pp. 265-270, 1980.
[3] G. B. Giannakis, "Signal processing via higher-order statistics," Ph.D. dissertation, Univ. Southern California, Los Angeles, 1986.
[4] G. B. Giannakis and J. M. Mendel, "Identification of nonminimum phase systems using higher-order statistics,'" submitted to IEEE Trans. Acoust., Speech, Signal Processing, 1987.
[5] G. E. P. Box and J. M. Jenkins, Time Series Analysis, Forecasting and Control. San Francisco, CA: Holden-Day, 1970.
[6] G. B. Giannakis, "Cumulants: A powerful tool in signal processing," Proc. IEEE, vol. 75, pp. 1333-1334, 1987.
[7] A. Swami and J. M. Mendel, "ARMA parameter estimation using only output cumulants," in Proc. 4th IEEE ASSP Workshop Spectrum Est. Modeling, Minneapolis, MN, Aug. 1988, pp. 193-198.
[8] J. K. Tugnait, 'Identification of nonminimum phase linear stochastic systems,'" in Proc. 23 rd IEEE Conf. Decision Contr., Las Vegas, NV, 1984, pp. 342-347; Automatica, vol. 22, pp. 457-464, 1986.

A Direct Algorithm for Computing 2-D AR Power Spectrum Estimates

C. W. THERRIEN AND H. T. EL-SHAER

Abstract-An algorithm for computing the parameters in a 2-D AR spectral estimate without prior estimation of the correlation is described. The algorithm utilizes the multichannel form of the Burg al-

Manuscript received March 24, 1987; revised February 6, 1989.
The authors are with the Department of Electrical and Computer Engineering, Naval Postgraduate School, Monterey, CA 93943.

IEEE Log Number 8930548.

