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Abstract. Based on the Timoshenko curved beam theory, a novel and feasible closed-form 
solution was proposed to deal with the internal mechanics characteristics of mechanical elastic 
wheel (MEW). With the Laplace transformation and boundary conditions, the governing 
differential equations was reduced to a single equation in regard to the rotation angle of curved 
beam, so as to reveal the relationship among the radial deformation, the tangential deformation 
and the curved angle. Furthermore, by adopting the Frobenius theory and the Green function, six 
normalized solutions of equations, the general solution and the free vibration of system equations 
were obtained. In the end, structure mechanics and vibration modal experiments were carried out 
and the results show that the analytical model is applicable for the experimental results. 
Keywords: mechanical elastic wheel, Timoshenko curved beam, Laplace transformation, Green 
function. 

1. Introduction 

The properties of tires are of great influence on the vehicle driving performance, which 
supports vehicle weight, transfers driving force and braking force, and ensures enough adhesion 
force between the wheel and the ground. In addition, tires should meet requirements for safety, 
durability and comfort, and safety [1]. However, as statistics show, 70 %-80 % of the traffic 
accidents in superhighway are caused by tire blow-out. In order to promote the development of 
the modern automobile industry, mechanical elastic wheels emerged as required [2-4]. 

There is a flood of theoretical and computational literature on the mechanics analysis of 
pneumatic tire and circular structure [5-13]. Despite the curved beam model is widely used in 
various structures, but rarely used in the analysis of the tire model [14-16]. On one side, Kung 
proposed a flexible boundary loop model based on the radial and circumferential springs, and then 
verified it by using complicated finite element method [17]. Huang and Soedel studied the 
influence of coriolis acceleration of dynamic elastic boundary ring, and compared it with static 
ring model [18, 19]. On the other side, Kindt used the three-dimensional ring model to analyze 
structure-bearing noise, and proved that this model was suitable for the condition of 300 Hz [20]. 
However, all those ring models on the Euler-Bernoulli Beam assumption overlook the factors of 
shear deformation. 

In this work, the curved beam model of MEW was proposed based on Timoshenko curved 
beam theory to pridict deformations, forces and vibration modal of mechanical elastic wheel on 
plane rigid ground. The relationship among three parameters: the radial deformation, the 
tangential deformation and curved deformation, free vibration and the closed-form solution of 
system equations were obtained by using the Frobenius theory and the Green function experiments 
were finally carried out to check the feasibility and efficiency of the proposed model. 

2. Characteristics of MEW 

MEW is mainly consisted of one hub, hinges and elastic ring, as shown in Fig. 1. The external 
of elastic ring is parceled by rubber tread, and which is connected to the hub by hinges with the 
same angle along the circumferential direction. The forces and deformation of pneumatic wheel 
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in load case are shown in Fig. 2, meanwhile whose circumferential part are under stress, just the 
force on the bottom is small. The hinges of MEW can only sustain tension, and have zero modulus 
in compression, so the deformation and couple of the elastic ring is large,which is shown in Fig. 3, 
and the rest of elastic ring along the circumferential direction almost remains the same for the high 
stiffness of hinges assumed as rigid-body. Therefore, the curved beam of elastic ring is the key 
part of MEW. 

 
Fig. 1. Structure of MEW 

Loaded wheel
Unloaded wheel

Road

Fig. 2. Forces and deformation of pneumatic wheel 

Fig. 3. Forces and deformation of MEW 

3. Curved beam analysis 

3.1. Governing equation and boundary conditions 

According to the mechanics model of curved beam in Fig. 4, the setting-up of the Timoshenko 
curved beam model is as below: 
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( , ) = ( , ) , ( , ) = ( , ) , ( , ) = ( , ) ,= ,   = ,   = ,   = = ,   = = ,   =   = ,
= ,   = , = , = , = ,  (1)

the governing different equation and boundary conditions are, respectively: 

− 1 + − − − + = ( , ), (2)∂∂ + − − ∂∂ ∂∂ − + ∂∂ = ( , ), (3)− 1 ∂∂ + − − ∂∂ + ∂∂ = ( , ). (4)

 
Fig. 4. Mechanical model of curved beam 

At = 0, boundary conditions are: 1 ∂∂ + − − = 0, (5)∂∂ − − = 0, (6)∂∂ − = 0. (7)

At = 1: 1 ∂∂ + − + = 0, (8)∂∂ − + = 0, (9)∂∂ + = 0, (10)= 1 + ,   = 11 + , = 1, … , 6. (11)
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( ) and ( ) are tangential and radial deformation, respectively, ( ) is curving angle, ( ), ( ) and ( ) are vertical load, axial load and bending moment, respectively, , , , , 
 and  are Young modulus, shear modulus, correction factor, area inertia moment, mass inertia 

moment and sectional area, respectively, ,  and  are density, the length of the beam and radius, 
respectively, ,  and  are radial, tangential and rotation constraining force, respectively: 

( , 0) = ( ),   ∂ ( , 0)∂ = ( ), (12)

where, ( ) and ( ) are initial functions. 
By taking the Laplace transformation, and the governing differential equations are as: 

− 1 + − − − + = ∗( , ), (13)+ − − − + = ∗( , ), (14)− 1 + − − + = ∗( , ), (15)

where: 

( , ) = ( , ) , ( , ) = ( , ) ,( , ) = ( , ) ,   ̅( , ) = ( , ) ,( , ) = ( , ) ,   ( , ) = ( , ) ,∗( , ) = ( , ) + [ ( ) + ( )], ∗( , ) = ̅( , ) + [ ( ) + ( )],∗( , ) = ( , ) + [ ( ) + ( )].
 (16)

Substitute Eq. (15) into Eq. (13): 

= 1+ − + − ∗ + + ∗ . (17)

Multiply /  and ( + )/  by the derivatives of Eq. (14) and Eq. (17) respectively, 
then add them together: 

+ − 1 − = − + − ∗ + ∗ − ∗. (18)

Multiply ( / − 1) by Eq. (15), and then subtract it from Eq. (18): 

= 2 1 + 1 − ( + ) + 1 − +         + 1 ∗ − − 1 ∗ − 1  ∗ + 1 ∗ .  
(19)

Substitute Eq. (19) into Eq. (17): 
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= 1+ 2 − 1 + 2 ( + ) − 2      + + 2 (1 − + ) + 2 ∗ + 2 − 2 − 1 ∗       − 2 ∗ + ∗ + 2  ∗ . (20)

Substitute Eq. (19) and Eq. (20) into Eq. (15): 

+ + + = ( ) , ∈ (0,1), (21)

where: 

= 2 − + + 1 , = + 1 ( + ) + − 2 + 1 + 1 + ,= − + + 1 (1 + ) + [ + ] ,= ∗,    = − ∗ − 2 − − ∗,
= − ∗, = − + [ ∗ + ( + ) ∗].

 (22)

Substitute Eq. (19) and Eq. (20) into the boundary conditions. 
At = 0: 

+ + +  + = 0, (23)+ + + + + = 0, (24)  − = 0. (25)

At = 1: 

+ − +  − = 0, (26)− + − + − = 0, (27)  + = 0, (28)

where: 
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= 1,   = − + + 2 , = 2 + ,
= 2 + + 1 − ,   = −2 + ,
= 1 − + ,   = − 1 ,  (29)

= − ( + ) + ( + ⁄ ) 2 + + − ,= 1 [( + ) − ],= 1 − + − ( + ⁄ ) 2 + + 1 − ,
= − [1 − + ].

 (30)

3.2. General solution 

Governing differential Eq. (21) can be represented as: 

( ) = ( ) + ( ), (31) 

where, ( )  and { ( )}  are the particular solution and six linear normalized solutions, 
respectively,  are the constants. Equation solutions should meet the following standard 
conditions: (0) (0) (0) (0) (0) (0)(0) (0) (0) (0) (0) (0)(0) (0) (0) (0) (0) (0)(0) (0) (0) (0) (0) (0)( )(0) ( )(0) ( )(0) ( )(0) ( )(0) ( )(0)( )(0) ( )(0) ( )(0) ( )(0) ( )(0) ( )(0)

=
1 0 0 0 0 00 1 0 0 0 00 0 1 0 0 00 0 0 1 0 00 0 0 0 1 00 0 0 0 0 1

. (32) 

Substitute Eq. (31) into Eq. (23-30), and associated coefficients can be obtained through the 
following matrix: 

00 0 0 0 −
= , (33) 

where: 
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= − (0) + (0), = − ( )(0) + ( )(0) + ( )(0) + ( )(0)+ ( )(0) + (0) , = − ( )(0) + ( )(0) + ( )(0) + ( )(0) + (0) , = ( )(1) + ( )(1) − ( )(1) + ( )(1) − (1), = − ( )(1) + ( )(1) − ( )(1) + ( )(1)       − ( )(1) + (1), 
(34) 

= − ( )(1) − (1), = − ( )(1) + ( )(1) − ( )(1) + ( )(1) − (1) , = − − ( )(1) + ( )(1) − ( )(1) + ( )(1)− ( )(1) + (1) , = ( )(1) + (1), = 1,2,3,4,5,6. 
(35) 

The dynamic response of the system can be obtained by inverse Laplace transformation: 

( , ) = 12 ( , ) , ∈ (0,1), (36) 

where, = −1,  is the constant of the inverse Laplace transformation. 

3.3. Normalized homogeneous solution 

A series representation of solutions can be established through the Frobenius method: 

= , , = 1,2, . . . ,6, (37) ( ): , = 1, , = , = , = , = , = 0, ( ): , = 1, , = , = , = , = , = 0, ( ): , = 0.5, , = , = , = , = , = 0, ( ): , = 16 , , = , = , = , = , = 0, ( ): , = 124 , , = , = , = , = , = 0, ( ): , = 1120 , , = , = , = , = , = 0. 
(38) 

Solutions of these equations satisfy Eq. (32), and substitute Eq. (37) into Eq. (21), the 
recurrence equation can be obtained: 

, = ( + 4)( + 3)( + 2)( + 1) , + ( + 2)( + 1) , + ,( + 6)( + 5)( + 4)( + 3)( + 2)( + 1) , = 0,1,2 …. (39) 

3.4. Particular solution 

Use Green function of an th-order ordinary differential equation of constant coefficient to 
derive the particular solution, and the particular solution ( ) can be expressed as: 
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( ) = ( ) ( − ) , (40) 

where: ( ) = ( ) ( ), ( ) = ( ) ( ), ( ) = [ ( ) − ( )] ( ), ( ) = [ ( ) − ( )] ( ), (41) 

where ( ) is Heaviside function. 

3.5. Free vibration 

Considering free vibration on the system,  (Laplace transformation parameter) is replaced by 
, that means = , and = ⁄ . Because  of Eq. (33) are zero, then the frequence 

equation of the curved beam should be written as: 

00 0 0 0 −
= 0. (42) 

4. Experimental verification 

4.1. Structural mechanics verification 

In order to verify the accuracy of the curved beam model of MEW, the vertical loading 
experiments were carried out in Fig. 5. The material and geometric parameters of MEW are shown 
in Table1. The vertical deflection is set as = 15 mm, and the measurement range of curved beam 
is −40° ≤ ≤ 40°. The contrastive analysis between analytical results and experimental results 
in regard to the radial displacement, the shear force, the axial force and the internal couple is 
performed in Fig. 6. It can be perceived that the consistency between experiment results and 
analytic results is good. 

In Fig. 6(a), the greatest radial deformation emerges in the center of elastic ring, and rapidly 
decreases along with the growth of central angle, up to the ends of the curved beam near the 
stretching hinge shown in Fig. 3. The changes of internal shear force in curved beam is shown in 
Fig. 6(b), the maximum shear force is near the centre of curved beam, where should be the contact 
edges of elastic beam and ground, because the change of bending angle is larger. The change rate 
of shear force near the ends of curved beam shows obvious ups and downs, which is mainly 
because of the large bending deformation near the contact part between the curved beam and rigid 
hinges. The results in Fig. 6(c) and Fig. 6(d) show the maximum axial force and internal moment 
are located in the center of curved beam, and the rate of change near the ends of curved beam still 
shows obvious fluctuation. 

Table 1. Wheel property 
Material parameters Geometrical parameters 

 (GPa)  (GPa)  (mm) ℎ (mm)  (mm)  (mm) 
180 75 420 25 180 15 
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Fig. 5. Load experimental verification 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 6. Test results 

4.2. Vibration modal verification 

For MEW modal testing，the modal test analysis software (LMS Test. Lab) was used for the 
recognition analysis, and modal analysis method (Poly MAX) was used to identify the root of each 
order and solve various modal parameters. With MEW as the test object, use the moving hammer 
for excitation test. MEW was freely suspended, 12 pick-up points were evenly arranged at the 
tread, the band of the test equipment is 512 Hz, the frequency resolution is 0.83 Hz, the experiment 
is shown in Fig. 7, and Fig. 8 shows 1-8 order mode shapes. As can be seen from Fig. 9, the 
theoretical and experimental values are close to prove the accuracy of the proposed model. 
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Fig. 7. Vibration modal test 

First-order shape Second-order shape 
 

Third-order shape 

 
Fourth-order shape Fifth-order shape 

 
Sixth-order shape 

 
Seventh-order shape 

 
Eighth-order shape 

Fig. 8. Vibration shape results 
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Fig. 9. Vibration frequency comparison of the experiment and theory 

5. Conclusions 

1) With the condition of vertical load on rigid ground, as well as the different bearing 
characteristics between pneumatic tire and MEW considered, the curved beam model is developed 
based on the Timoshenko curved beam theory. 

2) According to the force, displacement and elastic boundary conditions of curved beam, the 
normalized fundamental solutions and special solution of governing differential equations are 
obtained by Frobenius method and Green function, respectively. The relationship among radial 
displacement, tangential displacement and curving angle is also revealed. 

3) Through load experiments and vibration modal experiments on MEW the proposed model 
was validated, and which proves effective. 
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