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Abstract. This paper studies an optimal stopping time problem for pricing perpetual American
put options in a regime switching model. An explicit optimal stopping rule and the corresponding
value function in a closed form are obtained using the “modified smooth fit” technique. The solution
is then compared with the numerical results obtained via a dynamic programming approach and also
with a two-point boundary-value differential equation (TPBVDE) method.
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1. Introduction. Given a probability space (Ω,F , P ), consider a process X(t)
which satisfies (in a strong sense) a stochastic differential equation of the following
form:

dX(t) = X(t)µε(t)dt + X(t)σε(t)dW (t), X(0) = x,(1)

where ε(t) ∈ {1, . . . , S} is a finite-state continuous-time Markov chain and W (t) is
a standard Wiener process. Here ε(t) and W (t) are defined on (Ω,F , P ) and are
independent. Moreover, for a given ε(t) = i, µi and σi (i = 1, . . . , S) are constants
and known.

The X(t) governed by (1) is generally referred to as a process with “regime switch-
ing (or shifts)” or “a Markov modulated (geometric) Brownian motion.” There is a
substantial body of literature on this type of model studied from different perspec-
tives. See, for instance, Di Masi, Kabanov, and Runggaldier [3] for mean variance
hedging issues; Guo [5, 7] for closed-form solutions for pricing European and perpetual
lookback options; Yao, Zhang, and Zhou [23] for numerical algorithms for computing
European stock options; Zhang [24] for suboptimal selling rules for investors; and
Zhang and Yin [25] for portfolio optimization problems.

In light of the celebrated Black–Scholes geometric Brownian motion model (see
Black and Scholes [1] and Samuelson [20]), which corresponds to a special case of (1)
with µ1 = · · · = µS and σ1 = · · · = σS , the primary motivation for the incorporation
of the Markov chain ε(t) is the conviction that various economic factors (e.g., interest
rates, quarterly GDP) and general information (e.g., corporate news releases, quar-
terly earnings reports) could be major catalysts for stock fluctuations. In addition, a
finite-state Markov chain has been proved to be simple yet rich enough to characterize
the uncertainty in many discrete events. These convictions have been further sub-
stantiated by numerical studies: Yao, Zhang, and Zhou [23] showed that the infamous
“volatility smile” can be created with a Markov chain of a single jump, instead of the
more complicated stochastic volatility model by Renault and Touzi [17].
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Our results. In this paper we consider an optimal stopping problem that arises in
pricing American put options, in the framework of this regime switching model. An
American option is a derivative that gives its holder the option but not the obligation
of exercising a share of stock at his/her choice of time τ (T ≥ τ ≥ 0), with a payoff
of (K − Xτ )

+ = max(0,K − Xτ ). Here, T is the expiration date and K is the
strike price. It is well known that under a risk-neutral measure, the value (or the
price) of this option is the expected discounted value of its future cash flow. (For
more details, readers are referred to Duffie [4] and the references therein for risk-
neutral option pricing for general models, to Guo [6] for the regime switching models,
and to Karatzas [10] for the mathematical formulation of the American option pricing
problem in the context of optimal stopping problems.) In particular, when T = ∞, the
option becomes perpetual, and our optimal stopping problem becomes the evaluation
of

V ∗(x, i) = sup
0≤τ≤∞

E[e−rτ (K −X(τ))+ | X(0) = x, ε(0) = i].(2)

Here, r > 0 is the discounted factor, and τ is an Ft = σ{(W (s), ε(s)) | s ≤ t}-
stopping time.

We derive an optimal stopping rule for (2) and its corresponding value functions
for S = 2 (see Remark 3.5). We show that the optimal stopping times are of threshold
type, with the technique of modified smooth fit. The main ingredient of the optimality
proof is Dynkin’s formula.

It is worth mentioning that a special case of this problem with no switching (i.e.,
µ1 = µ2, σ1 = σ2) was solved by McKean [14], and it is referred to in what follows as
“the McKean problem.” His result is the earliest instance in which optimal stopping
problems were related to option pricings. See also Jacka [9] and Robbins, Sigmund,
and Chow [19] for related literature on optimal stopping.

Organization. In section 2, we provide a detailed derivation of the closed-form
solution to (2). The optimality proof is given in section 3. In section 4, we numerically
compare the closed-form solution with numerical results derived from other previous
approaches, namely the dynamic programming approach (see Guo [7]) and the TPB-
VDE (two-point boundary-value differential equation) method (see Zhang [24]). The
paper concludes with additional discussion and open problems in section 5.

2. The derivation of solutions. Given (1), we will study problem (2) with a
two-state Markov chain (see Remark 3.5) for the general case K. Without loss of
generality, we assume that σ1 �= σ2 (see Remark 3.1) and that the Markov chain has
a generator of the form ⎛

⎜⎝ −λ1 λ1

λ2 −λ2

⎞
⎟⎠ ,(3)

with λ1, λ2 > 0.
Recall that when there is no regime switching, this problem corresponds to a

McKean problem [14] for which there exists a threshold x∗ such that the optimal
stopping rule is τ∗ = inf{t > 0 : X(t) �∈ (x∗,∞)}, and the corresponding value
function

V ∗(x)= sup
0≤τ≤∞

E[e−rτ (K −X(τ))+|X(0) = x]

= E[e−rτ∗
(K −X(τ∗))+|X(0) = x]
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is given by

V ∗(x) =

⎧⎪⎨
⎪⎩

(K − x∗)(x/x∗)γ if x > x∗,

K − x if x ≤ x∗.

Now, with a two-state Markov chain and with σ1 �= σ2, it is easy to see that
(X(t), ε(t)) is a joint Markov process (see Guo [7]). Therefore, it is natural to conjec-
ture that the optimal stopping rule is also of threshold type, except that the threshold
should vary depending on the state ε(t). In other words, we expect the existence of
two thresholds x1, x2 ≤ K, so that the optimal stopping rule is given as

τ∗ = inf{t ≥ 0 | (X(t), ε(t)) �∈ D},

where

D = {(x, i) | V ∗(x, i) > (K − x)+}.

The set D is referred to as the continuation region. Using τ∗, the corresponding value
functions are

V ∗(x, i) = E[e−rτ∗
(K −X(τ∗))+ | X(0) = x, ε(0) = i].(4)

We consider the case when D can be represented by two threshold levels x1 and
x2, i.e.,

D = {(x, 1) | x ∈ (x1,∞)} ∪ {(x, 2) | x ∈ (x2,∞)}.

Notice that x1 and x2 should depend on r, K, µi, σi, λi. For any x1 and x2, there
are only three possibilities, x1 < x2, x1 > x2, and x1 = x2. In the next sections
we discuss each of these cases and derive the values of these thresholds xi as well as
the corresponding value functions (denoted as Vi(x)) obtained from exercising this
type of stopping rule. We will then prove the optimality of these value functions, i.e.,
V ∗(x, i) = Vi(x), in Theorem 3.1.

2.1. Case 1: x1 < x2 ≤ K. At any given time t, if ε(t) = 1 and X(t) ≤ x1,
then one should stop immediately and obtain a payoff of (K − X(t))+; this follows
from the definition of x1 and x2. However, if X(t) ≤ x1 with ε(t) = 2, it is not optimal
to stop until X(t) ≤ x2. In view of Ito’s differential rule, this is translated into a set
of differential equations. For x ∈ [x1, x2], we have⎧⎪⎨

⎪⎩
(r + λ1)V1(x) = xµ1V

′
1(x) +

1

2
x2σ2

1V
′′
1 (x) + λ1(K − x),

V2(x) = K − x;

(5)

for x ∈ [x2,∞),⎧⎪⎪⎨
⎪⎪⎩

(r + λ1)V1(x) = xµ1V
′
1(x) +

1

2
x2σ2

1V
′′
1 (x) + λ1V2(x),

(r + λ2)V2(x) = xµ2V
′
2(x) +

1

2
x2σ2

2V
′′
2 (x) + λ2V1(x);

(6)
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and for x ∈ [0, x1],

V1(x) = V2(x) = K − x.(7)

Now, (6) has an associated characteristic function

g1(β)g2(β) = λ1λ2,(8)

where

g1(β) = λ1 + r −
(
µ1 −

1

2
σ2

1

)
β − 1

2
σ2

1β
2,

g2(β) = λ2 + r −
(
µ2 −

1

2
σ2

2

)
β − 1

2
σ2

2β
2.

Moreover, this characteristic function has four distinct roots β1 < β2 < 0 < β3 < β4

(see Guo [7]), such that the general form of the solution to (6) is given by

V1(x) =

4∑
i=1

Aix
βi ,

V2(x) =

4∑
i=1

Bix
βi ,

with Bi = liAi and li = l(βi) = g1(βi)
λ1

= λ2

g2(βi)
.

Note that when x → ∞, V1(x) and V2(x) are bounded. Thus, the positive powers
of x should be eliminated so that

V1(x) = A1x
β1 + A2x

β2 ,

V2(x) = B1x
β1 + B2x

β2 .

(9)

Next, we turn our attention to (5). The first equation is an inhomogeneous
equation whose solution can be written as

V1(x) = C1x
γ1 + C2x

γ2 + φ(x),(10)

where φ(x) is a special solution and γ1, γ2 are the two real roots of

µ1γ +
1

2
σ2

1γ(γ − 1) = r + λ1.

In particular, when r + λ1 − µ1 �= 0, one can choose

φ(x) =
λ1K

r + λ1
− λ1x

r + λ1 − µ1
.(11)

Now, we want to solve for A1, A2, C1, C2, x1, and x2. To this end, appropriate
boundary conditions are needed. Applying the smooth fit at x2, conditions V2(x+) =
V2(x−) and V ′

2(x+) = V ′
2(x−) suggest⎧⎪⎨

⎪⎩
l1A1x

β1

2 + l2A2x
β2

2 = K − x2,

β1l1A1x
β1

2 + β2l2A2x
β2

2 = −x2.

(12)
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Similarly, the smoothness of V1(x) at x1 and x2 yields⎧⎪⎨
⎪⎩

A1x
β1

2 + A2x
β2

2 = C1x
γ1

2 + C2x
γ2

2 + φ(x2),

β1A1x
β1

2 + β2A2x
β2

2 = γ1C1x
γ1

2 + γ2C2x
γ2

2 + x2φ
′(x2),

(13)

and ⎧⎪⎨
⎪⎩

C1x
γ1

1 + C2x
γ2

1 + φ(x1) = K − x1,

γ1C1x
γ1

1 + γ2C2x
γ2

1 + x1φ
′(x1) = −x1.

(14)

Combining the above three equations and following some algebraic manipulation, we
obtain an algebraic equation for x1 and x2:⎛

⎜⎝ x−γ1

1 0

0 x−γ2

1

⎞
⎟⎠F1(x1) =

⎛
⎜⎝ x−γ1

2 0

0 x−γ2

2

⎞
⎟⎠F2(x2),(15)

where

F1(x1) =

⎛
⎜⎝ 1 1

γ1 γ2

⎞
⎟⎠

−1 ⎛
⎜⎝ K − x1 − φ(x1)

−x1 − x1φ
′(x1)

⎞
⎟⎠

and

F2(x2) =

⎛
⎜⎝ 1 1

γ1 γ2

⎞
⎟⎠
−1

⎡
⎢⎢⎣
⎛
⎜⎝ 1 1

β1 β2

⎞
⎟⎠
⎛
⎜⎝ l1 l2

β1l1 β2l2

⎞
⎟⎠
−1 ⎛

⎜⎝ K − x2

−x2

⎞
⎟⎠−

⎛
⎜⎝ φ(x2)

x2φ
′(x2)

⎞
⎟⎠
⎤
⎥⎥⎦ .

In particular, if r + λ1 − µ1 �= 0, where φ(x1) is in the form of (11), then

F1(x1) = a1 + a2x1

and

F2(x2) = b1 + b2x2.

Here

a1 =

⎛
⎜⎝ 1 1

γ1 γ2

⎞
⎟⎠

−1 ⎛
⎜⎝ rK

r+λ1

0

⎞
⎟⎠ , a2 =

⎛
⎜⎝ 1 1

γ1 γ2

⎞
⎟⎠

−1 ⎛
⎜⎝ µ1−r

r+λ1−µ1

µ1−r
r+λ1−µ1

⎞
⎟⎠ ,

b1 =

⎛
⎜⎝ 1 1

γ1 γ2

⎞
⎟⎠

−1
⎡
⎢⎢⎣
⎛
⎜⎝ 1 1

β1 β2

⎞
⎟⎠

⎛
⎜⎝ l1 l2

β1l1 β2l2

⎞
⎟⎠

−1 ⎛
⎜⎝K

0

⎞
⎟⎠ +

⎛
⎜⎝ − λ1K

r+λ1

0

⎞
⎟⎠
⎤
⎥⎥⎦ ,
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b2 =

⎛
⎜⎝ 1 1

γ1 γ2

⎞
⎟⎠

−1
⎡
⎢⎢⎣−

⎛
⎜⎝ 1 1

β1 β2

⎞
⎟⎠

⎛
⎜⎝ l1 l2

β1l1 β2l2

⎞
⎟⎠

−1 ⎛
⎜⎝ 1

1

⎞
⎟⎠ +

⎛
⎜⎝ λ1

r+λ1−µ1

λ1

r+λ1−µ1

⎞
⎟⎠
⎤
⎥⎥⎦ .

The coefficients are given by⎛
⎜⎝ A1

A2

⎞
⎟⎠ =

⎛
⎜⎝ l1x

β1

2 l2x
β2

2

β1l1x
β1

2 β2l2x
β2

2

⎞
⎟⎠

−1 ⎛
⎜⎝ K − x2

−x2

⎞
⎟⎠ ,

⎛
⎜⎝ B1

B2

⎞
⎟⎠ =

⎛
⎜⎝ l1A1

l2A2

⎞
⎟⎠ ,

and ⎛
⎜⎝ C1

C2

⎞
⎟⎠ =

⎛
⎜⎝ xγ1

1 xγ2

1

γ1x
γ1

1 γ2x
γ2

1

⎞
⎟⎠

−1 ⎛
⎜⎝ K − x1 − φ(x1)

−x1 − x1φ
′(x1)

⎞
⎟⎠ .

With these coefficients, the value functions become

V1(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A1x
β1 + A2x

β2 if x > x2,

C1x
γ1 + C2x

γ2 + φ(x) if x1 < x ≤ x2,

K − x if x ≤ x1,

V2(x) =

⎧⎪⎨
⎪⎩

B1x
β1 + B2x

β2 if x > x2,

K − x if x ≤ x2.

(16)

2.2. Case 2: x2 < x1 ≤ K. The derivation of this case is analogous to that of
x1 < x2, and we only summarize the results below.

Let γ̃1 and γ̃2 be the roots of

µ2γ +
1

2
σ2

2γ(γ − 1) = r + λ2,

and φ̃(x) be a solution to

(r + λ2)V2(x) = xµ2V
′
2(x) +

1

2
x2σ2

2V
′′
2 (x) + λ2(K − x).

Then, x1, x2 satisfy⎛
⎜⎝ x−γ̃1

1 0

0 x−γ̃2

1

⎞
⎟⎠ F̃1(x1) =

⎛
⎜⎝ x−γ̃1

2 0

0 x−γ̃2

2

⎞
⎟⎠ F̃2(x2),(17)

with

F̃1(x1) =

⎛
⎜⎝ 1 1

γ̃1 γ̃2

⎞
⎟⎠
−1

⎡
⎢⎢⎣
⎛
⎜⎝ 1 1

β1 β2

⎞
⎟⎠
⎛
⎜⎝ l̃1 l̃2

β1 l̃1 β2 l̃2

⎞
⎟⎠
−1⎛

⎜⎝ K − x1

−x1

⎞
⎟⎠−

⎛
⎜⎝ φ(x1)

x1φ
′(x1)

⎞
⎟⎠
⎤
⎥⎥⎦
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and

F̃2(x2) =

⎛
⎜⎝ 1 1

γ̃1 γ̃2

⎞
⎟⎠

−1 ⎛
⎜⎝ K − x2 − φ(x2)

−x2 − x2φ
′(x2)

⎞
⎟⎠ ,

where l̃i = 1/li.

In particular, if r + λ2 − µ2 �= 0, then φ̃(x) is given by

φ̃(x) =
λ2K

r + λ2
− λ2x

r + λ2 − µ2
,

and

F̃1(x1) = ã1 + ã2x1,

F̃2(x2) = b̃1 + b̃2x2,

where

ã1 =

⎛
⎜⎝ 1 1

γ̃1 γ̃2

⎞
⎟⎠

−1
⎡
⎢⎢⎣
⎛
⎜⎝ 1 1

β1 β2

⎞
⎟⎠

⎛
⎜⎝ l̃1 l̃2

β1 l̃1 β2 l̃2

⎞
⎟⎠

−1 ⎛
⎜⎝ K

0

⎞
⎟⎠ +

⎛
⎜⎝ − λ2K

r+λ2

0

⎞
⎟⎠
⎤
⎥⎥⎦ ,

ã2 =

⎛
⎜⎝ 1 1

γ̃1 γ̃2

⎞
⎟⎠

−1
⎡
⎢⎢⎣−

⎛
⎜⎝ 1 1

β1 β2

⎞
⎟⎠

⎛
⎜⎝ l̃1 l̃2

β1 l̃1 β2 l̃2

⎞
⎟⎠

−1 ⎛
⎜⎝ 1

1

⎞
⎟⎠ +

⎛
⎜⎝ λ2

r+λ2−µ2

λ2

r+λ2−µ2

⎞
⎟⎠
⎤
⎥⎥⎦ ,

b̃1 =

⎛
⎜⎝ 1 1

γ̃1 γ̃2

⎞
⎟⎠

−1 ⎛
⎜⎝ rK

r+λ2

0

⎞
⎟⎠ , b̃2 =

⎛
⎜⎝ 1 1

γ̃1 γ̃2

⎞
⎟⎠

−1 ⎛
⎜⎝ µ2−r

r+λ2−µ2

µ1−r
r+λ2−µ2

⎞
⎟⎠ .

In short, if x1 > x2, then the corresponding value functions are

V1(x) =

⎧⎪⎨
⎪⎩

Ã1x
β1 + Ã2x

β2 if x > x1,

K − x if x ≤ x1,

V2(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B̃1x
β1 + B̃2x

β2 if x > x1,

C̃1x
γ̃1 + C̃2x

γ̃2 + φ̃(x) if x2 < x ≤ x1,

K − x if x ≤ x2,

(18)

with⎛
⎜⎝ Ã1

Ã2

⎞
⎟⎠ =

⎛
⎜⎝ xβ1

1 xβ2

1

β1x
β1

1 β2x
β2

1

⎞
⎟⎠

−1 ⎛
⎜⎝ K − x1

−x1

⎞
⎟⎠ ,

⎛
⎜⎝ B̃1

B̃2

⎞
⎟⎠ =

⎛
⎜⎝ l1Ã1

l2Ã2

⎞
⎟⎠ ,
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and ⎛
⎜⎝ C̃1

C̃2

⎞
⎟⎠ =

⎛
⎜⎝ xγ̃1

2 xγ̃2

2

γ̃1x
γ̃1

2 γ̃2x
γ̃2

2

⎞
⎟⎠

−1 ⎛
⎜⎝ K − x2 − φ̃(x2)

−x2 − x2φ̃
′(x2)

⎞
⎟⎠ .

2.3. Case 3: x1 = x2 = x∗ ≤ K. In this case, we have, for x ≥ x∗,

V1(x) = A1x
β1 + A2x

β2 ,

V2(x) = B1x
β1 + B2x

β2 ,

and V1(x) = V2(x) = K − x for x ∈ [0, x∗]. The smooth fit scheme leads to⎧⎪⎨
⎪⎩

A1(x
∗)β1 + A2(x

∗)β2 = K − x∗,

β1A1(x
∗)β1 + β2A2(x

∗)β2 = −x∗,

(19)

and ⎧⎪⎨
⎪⎩

B1(x
∗)β1 + B2(x

∗)β2 = K − x∗,

β1B1(x
∗)β1 + β2B2(x

∗)β2 = −x∗.

(20)

Necessarily, we have A1 = B1 and A2 = B2, and therefore, V1 = V2.
Defining V (x) = V1(x) = V2(x), then for x > x∗, the first equation in (6) reduces

to

rV (x) = xµiV
′(x) +

1

2
x2σ2

i V
′′(x),

for both i = 1, 2. This implies

V1(x) = V2(x) =

⎧⎪⎨
⎪⎩

(K − x∗)xβ

(x∗)β
if x > x∗,

K − x if x ≤ x∗,

where x∗ = Kβ/(β − 1) and β is the negative solution of

r −
(
µi −

1

2
σ2
i

)
β − 1

2
σ2
i β

2 = 0

for i = 1 or i = 2.

3. Optimality of the solution. Now, we prove the optimality of Vi(x) and xi

for i = 1, 2 derived in the previous section. For general results on stochastic calculus,
we refer to the books by Karatzas and Shreve [11], McKean [15], and Revuz and Yor
[18].

Recall

V ∗(x, i) = sup
τ

E[e−rτ (K −X(τ))+ | X(0) = x, ε(0) = i].
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Then we must prove the following claim.
Theorem 3.1. Suppose that (15) (resp., (17)) has a solution (x∗

1, x
∗
2) such that

0 < x∗
1 ≤ K and 0 < x∗

2 ≤ K. Assume Vi(x) > (K − x)+ on (x∗
i ,∞) and µi ≥ 0 for

i = 1, 2. Define

D = {(x, i) | Vi(x) > (K − x)+},

and let

τ∗ = inf{t ≥ 0 | (X(t), ε(t)) �∈ D}.

Then τ∗ is an optimal stopping time, and Vi(x) are value functions (i.e., Vi(x) =
V ∗(x, i)) and are given by (16) (resp., (18)).

Proof. It is easy to see that Vi(∞) = 0, i = 1, 2, and

D = {(x, 1) | x ∈ (x∗
1,∞)} ∪ {(x, 2) | x ∈ (x∗

2,∞)} .

For any v(x, i) ∈ C2, define

Lv(x, i) = xµi
∂v(x, i)

∂x
+

1

2
x2σ2

i

∂2v(x, i)

∂x2
+ λi(v(x, 3−i) − v(x, i)) − rv(x, i).

Let v(x, i) = Vi(x). Then Lv ≤ 0 on (x, i) ∈ D. Using Dynkin’s formula, we have

d(e−rtv(X(t), ε(t))) = e−rtLv(X(t), ε(t))dt + d(martingale).

For any stopping time τ , it follows, from a smooth approximation approach for vari-
ational inequalities in Øksendal [16, p. 204], that

v(x, i) ≥ E[e−rτv(X(τ), ε(τ))] ≥ E[e−rτ (K −X(τ))+].(21)

To show the optimality of τ∗, note that if τ∗ < ∞, then v(X(τ∗), ε(τ∗)) =
(K−X(τ∗))+. In this case, Dynkin’s formula yields v(x, i) = E[e−rτ∗

(K−X(τ∗))+].
Otherwise, let

Dk = D ∩ {x < k}, for k = 1, 2, . . . .

Let τk = inf{t ≥ 0 | (X(t), ε(t)) �∈ Dk}. Then we can show that τk → τ∗ a.s.
Moreover, as in Zhang [24, Theorems 4.5 and 4.6], we can show that, for each k,
τk < ∞ a.s. Using the definition of τk, we have, for k > K,

v(X(τk), ε(τk)) = v(X(τk), ε(τk))I{X(τk)=k} + v(X(τk), ε(τk))I{X(τk)<k}.

Note that

v(X(τk), ε(τk))I{X(τk)<k} = (K −X(τk))
+I{X(τk)<k} ≤ (K −X(τk))

+.

Moreover, note that 0 ≤ v(x, i) ≤ K and e−rτkI{X(τk)=k} → 0, as k → ∞, a.s. It
follows that

E[e−rτkv(X(τk), ε(τk))I{X(τk)=k}] → 0.

Therefore, we have, as k → ∞,

v(x, i) ≤ E[e−rτkv(X(τk), ε(τk)] ≤ E[e−rτ∗
(K −X(τ∗))+].
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Combining this with (21), we have

v(x, i) = E[e−rτ∗
(K −X(τ∗))+].

This completes the proof.
Remark 3.1. As mentioned earlier, when σ1 �= σ2, ε(t) becomes observable from

the quadratic variation of X(t) by Ito’s calculus (see McKean [14]) and yields the
joint Markov structure of (X(t), ε(t)). This is one of the key points for our analysis.
Although the case σ1 = σ2 is of independent interest from the filtering perspective
since ε(t) is no longer observable (see Wonham [22] for estimating the probability
distribution of ε(t), Liptser and Shiryayev [13] for general filtering, and Zhang [26, 27]
for state detection and hybrid filtering), the option pricing problem is exactly the
McKean problem, since a Girsanov transformation will reduce the regime switching
model to the Black–Scholes model.

Remark 3.2. When λ1λ2 = 0, the corresponding ε(t) reduces to a single jump
process, and the value functions can be solved sequentially using our method.

Remark 3.3. The optimality proof in Theorem 3.1 indicates the uniqueness of
the value functions and that of the corresponding xi’s. Moreover, the assumption
Vi(x) > (K − x)+ or the existence of x1, x2 would be redundant if we assume the C1

smoothness at the boundary x1, x2.
Remark 3.4. The assumption µi ≥ 0 guarantees that e−rtv(X(t), ε(t)) is a super-

martingale. This is not restrictive in general. Indeed, it is standard in risk-neutral
option pricing to have µ1 = µ2 = r ≥ 0, following a change of measure via the
Girsanov transformation.

Remark 3.5. It is clear from our analysis that a closed-form solution is possible
if and only if K, the number of states of ε(t), equals two, since in general an algebraic
equation of order 2K needs to be solved.

4. Numerical simulation. In this section we perform numerical experiments
to compare the analytical solutions with the TPBVDE solutions studied in Zhang
[24], together with the numerical results derived from a dynamic programming (DP)
approach.

To this end, we first briefly review both DP and TPBVDE methods.

4.1. Dynamic programming. The DP approach we adopt here is built on the
discretization method of the regime switching model proposed by Guo [6].

For a fixed T , let us divide the interval [0, T ] into N subintervals such that T =
Nh. Moreover, if we define

ui = eσi

√
h, li = e−λih, d = e−rh,(22)

pi =
µih + σi

√
h− 0.5σ2

i h

2σi

√
h

, pi + qi = 1,(23)

then the discrete counterpart of the process (X(t), ε(t)) becomes the two-dimensional
Markov chain (Xn, εn) that satisfies the recurrence

(Xn, εn) = η(εn,εn−1)
n (Xn−1, εn−1),(24)

where ηi,jn are independently and identically distributed (i.i.d.) random variables tak-
ing values uj with probability pj(χi,1−j + (−1)χi,1−je−λjh) and 1/uj with probability
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(1 − pj)(χi,1−j + (−1)χi,1−je−λjh), respectively, where (i, j = 1, 2) and

χ(i, j) =

⎧⎪⎨
⎪⎩

1, i = j = 1, 2,

0, i �= j.

In other words, (Xn, εn) is a random walk taking values on the set (um
1 un

2 , i) with
i = 1, 2 and m,n = 0,±1,±2, . . . such that Xn represents the stock price at time n
and εn the state of the market at time n.

Furthermore, the optimal stopping problem in question becomes

Ṽi(x) = sup
τ∈{1,2,...,}

E[dn(K −Xn)+|ε0 = i,X0 = x].(25)

Given the Markov chain X = ((Xn, εn),Fn, P ), the optimal stopping problem
(25) can be derived via the following dynamic programming principle:

W0(x) = (K − x)+,

Z0(x) = (K − x)+,

Wm(x) = max
{
Wm−1(x), dp1l1Wm−1(u1x) + dl1q1Wm−1

(
x
u1

)
+ d(1 − l1)p2Zm−1(u2x) + d(1 − l1)q2Zm−1

(
x
u2

)}
,

Zm(x) = max
{
Zm−1(x), dp2l2Zm−1(u2x) + dl2q2Zm−1

(
x
u2

)
+ (1 − l2)dp1Wm−1(u1x) + (1 − l2)dq1Wm−1

(
x
u1

)}
.

It is clear that Wm(x), Zm(x) are nondecreasing sequences, and

Ṽ1(x) = lim
n→∞

Wn(x),

Ṽ2(x) = lim
n→∞

Zn(x).

Evidently, Ṽ1(x) and Ṽ2(x) are bounded nonnegative decreasing functions, and

Ṽ1(x) ≥ (K − x)+, Ṽ2(x) ≥ (K − x)+. They are also called the least excessive
dominating functions.

If we define

x1 = min

{
x ≥ 0, min

i∈{1,2}
Ṽi(x) = (K − x)+

}

and

x2 = min

{
x ≥ 0, max

i∈{1,2}
Ṽi(x) = (K − x)+

}
,

then x1, x2 are the so-called free boundary for the stopping rule.
With proper smooth conditions, Ṽi(x) coincides with V (x, i) and hence with

V ∗(x, i). For more detailed discussions on the least excessive dominating function
and its application in option pricing, interested readers are referred to Guo [7] and
Shiryayev et al. [21].
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4.2. The TPBVDE approach. The TPBVDE approach was proposed by
Zhang [24] to derive certain selling rules of threshold type. The stopping rule is
to stop whenever the underlying stock price reaches two predefined bounds, an upper
bound B or a lower bound A:

τ0 = inf {t > 0 | X(t) �∈ (A,B)} .

This rule is suboptimal since it limits the holder’s choice to a smaller class of stopping
times. If one takes A = x∗ and B = ∞ in Case 3, then it leads to a preferable stopping
rule of τ0 = τ∗.

The basic idea is to first choose a region of (A,B) so that for any given 0 ≤ a < b,

X(0)e−b ≤ A ≤ X(0)e−a,

X(0)ea ≤ B ≤ X(0)eb.

Next, we choose A and B within this interval to maximize

E[e−rτ (K −X(τ)+].

With this given A and B, the value function can thus be derived via analysis of a
TPBVDE. (See [24] for details.)

4.3. Numerics. This section will report the numerical comparison results. First,
we take

r = 3, µ1 = µ2 = 3, K = 5,

λ1 = λ2 = 100, σ1 = 9, σ2 = 5,

and compare the closed-form solution with the numerical solutions from the DP and
TPBVDE methods; for the latter, we use the lower bound a = 0 and upper bounds
b = 3, b = 10. The numerical results are plotted in Figure 1 and labeled with V e(x, i),
V DP(x, i), V b=3(x, i), and V b=10(x, i), accordingly.

After 4000 iterations, with N = 100, 000 and h = 0.0001, we obtain the threshold
levels (x∗

1, x
∗
2) = (0.454, 0.617) for the DP approach, in comparison to the (x∗

1, x
∗
2) =

(0.441, 0.614) derived from the closed-form solution.
Figure 2 confirms Vi(x) ≥ (K − x)+ and illustrates the differences of these value

functions. As is shown, the accuracy of the two-point value method improves with
increases in the upper bound b. The DP approach approximates the exact solutions
better than the TPBVDE method for b = 3, while the converse is true with b = 10. In
addition, these differences equal zero on the intervals (x∗

1,∞) and (x∗
2,∞) for ε(0) = 1

or 2, respectively.
Next, we check the monotonicity of these threshold levels with respect to σi and

λi. First, we vary σ1 and keep all other parameters fixed. The resulting (x∗
1, x

∗
2)

are listed in Table 1. Both threshold levels x∗
1 and x∗

2 decrease with decreasing σ1.
This shows that a larger σ1 leads to a higher option premium and therefore a smaller
threshold level.

We then vary λ1. The result in Table 2 implies that both x∗
1 and x∗

2 increase with
λ1 increasing: this is because a larger λ1 implies a shorter period for ε(t) staying at
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Fig. 1. Value functions.

ε(t) = 1 and a smaller weight on σ1 = 9 (> σ2 = 5), which leads to smaller average
volatility.

These monotonicity properties may be better explained using the average volatil-
ity σ =

√
ν1σ2

1 + ν2σ2
2 , where (ν1, ν2) is the stationary distribution corresponding to

the generator of ε(t). The results in Tables 1 and 2 suggest that both x∗
1 and x∗

2
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Fig. 2. Differences between value functions.

decrease with decreasing σ.

Not surprisingly, the convergence rate of the DP approach depends on the choice
of parameters. This in essence has to do with the specific discretization method of the
underlying diffusion process. For example, with the same parameters specified above
and with perturbations on the magnitude of r, we found that the smaller the r, the
longer the computational time.
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Table 1

Dependency on σ1, given σ2 = 5.

σ1 7 8 9 10 11 12

Exact (.646,.764) (.531,.683) (.441,.614) (.369,.554) (.312,.505) (.266,.462)

DP (.660,.773) (.545,.687) (.454,.617) (.381,.557) (.324,.506) (.277,.465)

Table 2

Dependency on λ1, given λ2 = 100.

λ1 80 90 100 110 120 130

Exact (.425,.596) (.433,.605) (.441,.614) (.448,.621) (.456,.629) (.463,.637)

DP (.437,.599) (.446,.607) (.454,.617) (.461,.624) (.469,.632) (.476,.640)

As far as total CPU usage is concerned, the DP approach took substantially
longer time than the closed-form and the TPBVDE methods. For example, with
a basic Linux 7.2 i386 system, it took a little more than 30 minutes for our DP
solution to complete 4000 iterations, while it took just seconds for both the exact and
TPBVDE methods.

5. Concluding remarks. In this paper we have derived a closed-form solution
to the optimal stopping problem for pricing perpetual American put options in a
regime switching model.

It remains to be seen whether there are alternative methods for deriving the solu-
tion. One obvious candidate is the first passage time technique, which was exploited
in solving the McKean problem (McKean [14] and Karlin and Taylor [12]). However,
despite the two promising features that (i) (X(t), ε(t)) is jointly Markovian and (ii)
the free boundaries are of threshold type, it seems hard to explicitly solve the integral
equation system using results of the first passage time for regime switching models
(derived in Guo [8]). The main obstacle seems to be the instantaneous jump due to
the regime switching.

It is also of interest to extend our analysis to the case when T is finite. Needless to
say, this case would be mathematically interesting and practically appealing. However,
a closed-form solution for a finite time horizon problem with regime switching is
difficult to obtain. Even the special case with no regime switching remains an open
problem to date. Moreover, with all the structural insights gained from the infinite
case, it is not even clear whether the boundary is monotonic; i.e., will x1 < x2 imply
x1(T ) < x2(T )? Assuming this monotonicity condition a priori, Buffington and Elliott
[2] extended our analysis and obtained certain properties for the value functions of
American put options with T < ∞.

Nevertheless, our hope is that the closed-form solutions in this paper will provide
better understanding of and some insight into the nature of optimal stopping rules,
and our approach can be useful for numerical approximations of long-term American
options.

Acknowledgments. We thank the referees for a very careful reading of the
manuscript and many constructive suggestions.
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