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Abstract

This work addresses the inverse kinematics of serial robots using conformal ge-
ometric algebra. Classical approaches include either the use of homogeneous
matrices, which entails high computational cost and execution time, or the de-
velopment of particular geometric strategies that cannot be generalized to ar-
bitrary serial robots. In this work, we present a compact, elegant and intuitive
formulation of robot kinematics based on conformal geometric algebra that pro-
vides a suitable framework for the closed-form resolution of the inverse kine-
matic problem for manipulators with a spherical wrist. For serial robots of this
kind, the inverse kinematics problem can be split in two subproblems: the posi-
tion and orientation problems. The latter is solved by appropriately splitting the
rotor that defines the target orientation in three simpler rotors, while the former
is solved by developing a geometric strategy for each combination of prismatic
and revolute joints that forms the position part of the robot. Finally, the inverse
kinematics of 7 DoF redundant manipulators with a spherical wrist is solved by
extending the geometric solutions obtained in the non-redundant case.

Keywords: serial robots, redundant robots, inverse kinematics, geometric
algebra, conformal geometric algebra

1. Introduction

A serial robot is an open kinematic chain made up of rigid bodies, called
links, connected by kinematic pairs, called joints, that provide relative motion
between consecutive links. The point at the end of the last link is known as the
end-effector. Only two types of joints are considered throughout this work: rev-
olute (prismatic) joints, that perform a rotational (translational) motion around
(along) a given axis.
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Figure 1: The four D-H parameters: the length of link i (ai), the angle between the joint axes zi−1
and zi (αi), the distance between oi−1 and oi along zi (di) and the angle between xi−1 and xi
(θi). Clearly, if the (i− 1)-th and i-th joint axes intersect (are parallel), then ai = 0 (αi = 0)
and di (ai) is the length of the i-th link.

The end-effector position and orientation (also known as the pose) is ex-
pressed as a differentiable function f : C→ X, where C denotes the space of joint
poses, known as the configuration space of the robot, while X denotes the space
of all positions and orientations of the end-effector with respect to a reference
frame, known as the operational space of the robot. We say that the workspace
of the robot, denoted by W, is the volume of the operational space X that is
reachable by the robot’s end-effector. We attach a frame to each joint of the
robot so that it describes the relative position and orientation of the joint. The
relations between consecutive joint frames can be expressed by homogeneous
matrices based on the Denavit-Hartenberg convention [1]. This convention con-
sists of the use of four parameters, the D-H parameters (figure 1): one acting
as a joint variable – angle θi or displacement di, depending on the nature of
the joint – and the other three acting as constants – length ai, angle αi and di
or θi depending on which one describes the joint variable [2, 3]. In general, if
the nature of the joint i is not specified, its joint variable is denoted by qi. The
vector of all joint variables is denoted by q = (q1, . . . , qn) and is known as the
configuration. Therefore, the configuration space C is the space of joint config-
urations. A robot is said to have n degrees of freedom (DoF) if its configuration
can be minimally specified by n variables. For a serial robot, the number and
nature of the joints determine the number of DoF. For the task of positioning
and orientating its end-effector in the space, the manipulators with more than
6 DoF are called redundant, while the rest are non-redundant.

Therefore, we can associate a homogeneous matrix T i−1i with each joint
frame {i} such that it relates such frame to the preceding one, i.e., joint frame
{i − 1}. The first joint frame is related to the fixed reference frame. For each
configuration q ∈ C, f(q) can be represented using these homogeneous matrices
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as follows:
T0n = T01 · T12 · . . . · Tn−1n (1)

with

T0n =

(
R p
0 1

)
(2)

where R denotes the rotation matrix describing the end-effector orientation with
respect to the fixed reference frame and p is the vector that describes the end-
effector position with respect to that reference frame [1, 2, 3]. An important
class of serial robots are those with a spherical wrist. For these robots, the axes
of their last three joints intersect at a common point, known as the wrist center
point, or are parallel (the intersection point and, hence, the wrist center point,
is the point at the infinity). In this context, the end-effector position, p, can
be moved to the wrist center point pw by a fixed translation and, thus, the last
three joints would only contribute to the orientation of the end-effector.

This paper is focused on one of the most important problems in robot kine-
matics, namely the inverse kinematic problem. It consists of recovering the joint
variables, i.e., the configuration, given a target end-effector pose. This configu-
ration may not be unique, since non-redundant manipulators have up to sixteen
different configurations for the same end-effector pose [4], while for redundant
manipulators this number is unbounded [2, 3]. The opposite problem is known
as the forward kinematic problem and consists of obtaining the pose of the end-
effector given the value of the joint variables.

The inverse kinematic problem plays a major role in robotics, specially in
robot kinematics, motion planning and control theory. There are different meth-
ods used to solve it and they are usually categorized in two groups:

a) Closed-form methods: all the solutions are expressed in terms of the en-
tries of 0Tn. These methods strongly depend on the geometry of the ma-
nipulator and, therefore, are not sufficiently general. However, it is clear
that they have advantages over the numerical methods such as, for in-
stance, lower computational cost and less execution time. Additionally,
they give all the solutions for a given end-effector’s pose. Some closed-
form methods include strategies based on machine learning [5], matrix
manipulations [4, 6], the definition of the arm angle parameter [7, 8] and
different geometric methods [9, 10, 11].

b) Numerical methods: a good approximation q̃ of one of the solutions is
derived iteratively. Although these methods usually work for any ma-
nipulator, they suffer from several drawbacks such as, for example, high
computational cost and execution time, existence of local minima and nu-
merical errors. Moreover, only one of the sixteen (infinite) possible solu-
tions is obtained for non-redundant (redundant) manipulators. The most
common numerical approaches are the Jacobian-based methods [12, 13,
14, 15, 16, 17].

Among all the methods presented in this section, the closed-form methods are
the most suitable for serial robots since they allow us to obtain the set of all
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solutions with a small computational cost. This paper proposes a formulation
of the inverse kinematic problem based on conformal geometric algebra. This
formulation allows us to avoid the use of matrices and, due to its inherent geo-
metric nature, provides a geometrical description of the problem with which the
inverse kinematics can be solved easily. These properties are exploited in this
work to solve the inverse kinematics of serial robots with 6 DoF and spherical
wrist. For these manipulators, this problem can be decoupled into two sub-
problems: the position problem and the orientation problem. For the former, a
classification of the different combinations of prismatic and revolute joints that
describe the position part of the manipulator is made and a geometric strategy
is developed to solve each one of them, while, for the latter, we split the rotor
that defines the target orientation into three simpler rotors, each one of them
depending on a unique joint variable. Finally, the inverse kinematics of redun-
dant serial robots with 7 DoF and spherical wrist is solved by extending the
geometric solutions obtained in the non-redundant case.

The rest of the paper is organized as follows: Section 2 reviews the related
work and presents a basic introduction to geometric algebra. In Section 3,
a description of the forward kinematics of an arbitrary serial robot based on
conformal geometric algebra is given. The formulation of the inverse kinematic
problem and its solution are developed in Sections 4 and 5. In Section 6, the
inverse kinematics of 7 DoF redundant serial robots is solved by extending the
strategies introduced in Section 6. Finally, Section 7 presents the conclusions.

2. Related work and mathematical preliminaries

2.1. Related work
As mentioned in the introduction, some closed-form methods are usually

difficult to formulate and solve for non-redundant robots even if they have a
spherical wrist. For instance, the Pieper method [4] allows us to obtain the
solutions of the inverse kinematics as the solutions of a set of polynomials and,
for a general serial robot with a spherical wrist, at least one of these polynomials
is of degree four, which is, in general, difficult to solve.

On the other hand, the Paul method [6] consists of the manipulation of
the homogeneous matrices of the relation (1) so the following family of matrix
equations is obtained:(

T i−2i−1

)−1

· · ·
(
T01

)−1

· T0n = T i−1i · · · Tn−1n for i = 2, . . . , n. (3)

The objective is to isolate those non-linear equations that contain just one joint
variable. However, even if we find those equations, solving them analytically is,
in general, difficult. Similarly, the formulation and implementation of geometric
methods is also difficult. If, for instance, the circle intersection of a plane with a
sphere is considered, then a system of two equations (one of them non-linear)
must be solved. In this context, geometric algebra turns to be very useful. As
stated in the introduction, geometric algebra and, in particular, the conformal
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model of three-dimensional Euclidean space, provides a framework for model-
ing the kinematics and dynamics of rigid bodies that avoids the use of matrices.
In addition, the geometric entities such as points, lines, planes or spheres can
be represented with elements of the algebra.

Regarding the contributions using this framework, in [18, 19] analogous
versions to the Paul and Pieper methods are presented. In both works, an easy
and compact formulation of the problem is presented using the language pro-
vided by geometric algebra. However, they have the same drawbacks as the
original methods. The approach presented in [20] develops a fast and heuristic
method that solves the inverse kinematics of arbitrary redundant serial robots.
Nevertheless, the orientation problem is not treated and, since it is a numeri-
cal method, only one solution is obtained. Similarly, the approach presented in
[21] only solves the position problem for an anthropomorphic manipulator.

Other approaches are focused on the development of geometric strategies
based on conformal geometric algebra for particular robots. For example, in
[22], a kinematic model of a planar redundant manipulator is developed, while
in [23] the inverse kinematics and the singularity problem are formulated and
solved for a class of parallel robots. A 5 DoF serial robot is considered in [24],
where the geometric strategy followed is the same as in [21]. There, different
geometric objects are defined. These objects, as well as the relations between
them, are described using conformal geometric algebra. The angles between
such geometric entities correspond to the unknown joint variables. Finally, the
approach developed in [25] solves the inverse kinematics of a 6 DoF humanoid
leg. In [26], the authors solve geometrically the position problem of the 6
DoF Comau Smart-5 NJ-110, while in [27], particular solutions of the inverse
kinematics of the UR5 and Agilus KR6 R900 are given. All of these works are
based on the strategies introduced in [21, 24].

In this work, an approach to solve the inverse kinematics of arbitrary 6 and
7 DoF serial robots with a spherical wrist is presented. This approach is not
focused on a particular robot but applies to an entire class of manipulators. Al-
though not every single case is covered, the majority and most representative
ones are treated in this work. This allows to illustrate the power of confor-
mal geometric algebra when applied to the inverse kinematics of serial robots
with spherical wrist as well as to provide a set of easy-to-implement geometric
strategies which, in turn, is the main goal of the present work In particular, the
position problem is solved geometrically by extending the particular contribu-
tions of [21, 26, 28, 29, 30], while a novel method is developed for solving the
orientation problem. This method involves splitting the rotor that defines the
target orientation into three rotors, so that each one depends on just one joint
variable. The main advantage of this strategy lies in the fact that this approach
is still a closed-form method, i.e., all the solutions are obtained as analytical
expressions in terms of the end-effector pose. In addition, we are dealing with
arbitrary serial robots of 6 and 7 DoF, not just a particular robotic geometry. Fi-
nally, due to the simplicity of the problem formulation and the geometric nature
of conformal geometric algebra, such expressions are obtained easily than with
other closed-form approaches (such as, for instance, the ones reviewed here).
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2.2. Mathematical preliminaries
Geometric algebra provides strong advantages with respect to more com-

mon approaches such as, for instance, that geometric objects and Euclidean
transformations live in the same algebra, that the expressions from the algebra
are coordinate free and that it is well adapted to deal with more general fields in
science and engineering. In particular, it provides a compact and neat formula-
tion of robot kinematics and its main problems. Throughout this section, a brief
overview of both geometric algebra and conformal geometric algebra is pre-
sented. A more detailed treatment of the subject can be found in [31, 32, 33].

2.2.1. Geometric algebra
Let us consider the real vector space Rn with orthonormal basis {e1, . . . , en}.

The geometric algebra of Rn, denoted by Gn, is a vector space where the op-
erations defined in Rn, i.e., the addition and multiplication by scalars, are ex-
tended naturally. An additional operation, the geometric product, is defined on
the algebra Gn and, acting on vectors is defined as:

v1v2 = v1 · v2 + v1 ∧ v2, for v1, v2 ∈ Rn, (4)

where · denotes the inner or dot product and ∧ denotes the outer product.
The outer product of two vectors v1, v2 is a new element of Gn, which is

termed a bivector, is said to have grade two and is denoted by v1 ∧ v2. By
extension, the outer product of a bivector with a vector is known as a trivector
and is denoted by (v1 ∧ v2)∧ v3. Clearly, trivectors have grade three. This can
be generalized to an arbitrary dimension. Thus,

(v1 ∧ v2 ∧ · · ·∧ vr−1)∧ vr (5)

denotes an r-blade, an element of Gn with grade r.
A bivector v1 ∧ v2 can be interpreted as the oriented area defined by the

vectors v1 and v2. Thus, v2 ∧ v1 has opposite orientation and, from that, the
anticommutativity of the outer product can be deduced. Analogously, a trivec-
tor is interpreted as the oriented volume defined by its three composing vectors.
Since the volume generated by (v1 ∧ v2)∧ v3 is the same as the volume gener-
ated by v1 ∧ (v2 ∧ v3), it is also deduced that the outer product is associative.
Therefore, r-blades can be denoted simply as:

v1 ∧ v2 ∧ · · ·∧ vr. (6)

Linear combinations of r-blades are known as r-vectors, while linear combina-
tions of r-vectors, for 0 6 r 6 n, are called multivectors.

Applied to the basis elements {ei}, the geometric product acts as follows:

eiej =

{
1 for i = j
ei ∧ ej for i 6= j (7)
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Then, {e1, . . . , en} can be expanded to a basis of Gn that contains, for each
0 6 k 6 n, C(n, k) grade k elements:

Scalar: 1

Vectors: e1, . . . , en
Bivectors: {ei ∧ ej}16i<j6n
Trivectors: {ei ∧ ej ∧ ek}16i<j<k6n
...

n-blade: e1 ∧ · · ·∧ en

(8)

This allows to extend the geometric product defined in equation (4) to arbitrary
multivectors. Readers interested in a detailed explanation of this extension are
referred to [31]. The grade n element e1∧ · · ·∧en is known as the pseudoscalar
and is usually denoted by In. Pseudoscalars allow us to define one of the main
operators of geometric algebra, the dual operator. Its action over an r-vector Ar
is:

A∗r = InAr, (9)

where A∗r is an (n − r)-vector. In particular, we have that for two multivectors
A and B, the following identity holds:

(A∧ B)∗ = A · B∗. (10)

For R3, the geometric algebra G3 has the following basis:

{1, e1, e2, e3, e12, e13, e23, I3}, (11)

where eij = ei ∧ ej.
In G3, bivectors play an important role since they can be used to describe

spatial rotations. Indeed, in geometric algebra, rotations are described using
rotors. If a point x ∈ R3 is rotated by an angle θ around an axis `, the rotor R
defining such a rotation is:

R = cos
(
θ

2

)
− sin

(
θ

2

)
B, (12)

where B is the unit bivector, i.e., B2 = −1, representing the plane normal to `.
The rotated point x ′ is calculated by sandwiching x between R and its reverse
R̃:

x ′ = RxR̃ (13)

where

R̃ = cos
(
θ

2

)
+ sin

(
θ

2

)
B (14)

and RR̃ = 1. Furthermore, equation (13) can be extended to arbitrary multivec-
tors. In addition, to specify what unit multivectors are, a norm is defined in Gn.
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For an arbitrary multivector A, it is:

‖A‖ =
√〈

AÃ
〉
0
, (15)

where 〈·〉0 is the grade-0 projection operator, i.e., it extracts the scalar elements
of the argument multivector.

It will be seen in the following subsection that translations can also be de-
scribed by rotors in the conformal geometric algebra, a five-dimensional repre-
sentation of three-dimensional Euclidean space. In addition, general geometric
entities (such as points, lines, planes, circles, etc.) and the relations between
them are also easily described in conformal geometric algebra.

2.2.2. Conformal geometric algebra
The conformal model extends the real vector space R3 by adding two extra

basis vectors, e and e, with the property:

e2 = 1, e2 = −1. (16)

The enlarged vector space is usually denoted by R4,1. In addition, these two
extra vectors allow us to define two null vectors, i.e., vectors whose square
vanishes:

n0 =
1

2
(e− e) , n∞ = e+ e, (17)

where n∞ is associated with the point at infinity and n0 with the origin. How-
ever, in order to avoid confusion with the number of DoF of the robot, denoted
by n, an alternative yet accepted notation will be used throughout the rest of
the paper:

e0 =
1

2
(e+ e) , e∞ = e− e, (18)

where, again, e∞ is associated with the point at infinity and e0 with the origin,
Thus, the conformal geometric algebra of R3 is denoted by G4,1 and can

be seen as a geometric algebra of higher dimension (specifically, the geomet-
ric algebra of R4,1). Now, the two null vectors e∞ and e0 allow an intuitive
description of translations, that are formulated through translators as follows:

Tv = 1−
ve∞
2
, (19)

where the translation is performed in the direction of v ∈ R3. Since (ve∞)2 = 0,
translators can be seen as rotors in which the bivector squares to zero. Thus,
the translation of an element A ∈ G4,1 is done as with spatial rotations:

A ′ = TvAT̃v, (20)

where:
T̃v = 1+

ve∞
2
. (21)
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One of the most important advantages of conformal geometric algebra is that it
provides a homogeneous model for the n-dimensional Euclidean space. In par-
ticular, every point x ∈ R3 is associated with a null vector of G4,1 (including the
origin and the point at the infinity). This is done via the Hestenes’ embedding:

X = H(x) =
1

2
x2e∞ + e0 + x, (22)

where X is said to be the null vector representation of x. Now, we can easily
deduce the following relation [32]:

X1 · X2 = −
1

2
d(x1, x2)

2, (23)

where X1, X2 are the null vector representations of x1, x2 ∈ R3 and d(·, ·) de-
notes the Euclidean distance. As a consequence, the distance between two null
vectors of G4,1 can be defined via the Euclidean distance:

d(X1, X2) =
√
−2(X1 · X2). (24)

The relation (23) gives us a way to define geometric objects as elements of G4,1.
Let O be a geometric object, then k is said to be the inner representation of O if
for every point x ∈ O, H(x) = X · k = 0. Now, using the relation (10), we have
that 0 = (X · k)∗ = X ∧ k∗ so k∗ is also a representation of O. In this case, we
say that k∗ is the outer representation of O and, in order to avoid confusion, we
will denote it by K.

Now, for two different geometric objects O1 and O2 with outer (inner) rep-
resentations K1 and K2 (k1 and k2), we define its meet or intersection k1∨k2 as
the multivector

k1 ∨ k2 = (k1 ∧ k2)
∗ = k1 · K2. (25)

Analogously, if the outer representations of O1 and O2 have the same grade,
the angle defined by them is computed as follows:

∠(O1, O2) = cos−1
(
K1 · K2
|K1||K2|

)
. (26)

To describe the geometric objects we are going to use throughout this work,
let p1,p2,p3,p4 ∈ R3 be four different points with null vector representation
P1, P2, P3, P4 ∈ G4,1. Then:

• B = Pi∧Pj (with 1 6 i 6= j 6 4) is a bivector and the outer representation
of the pair of points pi and pj.

• L = Pi ∧ Pj ∧ e∞ (with 1 6 i 6= j 6 4) is a trivector and the outer
representation of the line with direction pi to pj. Its inner representation
is the bivector ` = ve123−(pi∧v)e123e∞, where v = pj−pi is its direction
vector.

9



• C = Pi ∧ Pj ∧ Pk (with 1 6 i 6= j 6= k 6 4) is a trivector and the outer
representation of a circle passing through the points pi,pj and pk. Its
inner representation is the bivector c = π ∧ s, where π and s are the
inner representations of the plane and sphere whose intersection defines
the circle.

• Π = Pi ∧ Pj ∧ Pk ∧ e∞ (with 1 6 i 6= j 6= k 6 4) is a 4-vector and the
outer representation of a plane passing through the points pi,pj and pk.
Its inner representation is the vector π = n + δe∞, where n denotes the
vector normal to the plane and δ, its orthogonal distance to the origin.

• S = P1∧P2∧P3∧P4 is a 4-vector and the outer representation of a sphere
passing through the points p1,p2,p3 and p4. Its inner representation is
the vector s = Z− 1

2
r2e∞, where Z is the null vector representation of the

center of the sphere and r, its radius.

3. A conformal geometric algebra formulation of forward kinematics

The conformal model of the three-dimensional Euclidean space G4,1 pro-
vides an elegant and compact way of describing the forward kinematics. Con-
trary to the classical approach, where we use the homogeneous transformation
matrices constructed with the D-H parameters, this approach is entirely based
on the use of rotors.

As stated in section 1, each joint frame is described with respect to the pre-
ceding one, i.e., the i-th joint frame is constructed from the (i−1)-th joint frame
by the successive application of rigid motions (translations and rotations). Since
both are described in G4,1 by rotors, for each joint i, the following rotors are de-
fined:

Tdi
= 1− di

zie∞
2
,

Rθi
= cos

(
θi

2

)
− sin

(
θi

2

)
xi ∧ yi,

Tai
= 1− ai

xi−1e∞
2

,

Rαi
= cos

(
αi

2

)
− sin

(
αi

2

)
yi−1 ∧ zi−1.

(27)

where {xi,yi, zi} (resp. {xi−1,yi−1, zi−1}) denotes the three basis elements of
the i-th (resp. (i− 1)-th) joint frame. Then, two main rotors can be constructed
from the previous ones:

Mθi
= Tdi

Rθi
,

Mαi
= Tai

Rαi
.

(28)

Notice that rotor Mθi
contains both joint variables, while Mαi

is a constant
rotor. Mθi

represents a screw motion around the i-th joint axis, zi, while Mαi

represents a screw motion around the xi−1 axis of the (i− 1)-th joint frame.
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Now, we can formulate the forward kinematics of a serial robot of n DoF as
follows:

X ′ =Mθ1
Mα1

· · ·Mθn
Mαn

XM̃αn
M̃θn

· · · M̃α1
M̃θ1

, (29)

where X ′ (X) is the null vector representation of either the end-effector (refer-
ence frame) position vector or the vectors defining the end-effector (reference
frame) orientation. We can compactly rewrite identity (29) as follows:

X ′ =M1(q1) · · ·Mn(qn)XM̃n(qn) · · · M̃1(q1) =M(q)XM̃(q), (30)

where M(q) =M1(q1) · · ·Mn(qn) and Mi(qi) =Mθi
Mαi

. Basically, what we
are doing is to transform the fixed reference frame (usually placed at the base
of the robot) into the end-effector frame according to configuration q.

4. Pose representation in conformal geometric algebra

If the desired end-effector pose is represented in matrix form as:

T =

(
R p
0 1

)
, (31)

then it is possible to construct a rotorM ∈ G4,1 that also represents such a pose.
Indeed, given the matrix representation of the reference frame:

T0 =

(
I3 0
0 1

)
, (32)

we can compute the rotor that transforms T0 into T . First, the position vector p
defines the rotor:

Tp = 1− ‖p‖pe∞
2
, (33)

that applied to e0 give us P = e0 + p + 1
2
p2e∞, i.e., the null vector represen-

tation of p. Now, to compute the rotor that relates the orientations determined
by the rotations matrices R and I3, we notice that both rotation matrices can be
seen as two sets of orthogonal vectors in R3, namely {e1, e2, e3} and {f1, f2, f3}.
Then, the problem is reduced to find a rotor transforming one set of orthogo-
nal vectors into another. In [31, pag. 103], a simple way of computing such
rotor is presented. It involves the use of the reciprocal frame. Associated with
any arbitrary set of orthogonal vectors {e1, . . . , en}, there exists another set of
orthogonal vectors, denoted by {e1, . . . , en} and defined by the property:

ei · ej = δij for all i, j = 1, . . . , n, (34)

where δij denotes the Kronecker δ. Such a set is said to be the reciprocal frame
of {e1, . . . , en}.

Now, following [31, pag. 103], the following formula is established:

RI3,R =
1+ f1e

1 + f2e
2 + f3e

3

|1+ f1e1 + f2e2 + f3e3|
, (35)
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Figure 2: Different combinations of the joints forming the position part of a serial robot with a
spherical wrist. Here, R denotes a revolute joint and P denotes a prismatic joint.

where, again, {e1, e2, e3} is the orientation of the reference frame, while {f1, f2, f3}
is the desired orientation of the end-effector. Finally, the rotor M that trans-
forms T0 into T is the product of rotors (33) and (35):

M = TpRI3,R. (36)

As stated in section 1, for any serial robot with a spherical wrist, the target
position p can be moved to the wrist center point pw by a fixed transformation.
Then, the new target position is pw and thus, it can be assured that the first
three joints contribute to the position and orientation, while the last three only
contribute to the orientation. This allows us to decouple the inverse kinematics
into the position and the orientation subproblems.

5. Solutions for non-redundant robots with spherical wrist

In this section, the position and orientation problems for a 6 DoF serial robot
with a spherical wrist are solved. Again, for the position problem different
geometric strategies are defined depending on the nature and disposition of the
joints along the kinematic chain. For the orientation problem, the rotor RI3,R is
split into three different rotors from which the joint variables can be obtained.

5.1. Position problem
Four different combinations of prismatic and revolute joints that constitute

the position part of the robot are analysed (figure 2). For each of them, a geo-

12



metric strategy is developed. It consists of computing the null vector represen-
tation of some auxiliary points placed at each joint to recover the corresponding
joint variables as the angle or displacement between two geometric objects de-
fined with such points. For each case, the point at the origin, e0, is denoted by
P0 and is placed at the base of the robot. Similarly, the target position pw is
expressed as a null vector, Pw, obtained through the Hestenes’ embedding (22).
Finally, depending on the information available, for a given geometric object it
could be convenient to use its inner representation k or its outer representation
K. Clearly, a geometric object described with one of these two representations
can be expressed in the other representation by using the dual operator (as
explained in section 2.2.2):

K = I5k. (37)

5.1.1. Three prismatic joints (P+P+P)
A scheme of the position part of a serial robot with three prismatic joints is

depicted in figure 2a. First of all, the case without offsets between consecutive
joints is considered, i.e., the axes of each pair of consecutive joints intersect.
Given the first translation axis z1, two of the rotors defined in (27) can be used
to obtain the joint axes z2 and z3 as follows:

z2 = Rθ2
Rα2

z1R̃α2
R̃θ2

,

z3 = Rθ3
Rα3

z2R̃α3
R̃θ3

.
(38)

The joint axis z3 together with the target position pw defines a line whose
inner representation is:

`3 = z3e123 − (pw ∧ z3)e123e∞. (39)

Now, a plane containing the joint axes z1 and z2 and passing through the point
P0 is also defined so its inner representation is:

π1 = z1 × z2, (40)

where × denotes the cross product between three-dimensional vectors.
Since the end-effector position is not restricted to a fixed plane, there are

not parallel prismatic joint axes. Moreover, z1 ∧ z2 ∧ z3 6= 0 and, thus, the
intersection of the line and plane represented by `3 and π1 is non-empty (as
graphically shown in figure 3a):

B = `3 ∨ π1, (41)

where B 6= 0 is a bivector (as deduced from identity (25)). Hence, it represents
a pair of points in conformal geometric algebra. However, since the intersection
between a line and a plane is a single point, the bivector B is of the form:

B = P2 ∧ e∞ (42)

13



𝑃!

𝑃"

𝑃#

𝜋$

ℓ%

(a) Computation of null vector P2 as the intersec-
tion point of `3 and π1.

𝑃!

𝑃$

𝑃"ℓ$

𝑃#

ℓ"

(b) Computation of null vector P1 as the intersec-
tion point of `1 and `2.

Figure 3: Geometric computation of the null vectors P2 and P1.

for a null point P2, that can be extracted from B as explained in [34, pags. 24-
26]. With this null point, the following lines are defined through their inner
representations:

`1 = z1e123 − (e0 ∧ z1)e123e∞,
`2 = z2e123 − (p2 ∧ z2)e123e∞, (43)

where p2 is the vector whose null vector representation is P2 and that is recov-
ered with the projection P : R4,1 → R3, that is, the inverse of the Hestenes’
embedding (22). In addition, if L1, L2 and Π1 are the outer representations of
the two lines and plane defined before, L1 ∧Π1 = 0 and L2 ∧Π1 = 0 and, since
the joint axes z1 and z2 are not parallel, they have non-empty intersection. This
can be seen depicted in figure 3b. However, this intersection is a special case.
Indeed

`1 ∨ `2 = (`1 ∧ `2)
∗ (44)

is a grade one element, i.e., a vector. Non-null vectors do not represent any
geometric object in conformal geometric algebra. Therefore, we need an alter-
native method for obtaining the intersection point. In this paper, we follow the
same technique as in [34, pag. 31] to compute P1 = `1 ∨ `2.

Finally, with the null vectors P0, P1, P2 and Pw, the joint variables are recov-
ered using the distance (24):

d1 = d(P0, P1), d2 = d(P1, P2) and d3 = d(P2, Pw). (45)

Now, the case where there is an offset between two consecutive joints is studied.
Offsets are always modeled by the four D-H parameters a, α, θ and d. If joint i
is revolute (prismatic), its joint variable can have an offset as well (aligned with
the joint axis by definition). In that case, we write θi = θ̂i + θi (di = d̂i + di),
where θ̂i (d̂i) denotes the real joint variable and θi (di), the length of the offset.

14
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placed at the end of the third link.

Figure 4: Offsets in the position part of serial robots with spherical wrist.

Let us suppose, without loss of generality, that there exists an offset of fixed
length between the first two joints (the other cases are analogous). Clearly, such
offset is either aligned with the common perpendicular between the first and
second joint axes and has length a2 or can be decomposed into two components
(as depicted in figure 4a): one aligned with such a common perpendicular (with
length a2) and the other one aligned with the first joint axis (with length d1).
Now, since the plane represented by π1 is defined with the joint axes z1 and z2
and, in this case, offsets do not change the direction of the joint axes, we can
translate it in the direction of the common perpendicular by an amount equal
to a2:

π ′1 = Ta2
π1 T̃a2

, (46)

where Ta2
is defined as in (27). Now, P2 ∈ π ′1 and, therefore, P2 can be obtained

from equation (41) as in the case without offsets. With P2, the inner represen-
tation `2 of a line is determined as in (43). Then, this line is transformed as
follows:

` ′2 = T−d1
T−a2

`2 T̃−a2
T̃−d1

, (47)

where, again, T−a2
and T−d1

are defined as in (27). Now, since the lines repre-
sented by `1 and ` ′2 belong to the same plane, they have non-empty intersection
and P1 = `1 ∨ ` ′2. This completes the solution for this case.

5.1.2. Two prismatic joints and one revolute (P+P+R)
The position part of a serial robot with two prismatic joints and one revolute

is depicted in figure 2b. There are different combinations of two prismatic joints
with one revolute but most of them are treated in a similar way. Only the
most relevant cases are fully developed here. Again, the case without offsets is
considered first.
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Figure 5: P2 as the intersection of two planes and one sphere.

Let us suppose that the first two joints are prismatic and the third one, rev-
olute. As in the preceding case, given z1, the joint axes z2 and z3 can be cal-
culated as in (38). Now, the inner representation of the plane that contains P0
and the joint axes z1 and z2 is defined as in (40) and denoted by π1. Since the
robot has 6 DoF, its end-effector position is not restricted to a fixed plane and,
thus, there exists an offset at the end of the third link, i.e., between the third
link and the set of joints that forms the spherical wrist. In addition, z3 cannot be
orthogonal to the plane represented by π1 (if it was, pw would always belong
to a fixed plane parallel to the plane represented by π1).

Since the last three joints of the robot do not contribute to the position of the
end-effector, they are not considered in the position problem. Therefore, this
offset can be seen as a displacement defined in the x–z plane of the third joint
frame, i.e., a displacement of length a4 in the x3 direction. Then, it is possible
to translate Pw to compensate the offset (as depicted in figure 4b):

P ′w = T−a4
PwT̃−a4

, (48)

where T−a4
is defined as in (27). Now, the null point P2 belongs to the intersec-

tion of two planes with one sphere. One of these planes is represented by π1,
while the other is defined as follows:

π2 = z3 + d(P0, P
′
w)e∞. (49)

Additionally, the inner representation of the sphere is defined as:

s1 = P
′
w −

1

2
(d23 + d

2
4)e∞, (50)

where d3 denotes the length of the third link and d4, the distance between
the origin of the third frame and pw measured in the direction of the z4 axis.
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Since the plane represented by π2 does not contain P2, we translate it in the z3
direction:

π ′2 = Td3
π2T̃d3

, (51)

where
Td3

= 1− d3
z3e∞
2

. (52)

The intersection of these geometric objects is graphically depicted in figure 5
and is computed as:

B = π1 ∨ π
′
2 ∨ s1, (53)

where B is a bivector. Again, this bivector represents a pair of points in the
conformal geometric algebra G4,1 so:

B = Q1 ∧Q2, (54)

for some null points Q1 and Q2. Clearly, if Q1 and Q2 belong to the workspace
W of the robot, then there are two possible null points P2, namely P21 = Q1 and
P22 = Q2. Therefore, we have two possible valid positions for the null point
lying between the second and the third joint. As we will see, this means that, in
this case, there are more than one set of solutions. Each one of these two null
points defines a line whose inner representation, `21 (`22) if P21 (P22) is used,
is computed as in (43). Similarly, the inner representation `1 of another line is
calculated as in (43). Now, two distinct null points P1 can be obtained. Indeed,
for i = 1, 2, P1i = `2i ∨ `1.

Finally, each pair of null points {P11, P21} and {P12, P22} allows us to compute
the outer representation of an extra plane that is used to calculate the joint
variable θ3:

Π31 = P11 ∧ P21 ∧ P
′
w ∧ e∞,

Π32 = P12 ∧ P22 ∧ P
′
w ∧ e∞. (55)

Then, using the identities (23) and (26), the joint variables d1, d2 and θ3 can be
derived easily. Clearly, we are going to have two different sets of joint variables
and, therefore, two different solutions:

d11 = d(P0, P11), d21 = d(P11, P21) and θ31 = ∠(Π1, Π31),

d12 = d(P0, P12), d22 = d(P11, P22) and θ32 = ∠(Π1, Π32).
(56)

As stated in section 1, serial robots with 6 DoF and spherical wrist have up
to eight distinct solutions for a given end-effector pose. Since the orientation
problem always has two different solutions for each solution of the position
problem, there is a maximum of four distinct solutions for the position problem.
This maximum is reached only in two cases: (1) when the three joints that
constitute the position part of the robot are revolute and (2) when the two of
the three joints that constitute the position part of the robot are revolute and the
other one is prismatic . Therefore, this case shows how the geometric strategy
introduced in this paper gives all the solutions for the inverse kinematics and,
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thus, it can be considered a closed-form method. However, from now on, in
order to simplify the notation for the remaining cases, we are going to consider
just one of the two points that can be extracted from a given bivector and,
hence, only one of the maximum of four different sets of solutions will be fully
developed.

Offsets between consecutive joints are treated analogously as in the previous
case. The main difference relies on the geometric object considered:

• If the offset is located between the first and the second joint, then P2
can be derived as in the preceding section, while P1 is computed as the
intersection `1 ∨ ` ′2, where ` ′2 is defined as in (47).

• If the offset is located between the second and the third joint, then d3 =
d̂3 + d3, where d3 is a component of the offset aligned with the z3 axis.
Now, P2 is extracted from:

B = π1 ∨ π
′
2 ∨ s

′
1, (57)

where s ′1 = T−d3
T−a3

s1T̃−a3
T̃−d3

is the inner representation of the sphere
represented by s1 after compensating the offset and T−a3

, T−d3
are de-

fined as in (27). Since the remaining geometric reasoning does not change,
P1 is obtained as in the case without offsets. This situation highlights an-
other advantage of conformal geometric algebra: rotors can be applied to
any geometric object which simplifies the formulation and the solution of
the problem.

Another relevant case is when the first joint is revolute, while the second and
third ones are prismatic. This case is solved in a similar way, but it is interesting
to point out some details. First, the null point P1 is obtained as the translation
of P0 along z1 an amount equal to the length of the first link, i.e., d1. Indeed:

P1 = Td1
P0T̃d1

(58)

with Td1
defined as in (27). Since the second joint is prismatic, θ2 is one of the

known D-H parameters and, hence, the joint axes z2 and z3 can be computed
as in (38). Now, P2 is derived as P2 = `2 ∨ `3, where `2 and `3 are defined as in
(39) and (43). The joint variables d2 and d3 are determined as in (45). Now,
we define the following two planes such as their outer representations are:

Π1 = P0 ∧ P1 ∧ Pw ∧ e∞,
Π ′1 = P0 ∧ P1 ∧ P

′
w ∧ e∞, (59)

where P ′w is the null vector representation of the three-dimensional point p ′w
computed with the obtained values for the joint variables d2 and d3 and with
θ1 = 0. Clearly, the first joint variable is obtained as θ1 = ∠(Π1, Π ′1).
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Figure 6: Triangle defined by z2 and z3.

5.1.3. Two revolute joints and one prismatic (R+R+P)
A scheme of the position part of a serial robot with two revolute joints and

one prismatic joint is depicted in figure 2c. As in the preceding case, there are
different subcases that can be treated similarly. Because of that, only the most
relevant cases are fully developed here.

First, let us consider the case where the first two joints are revolute and the
third one, prismatic. In addition, for this first case, we suppose that there are
no offsets between consecutive joints. The null point P1 is computed as in (58).
Now, the remaining part of the position part of the robot is restricted to the
plane determined by the joint axes z2 and z3. Furthermore, given the length
of the second link, d2, and the angle between the joint axes z2 and z3, α3, a
triangle as the one depicted in figure 6 is defined. Using the law of cosines, d3
can be easily obtained from the quadratic equation:

d(P1, Pw)
2 = d22 + d

2
3 − 2d2d3 cos(α3). (60)

Now, since d(P1, Pw) > d2 sin(α3), equation (60) has always two distinct real
solutions. Therefore, we have three different cases: (1) there are two distinct
positive solutions; (2) there are two distinct negative solutions and (3) there is
one positive and one negative solutions. It is clear that, since the displacements
measured by the D-H parameter d are always positive, the case with two distinct
negative solutions is undesirable. This case only holds when

d2 > d(P1, Pw) and d2 cos(α3) < 0. (61)

But, however, since d2 > 0, if d2 cos(α3) < 0, then cos(α3) < 0 and, thus, α3 ∈
[π/2, 3π/2]. Nevertheless, for those values of α3, d2 < d(P1, Pw) by definition
of the D-H parameters. This is clearly the opposite of the first inequality of
(61), which means that only the cases (1) and (3) are possible. In addition,
if there is a fixed offset aligned with the z3 axis, then d3 can be decomposed
as d3 = d̂3 + d3, where, as usual, d3 denotes the length of this offset. It
is straightforward to see that, also in this case, the joint variable d̂3 can be
obtained from (60).
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Figure 7: Computation of P2.

Finally, in order to obtain P2, we define two distinct spheres and one plane
through their inner and outer representations:

s1 = P1 −
1

2
d22e∞,

s2 = Pw −
1

2
d23e∞,

Π1 = P0 ∧ P1 ∧ Pw ∧ e∞.
(62)

Then, the intersection of these geometric objects is computed (and shown graph-
ically in figures 7a and 7b):

B = s1 ∨ s2 ∨ π1, (63)

where two different null points P2 can be extracted from B. Since we have al-
ready computed d3, we use the null points P0, P1 and P2 to derive the remaining
joint variables, namely θ1 and θ2. The following auxiliary geometric objects are
defined for that purpose:

• If the revolute joints have parallel joint axes:

L1 = P1 ∧ P2 ∧ e∞ and L2 = P2 ∧ Pw ∧ e∞. (64)

• If the revolute joints have not parallel joint axes:

Π2 = P0 ∧ P1 ∧ P2 ∧ e∞ and Π3 = P1 ∧ P2 ∧ Pw ∧ e∞. (65)

Now, for the parallel case, the joint variable θ2 is computed as follows:

θ2 = ∠(L1, L2). (66)
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Figure 8: Computation of θ2 as the angle betweenΠ2 andΠ3 for the case of non-parallel revolute
joint axes.

Since the joint variables θ2 and d3 are already known, the position of the end-
effector with θ1 = 0 can be computed. If we denoted such a three-dimensional
point p ′w, we can define an extra plane whose outer representations is:

Π ′1 = P0 ∧ P1 ∧ P
′
w ∧ e∞, (67)

where P ′w is the null vector representation of p ′w. Now, θ1 = ∠(Π1, Π ′1). For the
other case (shown graphically in figure 8), we have that:

θ2 = ∠(Π2, Π3), (68)

where, again, θ1 is computed as θ1 = ∠(Π1, Π ′1), where Π ′1 is defined with the
already obtained values of θ2 and d3 and with θ1 = 0.

Offsets are treated analogously to the preceding cases. Two different situa-
tions arise:

• If the offset is placed between the second and the third joints, then we
translate the null point Pw as follows:

P ′w = T−d3
T−a3

PwT̃−a3
T̃−d3

, (69)

where T−d3
and T−a3

are defined as in (27). Now, the rest of the reasoning
is as in the case without offsets. The null point P1 is calculated as in (58)
and, hence, a triangle such as the one depicted in figure 6 can be defined
using, instead of Pw, P ′w.
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• If the offset is placed between the first and the second joints, we can
simply translate the null point P0 in the direction x1 and amount equal to
a2, i.e., to compute P ′0 = Ta2

P0T̃a2
, where Ta2

is defined as in (27). The
remaining steps are as in the case without offsets, using P ′0 instead of P0.

Finally, let us consider another subcase: the first joint is revolute, the second
joint is prismatic and the third joint is again revolute. The null points P0 and P1
are obtained as in the preceding case. To calculate the null point P2, the geo-
metric reasoning used for the case where there are two prismatic joints followed
by one revolute is applied. Therefore, the planes and the sphere represented by
π1, π2, π3 and s1 are defined as in (40),(49),(50) and (55). Finally, the joint
variables are obtained as in the above-mentioned case.

5.1.4. Three revolute joints (R+R+R)
A scheme of the position part of a serial robot with three revolute joints is

depicted in figure 2d. First, the case without offsets is developed.
As in the preceding case, the null point P1 is computed as P1 = Td1

P0T̃d1
,

where Td1
is defined as in (27). Once P1 has been obtained, the null point P2

is computed by intersecting two spheres and one plane whose outer and inner
representations are:

Π1 = P0 ∧ P1 ∧ Pw ∧ e∞,
s1 = P1 −

1

2
a22e∞,

s2 = Pw −
1

2
(a3 + d3)

2e∞.
(70)

The intersection of these three geometric objects is, again, a bivector:

B = s1 ∨ s2 ∨ π1, (71)

where, as in the preceding cases, two different points P2 can be extracted from
B, each one leading to a different solution.

Now, two distinct cases are considered to obtain the joint variables: two
joint axes are parallel or no joint axes are parallel. The case where the three
joint axes are parallel is not considered because it will mean that the position
problem is a two-dimensional problem instead of a three-dimensional one, i.e.,
that the robot has less than 6 DoF. Hence:

• If there are two joints whose joint axes are parallel, then let us suppose
that the two parallel joint axes are the last two (the other cases are anal-
ogous). Then, the outer representation of the geometric objects required
for computing the joint variables are defined as:

L1 = P0 ∧ P1 ∧ e∞,
L2 = P1 ∧ P2 ∧ e∞,
L3 = P2 ∧ Pw ∧ e∞,

(72)
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joint axes.

and the joint variables are:

θ1 = ∠(x1, Π1), θ2 = ∠(L1, L2) and θ3 = ∠(L2, L3), (73)

where ∠(x1, Π1) cannot be computed using equation (26) since it is only
defined for blades of the same grade. However, the following relation
holds:

∠(x1, Π1) =
π

2
− ∠(n, x1), (74)

where n is the vector normal to Π1 (and can be easily retrieved from its
inner representation π1), so the computation of ∠(x1, Π1) reduces to the
computation of ∠(x1,n). Interestingly, this coincides with the approach
followed in [21, 24].

• If there are no revolute joints with parallel joint axes, we have that:

Π2 = P0 ∧ P1 ∧ P2 ∧ e∞,
Π3 = P1 ∧ P2 ∧ Pw ∧ e∞, (75)

and, therefore:
θ2 = ∠(Π2, Π3). (76)

Then, once θ2 is computed, the joint axis of the second joint, z2, can be
computed from the three-dimensional points p1 and p2 (which are the
Euclidean points whose null vector representation are P1 and P2 respec-
tively). Now, z3 is calculated as in (38) and we translate the null vector
P2 along z3 an amount equal to a3:

P ′2 = Ta3
P2T̃a3

. (77)
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This extra null vector allows us to define two additional planes:

Π4 = P1 ∧ P2 ∧ P
′
2 ∧ e∞,

Π5 = P2 ∧ P
′
2 ∧ Pw ∧ e∞, (78)

which, in turn, allow us to compute θ3 as follows:

θ3 = ∠(Π4, Π5). (79)

This is graphically depicted in figure 9. Finally, θ1 is computed as in the
previous cases.

Finally, the offsets are treated by transforming the proper geometric object. For
instance, if the offset is placed between the first and the second joint, then P0
is transformed into P ′0 = Ta2

P0T̃a2
, where Ta2

is defined as in (27). Then, the
remaining steps are as in the case without offsets using P ′0 instead of P0. If,
conversely, the offset is placed between the second and the third joint, then the
sphere represented by s2 is transformed into s ′2 = T−a3

s2T̃−a3
, where, again,

T−a3
is computed as in (27). Therefore, the null point P2 is extracted from the

intersection bivector π1 ∨ s1 ∨ s ′2 and the remaining steps are the same as the
ones in the case without offsets.

5.2. Solution of the orientation problem
Once the position problem is solved, the value of the joint variables q1, q2, q3

is known and it only remains to find q4, q5 and q6. With q1, q2, q3, we compute
the rotor defining the orientation of the frame attached to pw under the effect
of these joints and we denote it by R123. Now, recall that RI3,R denotes the ro-
tor representing the target orientation of the end-effector. Then, the rotor that
defines the rotation between R123 and RI3,R can be obtained from the relation
(figure 10):

RI3,R = R123R456, (80)

where the rotor R456 only depends on the joint variables q4, q5 and q6. Since
these joints are revolute, q4, q5 and q6 correspond to θ4, θ5 and θ6, respectively.

Now, we split R456 into three different rotors as follows:

R456 = R4R5R6, (81)

where:

Ri = cos
(
θi

2

)
− sin

(
θi

2

)
Bi, (82)

where θi is the angle of rotation Bi is the bivector defining the rotation plane.
Clearly, the angle extracted from each one of these rotors will correspond to one
of the sought joint variables. We expand (81) and obtain:

R456 = R4R5R6 = c4c5c6 − c4c6s5B5 − c5c6s4B4 − c4c5s6B6+

+ c6s4s5B4B5 + c4s5s6B5B6 + c5s4s6B4B6 − s4s5s6B4B5B6,
(83)
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Figure 10: Relation between the orientations

where ci = cos(θi/2) and si = sin(θi/2). In addition, R456 can also be written:

R456 = cos
(
θ

2

)
− sin

(
θ

2

)
B456 (84)

for a known angle θ and bivector B456. But, since RI3,R and R123 are rotors in
G3 (by definition), then R456 is also a rotor in G3 and, thus, we can write B456
as a linear combination with respect to the basis bivectors of G3:

B456 = β1e23 + β2e13 + β3e12 (85)

for some β1, β2, β3 ∈ R. Then, we can rewrite R456 as:

R456 = cos
(
θ

2

)
− sin

(
θ

2

)
β1e23 − sin

(
θ

2

)
β2e13 − sin

(
θ

2

)
β3e12. (86)

Now, as happens with Euler angles, different conventions can be adopted. De-
pending on the convention used, a particular set of equations is obtained. For
instance, by setting

B4 = e12, B5 = e13 and B6 = e12, (87)

that corresponds to the Euler angles convention ZYZ, the following relations
hold:

B4B5 = −e23, B5B6 = e23, B4B6 = −1 and B4B5B6 = e13. (88)

Hence, by regrouping the terms of (83) and equating them to (86), the follow-
ing set of equations is obtained:

α = c4c5c6 − c5s4s6
β ′1 = c4s5s6 − c6s4s5
β ′2 = −c4c6s5 − s4s5s6
β ′3 = −c5c6s4 − c4c5s6

 (89)
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where, again, ci = cos(θi/2) and si = sin(θi/2), while α = cos(θ/2) and β ′i =
− sin(θ/2)βi. Now, by squaring and adding the first and last identities, we
obtain:

α2 + (β ′3)
2 = cos2

(
θ5

2

)
, (90)

and, thus,

θ5 =

cos−1
(
±
√
α2 + (β ′3)

2

)
2

. (91)

Finally, if cos(θ5/2) 6= 0 and sin(θ5/2) 6= 0, then:

α ′ =
α

cos(θ5/2)
and β ′′2 =

−β ′2
sin(θ5/2)

(92)

and, therefore:

θ6 = sin−1(α ′) + sin−1(β ′′2 ) and θ4 = sin−1(α ′) − sin−1(β ′′2 ), (93)

which completes the resolution of the orientation problem. In case θ5 = 0 or π,
we are in the so-called representation singularity of the Euler angles convention
ZYZ [2] and, hence, we can only obtain the value of the sum θ4 + θ6. Indeed,
from (83) we can easily deduce that θ4+θ6 = 2 cos−1(α) if θ5 = 0 and θ4+θ6 =
2 cos−1(−α) if θ5 = π.

Although the obtained solutions are equivalent to Euler angles, the advan-
tages of the proposed method are evident. Rotor manipulation is more geomet-
rically intuitive than manipulating Euler angles. In fact, here, rotor manipula-
tion reduces to bivector manipulation, which can be seen as a ”linearization” of
the problem. In addition, it avoids the use of rotation matrices. Although rota-
tion matrices have good properties that facilitate their computations, they are
still more challenging to manipulate than rotors. In addition, their geometric
interpretation is not intuitive, while, as stated before, this is the case for rotors.

6. Solutions for redundant robots with spherical wrist

As stated in section 1, there is an infinite number of solutions for the inverse
kinematics of redundant serial robots. In [35], redundant robots are reduced
to non-redundant ones by the parametrization of the so-called redundant joints.
Once the analytical solutions for the inverse kinematics have been obtained,
particular instances for the parametrized joints are given. Hence, for each in-
stance, a set of a maximum of sixteen solutions is obtained (recall that, for
non-redundant robots, this is the upper bound for the number of distinct solu-
tions associated with a given end-effector pose). This can be regarded as the
addition of extra conditions in an undetermined problem. Therefore, these par-
ticular solutions form a subset of the set of all possible solutions for a given
target pose of the end-effector.
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Following this idea, the geometric strategies introduced and developed in
section 5.1 are extended to serial robots with 7 DoF and spherical wrist. Here,
the extra information is given in the form of extra null points Pi that allow the
definition of the geometric entities involved in the resolution. As it will be seen
in the following cases, the addition of these extra points entails the evaluation
of one of the joint variables. In addition, if the identification of the redundant
joints developed in [35] is applied to these manipulators, it is possible to know
exactly which null points Pi are needed in order to completely solve the position
problem.

For each one of the cases studied in the preceding section, an extra degree
of freedom – that corresponds either to a prismatic or revolute joint – is added.
Several distinct combinations arise, but as in section 5.1, only the most rele-
vant are fully developed in order not to repeat the already used geometric rea-
sonings. In particular, the cases to be considered are: P+P+P+P, P+P+R+P,
R+R+P+R and R+R+R+R where, again, P denotes a prismatic joint and R
denotes a revolute joint.

6.1. P+P+P+P
The objective is to find P1, P2 and P3 to obtain the joint variables d1, d2, d3

and d4. Since all the joints are prismatic, the joint axes z2, z3 and z4 can be
calculated as in (38). Now, the inner representation of two distinct planes:

π1 = z1 × z2,

π2 = z3 × z4 + d(P0, Pw)e∞ (94)

and two distinct lines is defined:

`1 = z1e123 − (e0 ∧ z1)e123e∞,
`2 = z4e123 − (pw ∧ z4)e123e∞. (95)

The intersection of the planes represented by π1 and π2 is a line containing
the null point P2. Indeed, its outer representation is L2 = π1 ∨ π2. Now, to
determine uniquely P2, another plane is needed. Such a plane contains the
joint axes z2 and z3. However, it also requires an extra point for setting its
distance to P0. Let us define P1 as the null point that verifies:

P1 ∧ L1 = 0 and d(P0, P1) = d1. (96)

Notice that the definition of P1 is equivalent to setting d1 at a particular value.
Now, the inner representation of the new plane can be defined as:

π3 = z2 × z3 + d1e∞ (97)

and, therefore, P2 can be extracted from the intersection bivector π3 ∨ `2.
Once P0, P1 and P2 have been obtained, P3 is found as the intersection of

the lines represented by `3 and `4, where:

`3 = z3e123 − (p2 ∧ z3)e123e∞. (98)
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Again, p2 represents the three dimensional vector whose null vector is P2 and
that is recovered using the projection P : R4,1 → R3. Finally, the remaining
joint variables d2, d3 and d4 are calculated as in (45).

6.2. P+P+R+P
Again, the joint axes z2 and z3 are calculated as in (38). However, since the

third joint is revolute, Rθ3
is not a constant rotor and, thus, the joint axis z4

cannot be computed. The inner representations of the line `1 and the plane π1
are defined as in (94) and (95). Now, an extra point is needed to completely
describe the position of z4. Let us denote by P3 the null point verifying:

∠(Π1, L3) = θ3, (99)

where `3 = z3e123 − (p3 ∧ z3)e123e∞. Since they are represented by blades
of different grade, the angle between Π1 and L3 cannot be computed using
equation (26). However, we can define a line whose outer representation L
satisfies:

∠(Π1, L3) =
π

2
− ∠(L, L3). (100)

Such a line is constructed as follows. The inner representation of Π1 is π1 =
n + δe∞, where n denotes the vector normal to the plane. Since Π1 passes
through the origin, its inner representation reduces to π1 = n. Therefore, we
can define a line passing also through the origin whose inner representation is
` = ne123. Finally, its outer representation, L = I5`, gives us the desired line.
Furthermore, this definition of the null point P3 is equivalent to setting the joint
variable θ3 to a particular value. Now, P3 is translated along the z3 axis:

P2 = T−d3
P3T̃−d3

(101)

where T−d3
is defined as in (27). Finally, we define the inner representation `2

of a line as in (43). The null point P1 is found as the intersection point `1 ∨ `2.
Once the points P0, P1, P2 and P3 have been obtained, the joint variables d1, d2
and d4 can be calculated as in equation (45).

6.3. R+R+P+R
The null point P0 is translated along the joint axis z1 by an amount equal to

the length of the first link, d1. Indeed, P1 = Td1
P0T̃d1

, where Td1
is defined as

in (27). Now, the inner representation of a sphere is defined as:

s1 = Pw −
1

2
d24e∞, (102)

where d4 corresponds to the length of the fourth link. To continue, an extra
point is needed. Let us denote by P3 the null point that satisfies:

P3 ∧ S1 = 0 and d(P1, P3) = d. (103)
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Since the second and third joint axes belong to the same plane, their links can
be regarded as the sides of a triangle where, in addition, the third side is the
line segment defined by P1 and P3. As shown in section 5.1.3, the law of cosines
can be applied in this situation to deduce the expression for the joint variable
d3. The length of both sides, as well as the angle between the joint axes, are
known: d2, d and α3. Therefore:

d2 = d22 + d
2
3 − 2d2d3 cos(α3), (104)

where, as explained in section 5.1.3, there are either two distinct positive solu-
tions or a unique positive solution for d3. This proves the equivalence between
the extra point P3 and the joint variable d3, i.e., given a particular instance of
d3, we use equation (104) to compute d and, with d, we define the null point P3
as in (103). Finally, the null point P2 is extracted from the intersection bivector
defined by the following geometric objects:

s2 = P1 −
1

2
d22e∞,

s3 = P3 −
1

2
d23e∞,

Π1 = P0 ∧ P1 ∧ P3 ∧ e∞.
(105)

Once all the points have been obtained, it is easy to recover the joint variables
θ1, θ2 and θ4 following the same steps as in sections 5.1.3 and 5.1.4.

6.4. R+R+R+R
As in the previous case, the null point P1 is obtained as the translation of P0

along z1. Thus, the points that remain to be found are P2 and P3. Now, as stated
in section 5.1.4, two spheres and one plane are required to calculated P3. One
of such spheres is defined as in (102). For the other, we first consider a triangle
whose sides are the second and third links. This triangle is similar to the one
defined in the previous case: the side lengths are d2 and d3, respectively, and
the angle between both sides is α3. The law of cosines allows to compute easily
the length d of the third side as:

d2 = d23 + d
2
2 − 2d2d3 cos(α3), (106)

where only the positive solution for d is taken. Now, the inner representation
of the other sphere can be defined:

s2 = P1 −
1

2
d2e∞. (107)

On the other hand, the outer representation of a plane, denoted by Π1, is com-
puted as in (70). Clearly, P3 can be extracted from the intersection bivector
defined by these three geometric entities.
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Once P3 has been obtained, two new spheres should be defined to calculate
P2. Their inner representations are:

s3 = P1 −
1

2
d22e∞,

s4 = P3 −
1

2
d23e∞.

(108)

Again, the intersection of these two new spheres with the plane represented by
Π1 is computed as:

B = s3 ∨ s4 ∨ π1, (109)

where the null point P2 is extracted from B. Finally, the joint variables θ1, θ2, θ3
and θ4 are found in a similar way as in 5.1.4 by means of P0, P1, P2, P3 and Pw
(with all their possible combinations).

7. Conclusions

This paper proposes a geometric strategy based on conformal geometric al-
gebra for solving the inverse kinematics of serial robotic manipulators with 6
and 7 DoF and a spherical wrist. For manipulators of this kind, the inverse kine-
matics can be decoupled into two subproblems: the position and the orientation
problems. The proposed approach solves the first subproblem by developing
particular geometric strategies for each combination of prismatic and revolute
joints that describe the position part of the robot. On the other hand, the second
subproblem is solved by splitting the rotor that defines the target orientation of
the end-effector into exactly three rotors, where each one of them depends on
just one joint variable.

For non-redundant serial robots, this approach gives the entire set of solu-
tions, while for redundant robots with 7 DoF, all the solutions are obtained as a
one-parameter family of particular solutions where the parameter is one of the
joint variables (the redundant joint). Therefore, we can consider the approach
introduced here as a closed-form method. Moreover, since offsets between con-
secutive joints in the position part of the robot are also treated, we are solving
the problem for simple and complex robot geometries. As reviewed in sections 1
and 2.1, closed-form methods are the most suitable for solving the inverse kine-
matics of serial robots. Since the most existing contributions of this kind are
based either in the use of complex geometric formulations or matrix manipula-
tions, the approach presented here becomes an elegant, efficient and intuitive
alternative.
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