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We present a closed-form solution to the eigenvalue problem of a class of master equations that describe open
quantum systems with loss and dephasing but without gain. The method relies on the existence of a conserved
number of excitations in the Hamiltonian part and the fact that none of the Lindblad operators describe an
excitation of the system. In the absence of dephasing Lindblad operators, the eigensystem of the Liouville
operator can be constructed from the eigenvalues and eigenvectors of the effective non-Hermitian Hamiltonian
used in the quantum jump approach. Open versions of spin chains, the Tavis-Cummings model, and coupled
Harmonic oscillators without gain can be solved using this technique.
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I. INTRODUCTION

Master equations in Lindblad form provide the most
general dynamical description of open quantum systems
under the Markov assumption [1–3]. Sometimes also called
Kossakowski-Lindblad equations, due to pioneering works
of Kossakowski [4,5], these type of equations have been
extensively used to describe atom cooling [6], decoherence
in quantum information theory and quantum engineering of
states [7,8].

Many Hamiltonian systems have been extended to include
dissipation in Lindblad form; however, even if the Hamiltonian
part of the system is solvable, the full solution to the dissipative
version is not obvious. The problem results from the fact
that the Liouville operator governing the dynamics is a
non-Hermitian operator which acts on density matrices. Efforts
have been made to tackle this problem and, while there
exist analytical steady-state solutions to some problems [9],
there are not many solutions to the eigenvalue problem of
specific systems. The dissipative version of the Harmonic
oscillator, up to two spins, and the Jaynes-Cummings (JC)
model are the only open systems for which exact solutions
of the eigenvalue problem are known [10–15]. The solutions
to the Jaynes-Cummings model that can be found in the
literature [10,14] are examples that show how intricate the
calculation of the eigensystem of the Liouville operator can
be. In particular, the work of Briegel and Englert [10] solves
this problem in terms of the eigenbases of the uncoupled
subsystems which are formed by a damped harmonic oscillator
and a damped two-level atom. The interaction part operates in
a nontrivial way on the elements of these combined bases and,
therefore, although manageable in this case, this procedure is
not suitable to generalize to higher dimensional systems as it
would lead to very tedious calculations.

In this work we present a systematic method for solving
the eigenvalue problem of a broad class of Lindblad master
equations which do not involve any form of gain and that share
the characteristic of being solvable in the Hamiltonian part with
an additional constant of motion that measures the number of
excitations in the system. Under these assumptions we are
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able to find the eigenvalues and the eigenbasis of the operator
that is obtained by subtracting from the Liouville operator,
the jump operator of the quantum jumps approach [2,16]. We
use an expansion in terms of the elements of this basis to
solve for the eigensystem of the complete Liouville operator
and obtain a first-order vector recurrence relation that can
be solved in an iterative way. In the absence of dephasing
Lindblad operators, the eigensystem of the full Liouvillian
can be constructed in a systematic way from the eigensystem
of the non-Hermitian Hamiltonian of the quantum jumps
approach. Specifically, it is shown that each eigenvalue of the
complete system is proportional to the sum of two eigenvalues
of the corresponding non-Hermitian Hamiltonian. The main
difference with respect to the procedure used in [10] is that
we use the eigenbasis of the part of the master equation
without the jump operator, instead of the eigenbasis without
the interaction term. With this approach we are able to
reproduce previous specific solutions to the damped harmonic
oscillator [11] and the damped Jaynes-Cummings model [10],
but most importantly our method is presented in a general
way that encompasses systems such as the dissipative version
of Heisenberg XXZ spin chains [17], the Affleck-Kennedy-
Lieb-Tasaki (AKLT) model [18], the Bose-Hubbard model [7],
the Tavis-Cummings model [19], etc. Our construction is
performed for systems that do not present any source of gain;
nevertheless, similar arguments lead to exact solutions for
analog systems without loss.

The paper is organized as follows. In Sec. II we formalize
the assumptions that define the class of systems we want to
address. Furthermore, we show the procedure to solve the
eigensystem of the master equation in terms of the eigensystem
of an effective non-Hermitian Hamiltonian. In Sec. III we
consider systems that include dephasing Lindblad operators
and explain how to solve this class of systems in connection
to the method presented in Sec. II. Finally, in Sec. IV we
present two examples of systems that can be solved using this
technique: The Jaynes-Cummings model and the two-atoms
Tavis-Cummings model. As an application we evaluate the
atomic spontaneous emission spectrum of the first example.

II. THE MASTER EQUATION

We consider systems whose dynamics are governed by a
master equation, which consists of a coherent Hamiltonian
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evolution and a dissipative part in Lindblad form. The
dynamical equation is given in terms of the so-called Liouville
operator as

Lρ = 1

i�
[H,ρ] +

∑
s

γs

2
(2AsρA†

s − A†
sAsρ − ρA†

sAs). (1)

Concerning the Hamiltonian part we assume that no source
of driving is present in the system and that an observable I

exists which commutes with H . This additional constant of
motion may be interpreted as a measure of the excitations
in the system. Furthermore, we consider that the system is
defined on a Hilbert space H and that there exists a complete
basis set {|n,j 〉} with N elements. In this basis I is diagonal
and there are dn states with the same integer eigenvalue of I ,
that is, I |n,j 〉 = n|n,j 〉, with n = 0, . . . N andN = ∑N

n=0 dn.
We make all the treatment for finite N , but under the same line
of thought of [10,11,15] the results also apply in the limit N →
∞, which also implies the limit ofN → ∞, for countable infi-
nite separable Hilbert spaces. As an immediate consequence of
the existence of the conserved quantity I we can identify that
the Hamiltonian has a block-diagonal form in the basis where I

is diagonal, with each block H (n) of size dn × dn. This feature
is essential and will be exploited in our construction.

For the dissipative part, we first consider only Lindblad
operators As which describe losses in the system. We formalize
this condition with the commutation relation

[As,I ] = As. (2)

If we were considering the Jaynes-Cummings model [20], we
could take the electromagnetic mode annihilation operator a

and the spin lowering operator σ− as Lindblad operators, cor-
responding to the situation in which the system interacts with
a zero-temperature reservoir. In this example, the additional
constant of motion would be a†a + σ+σ−.

From the previous consideration it follows that each
Hermitian operator A

†
sAs also commutes with I , which implies

a block-diagonal form in the basis where I is diagonal.
This motivates rewriting the master equation in two parts,
one that conserves the excitations and the other describing
the de-excitation of the system. With the introduction of the
non-Hermitian Hamiltonian

K = H − i�
∑

s

γs

2
A†

sAs, (3)

which can be recognized as the effective Hamiltonian used
in the quantum trajectories technique [2,16], one can rewrite
Eq. (1) as the sum of the following two parts Lρ = Kρ + Aρ,
with

Kρ = 1

i�
(Kρ − ρK†), Aρ =

∑
s

γsAsρA†
s . (4)

The first term describes the part of the dynamics that conserves
excitation, while the second one, the jump operator, describes
the de-excitations in the system.

In order to solve the master equation, our strategy will be to
find the eigensystem of K. Then, we will deduce how the jump
operator acts on each of its eigenvectors. Making a plausible
ansatz for the eigenvectors of the complete master equation as a
superposition of the eigenvectors of K and then inserting them

into the full master equation will allow us to find a solvable
recursion relation for the coefficients of the superposition.

A. Eigensystem of K

Given the fact that [K,I ] = 0 it follows that K|n,k〉 =∑dn

j=1 K
(n)
j,k|n,j 〉, i.e., it does not couple eigenvectors of I with

different values of n. In the basis {|n,j 〉}, K has a block-
diagonal form, with each block given by a matrix of size
dn × dn. We assume that each block can be diagonalized by
the transformation

K̃ (n) = Q†(n)K (n)R(n), with Q†(n)R(n) = Idn
, (5)

where K̃ (n) is a diagonal matrix with the eigenvalues of the
nth block in its diagonal and Idn

is the identity matrix of
dimension dn. We use a tilde throughout this paper to denote
when a matrix is expressed in the eigenbasis of K . The dn × dn

matrices Q†(n) and R(n) are the blocks of the operators Q† and
R which diagonalize the operator K . The columns (rows) of
R (Q†) are the right (left) eigenvectors of K [21] and in the
original basis {|n,j〉} they can be expanded as

∣∣rn
j

〉 =
dn∑

k=1

R
(n)
k,j |n,k〉, ∣∣qn

j

〉 =
dn∑

k=1

Q
(n)
k,j |n,k〉. (6)

One can verify that these states are also eigenstates of I , i.e.,
I |rn

j 〉 = n|rn
j 〉, and assuming that the transformation in Eq. (5)

exists it follows that they are orthogonal and complete:

〈
qn

k

∣∣rm
j

〉 = δk,j δn,m,

N∑
n=0

dn∑
j=1

∣∣rn
j

〉〈
qn

j

∣∣ = I. (7)

The eigenvalue equation for K is then

K
∣∣rn

j

〉 = ε
(n)
j

∣∣rn
j

〉
, K†∣∣qn

j

〉 = ε
∗(n)
j

∣∣qn
j

〉
, (8)

with the complex eigenvalues ε
(n)
j .

B. Eigensystem of K
The eigensystem of the operator K can be constructed from

the eigensystem of the non-Hermitian Hamiltonian K . It can
be verified by inspection of Eq. (4) that the elements

�̂
(l,n)
j,k = ∣∣rn+l

j

〉〈
rn
k

∣∣, �̌
(l,n)
j,k = ∣∣qn+l

j

〉〈
qn

k

∣∣, (9)

with j = 1, . . . dn+l and k = 1, . . . dn, are the right and left
eigenvectors of K and that they solve the eigenvalue equation

K�̂
(l,n)
j,k = λ

(l,n)
j,k �̂

(l,n)
j,k , K†�̌(l,n)

j,k = λ
∗(l,n)
j,k �̌

(l,n)
j,k , (10)

with eigenvalues

λ
(l,n)
j,k = 1

i�

[
ε

(n+l)
j − ε

∗(n)
k

]
. (11)

The dual operator of K is given by K†ρ = 1
i�

(ρK −
K†ρ) [10,11]. From Eq. (7), it follows that these eigenvectors
are orthogonal with respect to the Hilbert-Schmidt inner
product:

Tr
{(

�̌
(l,n)
j,k

)†
�̂

(l′,n′)
j ′,k′

} = δn,n′δl,l′δj,j ′δk,k′ . (12)

Now, let us study in more detail the operator K and how
it acts on the elements |n + l,j 〉〈n,k| with n + l,n = 0 . . . N ,
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j = 1 . . . dn+l and k = 1, . . . dn. These elements form a basis
for the vector spaceB(H) of the operators that act on the Hilbert
space H. As K does not couple basis elements of different n

it follows that K does not couple elements with different pairs
of excitation numbers n + l and n, that is,

K|n + l,j ′〉〈n,k′| =
dn+l ,dn∑
j,k=1

K(l,n)
j,k,j ′,k′ |n + l,j 〉〈n,k|. (13)

This shows that the operator K is formed by the uncoupled
blocks K(l,n), where each one of them can be represented by a
tensor of rank 4 and dimensions dn+l × dn × dn+l × dn.

To simplify the evaluation we will adopt the following
bijective mapping of indices j,k → ν, with

ν = dn(j − 1) + k, ν = 1 . . . Dl,n = dn+ldn. (14)

In this convention that maps two indices to one, the tensor in
Eq. (13) can now be expressed as a Dl,n × Dl,n matrix that acts
on vectors of size Dl,n which are obtained by vectorizing row
by row a matrix of size dn+l × dn using the mapping of indices
in Eq. (14). With this convention and using the properties of
the tensor product, we can express the blocks of K as

K(l,n) = 1

i�
(K (n+l) ⊗ Idn

− Idn+l
⊗ K∗(n)). (15)

Analogous to Eq. (5), there exists a transformation which
diagonalizes each block of K. It has the form

K̃(l,n) = Q†(l,n)K(l,n)R(l,n), Q†(l,n)R(l,n) = IDl,n
. (16)

The eigenvectors of K, given in Eq. (9), provide us with the
transformation that diagonalizes each of its blocksK(l,n), given
by the tensor product of the matrices with the eigenvectors of
K , i.e.,

Q(l,n) = Q(n+l) ⊗ Q∗(n),

R(l,n) = R(n+l) ⊗ R∗(n). (17)

C. Jump operator

We proceed to study the action of the jump operator A on
the eigenvectors ofK. As it is formed by the Lindblad operators
As we first focus on how these act on the eigenvectors of the
non-Hermitian Hamiltonian K . We assume that the action of
each As on states in the original basis is known. Considering its
commutation relation with I given in Eq. (2) we can deduce
that it is of the form As |n,j 〉 = ∑dn−1

k=1 A
(n)
s;k,j |n − 1,k〉. It is

manifested in this way that every As connects states of the
block n to states in the block n − 1, meaning that the Lindblad
operators are also composed of uncoupled blocks A(n)

s of
dimension dn−1 × dn. Using the transformations of Eq. (5)
it is possible to transform these blocks to the representation in
the eigenbasis of K in the following way:

Ã(n)
s = Q†(n−1)A(n)

s R(n). (18)

Thereby, we find that the action of the Lindblad operators onto
the right eigenstates of K can be expressed as

As

∣∣rn
j

〉 =
dn−1∑
k=1

Ã
(n)
s;k,j

∣∣rn−1
k

〉
. (19)

With the blocks of the Lindblad operators in the represen-
tation of the eigenbasis of K it is now possible to build the
blocks of the jump operator using the tensor product. They
have the form

Ã(l,n) =
∑

s

γsÃ
(n+l)
s ⊗ Ã∗(n)

s (20)

and they are matrices of size Dl,n−1 × Dl,n that connect
vectorized matrices of dimension Dl,n to others of dimension
Dl,n−1. It is in this representation that one can identify how the
jump operator acts on the eigenbasis of K, that is,

A�̂(l,n)
ν =

Dl,n−1∑
ν ′

Ã(l,n)
ν ′,ν �̂

(l,n−1)
ν ′ . (21)

Analogously we can find the corresponding equation for the
dual jump operator acting on the left eigenvectors as

A†�̌(l,n)
ν =

Dl,n+1∑
ν ′

Ã∗(l,n+1)
ν,ν ′ �̌

(l,n+1)
ν ′ . (22)

We have adopted the mapping of indices in Eq. (14) to label
the eigenvectors of K and we introduced the dual of the jump
operator, defined as A†ρ = ∑

s γsA
†
sρAs .

In an alternative calculation one could start with the
evaluation of the blocks A(l,n) in the original basis based on
the blocks A(n)

s , in the same manner as in Eq. (20). Then one
could change the basis using the transformation of Eq. (17) to
find

Ã(l,n) = Q†(l,n−1)A(l,n)R(l,n). (23)

D. Eigensystem of the full master equation

Noting that the jump operator Eq. (21) couples eigenvectors
of K of definite excitation number n with a superposition of
eigenvectors of n − 1 without changing the value of l, it seems
reasonable to take as an ansatz for the eigenvectors of the full
Liouvillian L a superposition of eigenvectors of K with a fixed
value of l. The proposed ansatz, in the vectorized convention
is ρ̂l,
 = ∑

n,ν ṽl,
;n
ν �̂(l,n)

ν , where 
 is an eigenvalue of the full
master equation and for the moment it labels the eigenvectors
and its coefficients. Our next step is to study how the full
Liouvillian L acts on these type of states. From Eqs. (10), (14),
and (21) one obtains

Lρ̂l,
 = 
ρ̂l,
 =
N∑

n=0

Dl,n∑
ν=1

ṽl,
;n
ν λ(l,n)

ν �̂(l,n)
ν

+
N∑

n=1

Dl,n,Dl,n−1∑
ν,ν ′=1

ṽl,
;n
ν Ã(l,n)

ν ′,ν �̂
(l,n−1)
ν ′ . (24)

Reordering of indices and matching the elements �̂(l,n)
ν leaves

us with the following recurrence relation for the coefficients
at fixed n:

(

 − λ(l,n)

ν

)
ṽl,
;n

ν =
Dl,n+1∑

ν ′
Ã(l,n+1)

ν,ν ′ ṽ
l,
;n+1
ν ′ . (25)

The relation holds for any complex value of 
, but we take the
simplest one in which the recurrence ends, using a similar
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reasoning as in [11]. We find that the eigenvalues for the
complete Liouville operator are 
 = λ(l,m)

μ , for certain m and
μ which label inner blocks in the same way as ν. This result
tells us that L and K have the same spectrum, a fact that can
also be understood as L has an upper triangular form in the
basis where K is diagonal. Another observation is that for
n = m the left-hand side of Eq. (25) vanishes, which means
that all coefficients are zero for n > m. The first nonvanishing
coefficient is ṽl,
;m

μ = 1. From here one can proceed to evaluate
the rest of the coefficients in a recursive way. Note also that
three integers are needed to define each eigenvector: m, μ,
and l (or four if instead one uses μ → (j ′′ − 1)dm + k′′ in the
matrix representation). Hence, we redefine the coefficients as
ṽl,
;n

ν → ṽ(l,m;n)
μ;ν .

The recursion relation can also be cast in terms of matrix
multiplication, if one takes a vector of coefficients ṽ(l,m;n)

μ for
each block of n. Let us define the nonzero elements of the
Dl,n × Dl,n diagonal matrix as

T̃ (l,m;n)
μ;ν,ν = (

λ(l,m)
μ − λ(l,n)

ν

)−1
. (26)

With this definition, the recursion in Eq. (25) can be solved to
give the nth vector with Dl,n entries:

ṽ(l,m;n)
μ =

(
m−1∏
i=n

T̃ (l,m;i)
μ Ã(l,i+1)

)
e(l,m)
μ . (27)

Thereby ṽ(l,m;m)
μ = e(l,m)

μ is a column vector of dimensions
Dl,m with a one in the μth entry and zero elsewhere. All
the coefficients for n > m vanish. Now one can write the right
eigenvectors of the full Liouvillian as

ρ̂(l,m)
μ =

m∑
n=0

Dl,n∑
ν=1

ṽ(l,m;n)
μ;ν �̂(l,n)

ν . (28)

The left eigenvectors can be evaluated in a similar way
and as we already know the eigenvalues of L we can use a
superposition of the left eigenvectors of K with fixed l to find

L†ρ̌(l,m)
μ = λ∗(l,m)

μ ρ̌(l,m)
μ =

N∑
n=0

Dl,n∑
ν=1

ũ(l,m;n)
μ;ν λ∗(l,n)

ν �̌(l,n)
ν

+
N−1∑
n=0

Dl,n,Dl,n+1∑
ν,ν ′=1

ũ(l,m;n)
μ;ν Ã∗(l,n+1)

ν,ν ′ �̌
(l,n+1)
ν ′ . (29)

Again, reordering indices and matching the coefficients for
each �̌(l,m)

ν we find the recursion relation

(
λ∗(l,m)

μ − λ∗(l,n)
ν

)
ũ(l,m;n)

μ;ν =
Dl,n−1∑
ν ′=1

Ã∗(l,n)
ν ′,ν ũ

(l,m;n−1)
μ;ν ′ , (30)

which can be iterated to give the solution for the coefficients
as

ũ(l,m;n)
μ =

(
m∏

i=n−1

T̃ †(l,m;i+1)
μ Ã†(l,i+1)

)
e(l,m)
μ . (31)

In this way, we find the following expression for the left
eigenvectors:

ρ̌(l,m)
μ =

N∑
n=m

Dl,n∑
ν=1

ũ(l,m;n)
μ;ν �̌(l,n)

ν . (32)

To express the eigenvectors of the full Liouvillian in the
original basis, one can apply the transformation in Eq. (17)
one by one to each of the vectors in Eqs. (27) and (31) as

v(l,m;n)
μ = R(l,n)ṽ(l,m;n)

μ , u(l,m;n)
μ = Q(l,n)ũ(l,m;n)

μ . (33)

Using the mapping of indices in Eq. (14), one finally finds the
left and right set of eigenvectors in the original basis:

ρ̂
(l,m)
j,k =

m∑
n=0

dn+l ,dn∑
j ′,k′=1

v
(l,m;n)
j,k;j ′,k′ |n + l,j ′〉〈n,k′|,

ρ̌
(l,m)
j,k =

N∑
n=m

dn+l ,dn∑
j ′,k′=1

u
(l,m;n)
j,k;j ′,k′ |n + l,j ′〉〈n,k′|. (34)

In a matrix representation the right eigenvectors take the
following form:

ρ̂
(l,m)
j,k =

0 . . . m m + 1 . . .

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0 . . . 0
...

. . .
...

v
(l,m;0)
j,k l

. . .
...

v
(l,m;m)
j,k m + l

0 m + l + 1
.. .

...

where it is manifested that they are formed by uncoupled
blocks that lie in the lth diagonal and there are nonzero entries
only until the excitation value m. The left eigenvectors can be
represented as

ρ̌
(l,m)
j,k =

0 . . . m m + 1 . . .

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0 . . . 0
...

. . .
...

0 l + 1
.. .

...
u

(l,m;m)
j,k m + l

u
(l,m;m+1)
j,k m + l + 1

.. .
...

.

In this case they also lie in the lth diagonal, but in contrast
to the right eigenvectors the nonzero entries start at excitation
number m.

In this construction we have only focused on elements that
lie below the main diagonal l = 0. The elements above the
main diagonal can be evaluated from those which have l 	= 0
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by taking the Hermitian adjoint as ρ̂
†(l,m)
j,k and ρ̌

†(l,m)
j,k , with

corresponding eigenvalues λ
∗(l,m)
j,k . Including them completes

a basis set that spans the vector space B(H).

III. INCLUSION OF DEPHASING OPERATORS

In this section we briefly comment on the inclusion of
dephasing Lindblad operators Cs in the master equation. These
have the commutation relation [Cs,I ] = 0 with the constant
of motion I . Its inclusion results in a Liouville operator
that we write in the form L = M + A, with M = K + C,
which is written in terms of the operators in Eq. (4) and the
new term

Cρ =
∑

s

κs

2
(2CsρC†

s − C†
s Csρ − ρC†

s CS). (35)

The Liouvillian C also preserves the excitation numbers n and
l, but cannot be constructed solely out of a non-Hermitian
Hamiltonian because of the dephasing term

∑
s κsCsρC

†
s .

Nevertheless, as we have separated the parts of the Liouvillian
L that conserves excitations from the jump operator, the
diagonalization in this case can be carried out in a similar
manner as it was shown in the previous section. In this case
the diagonalization of the blocks of M is required. These can
be evaluated using Eq. (15) with M(l,n) = K(l,n) + C(l,n) and
the blocks of C which can be constructed as

C(l,n) =
∑

s

κs

2

(
2C(n+l)

s ⊗ C∗(n)
s

− [C†
s Cs]

(n+l) ⊗ Idn
− Idn+l

⊗ [C†
s Cs]


(n)
)
. (36)

Here we have assumed that the action of each Cs onto
the basis {|n,j 〉} is known and so the dn × dn matrices
C(n)

s are known. Thereby, the transformations to be found
are those that diagonalize each block as Q†(l,n)M(l,n)R(l,n)

and form the eigenvectors of M. From this point, the
diagonalization procedure of the full Liouvillian follows the
same steps as in Sec. II D, with the eigensystem of K
being replaced by the eigensystem of M and the blocks
of the jump operator evaluated as in Eq. (23). The eigen-
values of L are the eigenvalues of the excitation-preserving
part M.

IV. EXAMPLES

In this section we present examples of systems with physical
relevance that can be solved using the technique introduced in
Secs. II and III.

A. Jaynes-Cummings model

The first example we consider is the damped Jaynes-
Cummings model, which describes the interaction of a two-
level system (TLS) with one mode of the electromagnetic field
inside an optical cavity [20]. We use this model to test and
show our method and compare with the solution introduced
by Briegel and Englert in [10].

The Hamiltonian of the JC model in the interaction picture
with respect to the cavity mode energy is given by

H = �δσ+σ− + �g(aσ+ + a†σ−), (37)

where a and a† are the cavity mode creation and annihilation
operators, and σ± = 1

2 (σx ± iσ y) are the raising and lowering
operators of the two-level system and are defined in terms of
the Pauli matrices σx , σy , and σ z. The detuning between the
TLS frequency gap and the cavity mode is given by δ.

In this case one can recognize that the constant of motion
is given by

I = a†a + σ+σ−, (38)

and its eigenbasis {|n,j〉} is given by the states

|n,1〉 = |n〉 ⊗ |g〉, n � 0,

|n,2〉 = |n − 1〉 ⊗ |e〉, n > 0, (39)

with the number state |n〉 describing n photons in the cavity
and the atomic excited |e〉 and ground state |g〉. The state |n,2〉
is only permissible for n > 0 and so we note that the basis
is formed by a singlet state, which is the eigenvector of I

with eigenvalue zero and a family of pairs with eigenvalue n.
Therefore, d0 = 1 and dn>0 = 2 in this example.

The Lindblad operators we consider are σ− and a, which
fulfill the commutation relation of Eq. (2). Using them we can
construct the effective Hamiltonian of Eq. (3), which reads

K = H − i 1
2 �γ σ+σ− − i 1

2 �κa†a. (40)

It is a non-Hermitian operator which commutes with I , so that
one can write it as a block-diagonal matrix in the basis of
Eq. (39), with its blocks given by

K (0) = 0,

K (n>0) = �

(−i nκ
2 g

√
n

g
√

n
2δ−i(n−1)κ−iγ

2

)
. (41)

The eigenvalues can be computed and are given by

ε
(n)
j = �

2δ − i(2n − 1)κ − iγ

4

+ (−1)j�

√
g2n + (2δ + iκ − iγ )2

16
. (42)

It can be checked that they are degenerate only in the
special case δ = 0 and 16g2n = (κ − γ )2. Apart from this
case, the eigenvalues of each block are different and the
diagonalization of the matrices K (n) can be accomplished with
the transformation

R(n>0) =
(

cos θn − sin θn

sin θn cos θn

)
,

θn = arctan

(
2ε

(n)
1 + i�nκ

2�g
√

n

)
. (43)

In this example Q† = R
, because K is a complex symmetric
operator. Together with Eqs. (6) and (39) the right and left
eigenvectors of K can be obtained. For n = 0 no transfor-
mation is needed as the singlet |0,1〉 is already an eigenstate
of K .

Using Eq. (15) together with Eq. (41) one can build the
blocks K(l,n) of the generator K defined in Eq. (4), which
represents the part of the Liouvillian L which conserves the
number of excitations. These blocks can be diagonalized by
the transformation R(l,n) which can be obtained from Eqs. (17)
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and (43). It is again an orthonormal transformation in this
example. The eigenvalues of K are also the eigenvalues of
the full Liouvillian L and can be evaluated from Eq. (11), by
inserting the result of Eq. (42).

The Lindblad operators can also be expressed in terms of
blocks in the basis of Eq. (39). They have the following form:

σ−(1) = (
0 1

)
, σ−(n>1) =

(
0 1

0 0

)
,

a(1) = (
1 0

)
, a(n>1) =

(√
n 0

0
√

n − 1

)
. (44)

Using them as explained in Sec. II C one can also construct
the blocks of the jump operator A. All the information is now
assembled and the full solution can be obtained as explained
in Sec. II D.

In particular, the part of the eigensystem with lowest
excitation number is given by

ρ̂
(0,0)
1,1 = |0,1〉〈0,1|, ρ̌

(0,0)
1,1 = I,

ρ̂
(1,0)
j,1 = ∣∣r1

j

〉〈0,1|, ρ̌
(1,0)
j,1 =∣∣q1

j

〉〈0,1|+ . . . ,

ρ̂
(0,1)
j,k = ∣∣r1

j

〉〈
r1
k

∣∣ − 〈
r1
k

∣∣r1
j

〉|0,1〉〈0,1|, ρ̌
(0,1)
j,k =∣∣q1

j

〉〈
q1

k

∣∣+ . . . ,

with the corresponding eigenvalues λ
(0,0)
1,1 = 0, λ

(1,0)
j,1 =

−iε
(1)
j /� and λ

(0,1)
j,k = −i(ε(1)

j − ε
∗(1)
k )/�.

We close this subsection by remarking that our method
can solve the Jaynes-Cummings model by solving 2 × 2
complex matrices which are the blocks of the effective
Hamiltonian widely used in the quantum trajectories approach.
The solutions can be manageable at least for few excitation
numbers, as will be shown in the following application.

1. Spontaneous emission spectrum

As an application of the solution to the damped Jaynes-
Cummings model, we present the evaluation of the sponta-
neous emission spectrum [22,23] of the atom, which can be
written as

S(ω) = s(ω)

2πς
=

∫ ∞
0 dt

∫ ∞
0 dt ′eiω(t ′−t)〈σ+(t)σ−(t ′)〉

2π
∫ ∞

0 dt〈σ+(t)σ−(t)〉 , (45)

where we have introduced ς , the constant integral which
appears in the denominator and serves as the normalization
factor. To evaluate the correlations functions which appear in
Eq. (45), we can use the relation (see [2])

〈σ+(t)σ−(t ′)〉 = Tr{σ−eL(t ′−t)[ρ(t)σ+]}, (46)

which can be evaluated with the aid of the eigenbasis of L as
one can express the time evolution of any given initial state ρ0

in the following form:

ρ(t) = eLt ρ0 =
∑

λ

Tr{ρ̌†
λρ0}eλt ρ̂λ. (47)

The sum runs over all the eigenvalues λ which at this stage
have not been specified. Using the results of Eqs. (46) and (47)
together with the definition of the emission spectrum S(ω) in

Eq. (45) and performing the integration, one obtains

s(ω) =
∑
λ,λ′

Tλ,λ′

(λ − λ′ − iω)(λ′ + iω)
, ς =

∑
λ,λ′

Tλ,λ′

−λ
, (48)

where we have introduced the weight factors Tλ,λ′ =
Tr{ρ̌†

λρ0}Tr{ρ̌†
λ′ ρ̂λσ

+}Tr{σ−ρ̂λ′ }. If we assume that initially
the atom is in the excited state and the cavity is in the vacuum
state, that is, a state given by ρ0 = |1,2〉〈1,2|, one can realize
that the only contributions to those traces are given by the
eigenvectors with seven different eigenvalues, namely, λ

(0,1)
j,k ,

λ
(1,0)
k,1 , and λ

(0,0)
0,0 (j,k = 1,2). With this, one gets the solution

to the emission spectrum as

s(ω) =
∣∣∣∣∣ � sin2 θ1

ε
(1)
1 − �ω

+ � cos2 θ1

ε
(1)
2 − �ω

∣∣∣∣∣
2

=
∣∣∣∣ 2(2ω + iκ)

4g2 + (2δ − 2ω − iγ )(2ω + iκ)

∣∣∣∣
2

, (49)

with the normalization factor given by the expression

ς = �| sin θ1|4
i
(
ε

(1)
1 − ε

∗(1)
1

) + �| cos θ1|4
i
(
ε

(1)
2 − ε

∗(1)
2

) + 2Re

[
� sin2 θ1 cos2 θ∗

1

i
(
ε

(1)
1 − ε

∗(1)
2

)
]

= 4g2(γ + κ) + κ(4δ2 + (γ + κ)2)

4g2(γ + κ)2 + γ κ(4δ2 + (γ + κ)2)
. (50)

This result can be checked to be in agreement with the ones
obtained previously using different methods in [22,23].

2. Including dephasing Lindblad operators

The situation is slightly different when dephasing Lindblad
operators are included, those which have the property of
commuting with the constant of motion I . In this example
we additionally consider σ z as a Lindblad operator, which
clearly has the desired property. To the full Liouvillian one has
to include the following dissipator:

Cρ = γz

(
σ zρσ z − ρ

)
. (51)

As all the Lindblad operators in C commute with I , one
can no longer use the eigensystem of an effective non-
Hermitian Hamiltonian K to construct the eigenvalues of the
full Liouvillian. There is a dephasing operator σ zρσ z which
conserves excitations and whose effect cannot be included
in K . However, one can exploit the fact that C conserves
the excitations and express it in blocks C(l,n). To this end
one needs the representations of σ z in the basis of Eq. (39).
One can verify that these are σ z(0) = −1 and σ z(n>0) =
−σ z = diag(−1,1), a diagonal matrix with entries −1 and 1.
With them one is able to construct the blocks of C like in

052133-6



CLOSED-FORM SOLUTION OF LINDBLAD MASTER . . . PHYSICAL REVIEW A 89, 052133 (2014)

Eq. (36) as

C(0,0) = 0, C(l>0,0) = γz(σ
z − I2),

C(l�0,n>0) = γzσ
z ⊗ σ z − γzI4. (52)

The operator M = K + C represents the part of the Liouville operator that conserves excitations and it can be expressed by the
uncoupled blocks M(l,n) = K(l,n) + C(l,n), with each block given by

M(0,0) = 0,

M(l>0,0) = 1

i�
K (l) + γz(σ

z − I2),

M(l�0,n>0) = − 1
2 ((2n + l − 1)κ + γ ) I4 − i

⎛
⎜⎜⎜⎝

i
γ−κ

2 −g
√

n g
√

l + n 0

−g
√

n −i2γz − δ 0 g
√

l + n

g
√

l + n 0 −i2γz + δ −g
√

n

0 g
√

l + n −g
√

n i
κ−γ

2

⎞
⎟⎟⎟⎠ . (53)

It can be verified that the characteristic polynomial of the 4 × 4
blocks shown above coincide with the one presented in the
work by Briegel and Englert for the same situation [24]. The
diagonalization of these blocks M(l,n) gives the corresponding
transformation R(l,n), which in this case is again orthogonal as
the Liouvillian remains complex symmetric and so Q = R
.
These transformations have to be used together with Eq. (23)
and the blocks of the jump operator defined A(l,n) formed with
the blocks of Eq. (44). The eigenvalues λ(l,n)

ν of M(l,n) are
eigenvalues of the full Liouvillian as well. With these one can
compute the left and right eigenvectors of the full Liouvillian
as indicated in Sec. II D.

B. Two-atoms Tavis-Cummings model

As a second example we consider the two-atoms Tavis-
Cummings model [19] with damping. The model describes
two two-level atoms interacting with one mode of the elec-
tromagnetic field of an optical cavity. The Hamiltonian that
describes this situation can be written as

H =
2∑

�=1

�(δ�σ
+
� σ−

� + g�(aσ+
� + a†σ−

� )). (54)

where � labels the operators for each of the two atoms,
which can be of different species as we consider possible

distinct couplings strengths g� and detunings δ�. The number
of excitations in the system can be described by the constant
of motion:

I = a†a + σ+
1 σ−

1 + σ+
2 σ−

2 . (55)

The states of the eigenbasis {|n,j 〉} of I can be organized as
follows:

|n,1〉 = |n〉|g〉1|g〉2,

|n,2〉 = |n − 1〉|g〉1|e〉2, |n,3〉 = |n − 1〉|e〉1|g〉2, n > 0,

|n,4〉 = |n − 2〉|e〉1|e〉2, n > 1, (56)

where one can note that the degeneracy of I can be divided in
blocks of d0 = 1, d1 = 3, and dn>1 = 4 states.

As Lindblad operators we consider σ−
1 , σ−

2 , and a, and
doing so allows us to write the non-Hermitian Hamiltonian as

K = H − i� 1
2κa†a − i� 1

2

2∑
�=1

γ�σ
+
� σ−

� . (57)

In the representation of the basis states of Eq. (56) the non-
Hermitian Hamiltonian has a block-diagonal form with blocks
given by

K (0) = 0, K (1) = �

⎛
⎜⎝

−i 1
2κ g2 g1

g2 δ2 − i 1
2γ2 0

g1 0 δ1 − i 1
2γ1

⎞
⎟⎠ ,

K (n>1) = −i� 1
2 (nκ − κ + γ1 + γ2) I4 + �

⎛
⎜⎜⎜⎝

i
γ1+γ2−κ

2 g2
√

n g1
√

n 0

g2
√

n δ2 + i 1
2γ1 0 g1

√
n − 1

g1
√

n 0 δ1 + i 1
2γ2 g2

√
n − 1

0 g1
√

n − 1 g2
√

n − 1 δ1 + δ2 + i 1
2κ

⎞
⎟⎟⎟⎠ . (58)

Because these are at most 4 × 4 matrices, their eigensystem can be evaluated in analytical form. The solutions are lengthy and
we do not present them here but just comment that, as this system can be solved in an analytical way, also the full eigensystem
of L can be evaluated analytically.
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The blocks of the Lindblad operators can be expressed as

σ−
1

(1) = (
0 0 1

)
, σ−

1
(2) =

⎛
⎜⎝

0 0 1 0

0 0 0 1

0 0 0 0

⎞
⎟⎠ , σ−

1
(n>2) =

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ , σ−

2
(1) = (

0 1 0
)
,

σ−
2

(2) =

⎛
⎜⎝

0 1 0 0

0 0 0 0

0 0 0 1

⎞
⎟⎠ , σ−

2
(n>2) =

⎛
⎜⎜⎜⎝

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

⎞
⎟⎟⎟⎠ ,

(59)

and for the Lindbald operator a we obtain the following blocks:

a(1) = (
1 0 0

)
, a(2) =

⎛
⎝

√
2 0 0 0

0 1 0 0
0 0 1 0

⎞
⎠ ,

a(n>2) =

⎛
⎜⎜⎝

√
n 0 0 0

0
√

n − 1 0 0
0 0

√
n − 1 0

0 0 0
√

n − 2

⎞
⎟⎟⎠ . (60)

This is all the information one needs to evaluate the solution
of the eigensystem of the Liouville operator of this problem
following the steps of Sec. II.

We would like to mention that one could also consider
Heisenberg XXZ interaction between the atoms, as the terms
(σ+

1 σ−
2 + σ−

1 σ+
2 ) and σ z

1 σ z
2 also commute with the constant of

motion I and the block structure is preserved [25].

C. Other extensions

In principle one could consider higher dimensional systems
that belong to the class of systems proposed to be solved using
the construction explained in this paper. The solution would
involve the diagonalization of blocks of larger dimension and
thus is not suitable for analytical calculations. Nevertheless this
gives a systematic method of solving the problem efficiently
in a numerical way and gives insight into the behavior of open
systems. Therefore, we briefly comment on two important
classes of systems that can be treated in this way.

1. M interacting spins

For a system composed of M interacting spins we could
consider as a constant of motion I = ∑M

� σ+
� σ−

� . In this case
the eigenstates of I with eigenvalue n can be chosen as all
the states with n spins up, which amounts to dn = (M

n ) states.
This follows from the fact that one has to arrange n spin-up
particles out of a total of M . A possible Hamiltonian in this
case could be H = ∑

�>j J�,j σ
z
� σ z

j + η�,j (σ+
� σ−

j + σ−
� σ+

j ).
One could also include the term (�σ� · �σ ′

�)2 like in the AKLT
model [18], because such a term also commutes with I .
As Lindblad operators one could consider {σ−

� }M�=1 and the
dephasing Lindblad operators {σ z

� }M�=1.

2. M spins interacting with one oscillator

The situation is similar for M interacting spins with an
oscillator, such as the general Tavis-Cummings model [19].
The constant of motion is in this case I = a†a + ∑M

�=1 σ+
� σ−

� .
The degeneracy of the excitation n can be divided in two
classes, one with dn<M = ∑n

n′=0(M
n′ ) and the other with

dn�M = 2M . This sum can be understood as follows: for
each n − n′ excitation in the oscillator, there are (M

n′ ) spin
states with excitation n′. A typical Hamiltonian in this
scenario would be the M atoms Tavis-Cummings Hamiltonian∑M

�=1
δ�

2 σ z
� + g�(a†σ−

� + aσ+
� ), and one could also think of

interaction between the spins like in the previous example, as
its contribution to the Hamiltonian also commutes with the I

for this case. Plausible Lindblad operators are {a} ∪ {σ−
� }M�=1,

whereas for dephasing operators one could take {σ z
� }M�=1.

V. CONCLUSIONS

We have presented a systematic method to solve a broad
class of master equations in Lindblad form. Our approach is
an alternative but also an extension to previous work [10,11].
If the Liouville operator presents exclusively loss Lindblad
operators, we obtained the remarkable result that the full set
of eigenvalues of the Liouville operator is given by a sum
of eigenvalues of the effective non-Hermitian Hamiltonian
used in the quantum trajectories approach. When dephasing
Lindblad operators are also present, the eigensystem can be
obtained by diagonalizing blocks of finite size of the full
Liouvillian. We presented two examples of systems that can
be solved in an analytical way, as the solution involves the
diagonalization of matrices of dimension of at most 4. For
blocks larger than 4 × 4, this approach can be used to improve
the numerical diagonalization, as one has to diagonalize blocks
of smaller size than the dimension of the whole Hilbert space.
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We also show as an application the analytical evaluation
of the spontaneous emission spectrum of an excited atom in
an empty cavity. This shows that the introduced method can
be manageable to deal with analytical calculations. In this
sense, it also offers the possibility to deal with other more
general classes of Liouvillians in a perturbative manner. In
particular the extension to nonzero temperature baths comes to
mind, as the Lindbladian term that accounts for the incoherent
pumping or gain acts typically with a smaller strength. In this
way the eigensystem obtained with this construction might
be used as a starting point to solve more general problems
using perturbation theory such as the evaluation resonance
fluorescence spectra [26,27] or the derivation of reduced
master equations [6].

To conclude we would like to mention that these ideas could
be also helpful in solving systems like the coupled oscillators
that describe optomechanical systems [28]. In this case the
free Hamiltonian of the optical mode serves also as a constant
of motion and the Lindblad operators of the mechanical mode
are of the dephasing type.
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