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ABSTRACT 

The measurement of residual stress using the deep hole drilling method relies on the evaluation of 

the distortion of a hole in a plate under the action of far-field direct and shear stresses. While 

closed form solutions exist for isotropic materials, in previous work for orthotropic materials 

finite element analysis has been used to find the distortion. In this technical note, Lekhnitskii’s 

analysis is used to find closed form solutions for the distortion of a circular hole in an orthotropic 

plate. The results are compared with those of finite element analysis for a range of material 

properties with excellent agreement. 
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Supplementary Material 

The following Mathematica files have been included in the submission: Closed form expressions 

for hole edge displacement.nb, Demonstration of zero traction at the hole edge.nb and Solution 

for tension at an angle.nb. For each Mathematica file, a pdf version has also been included. 
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1. INTRODUCTION 

Deep hole drilling (DHD) is a residual stress measurement method that is particularly suitable for large, 

thick section components [1]. First, a hole is drilled through the thickness of the component. The 

diameter of the hole is measured accurately and then a cylindrical core of material around the hole is 

trepanned from the component, relaxing the residual stresses in the core. Finally, the diameter of the hole 

is re-measured and the change in diameter is used to calculate the residual stress. This calculation 

requires the evaluation of a set of coefficients which are obtained from the analysis of the distortion of a 

hole in a plate loaded by far-field direct and shear stresses. For isotropic materials these coefficients can 

be derived from a closed-form solution [2]. For orthotropic materials, earlier work [3] used finite element 

analysis (FEA) to derive the necessary coefficients but in this technical note Lekhnitskii’s analysis [4] is 

used to obtain a closed form solution. The DHD method described here assumes the residual stresses 

within the orthotropic plate are of a plane stress state, thus stresses normal to the plane of the plate are 

taken to be negligible. We remark that if significant residual stresses normal to the plane exist, it is 

possible to extend the DHD method to address this case, although the necessary procedure has only been 

demonstrated for isotropic materials [5]. 

The DHD technique is closely related to the centre hole drilling technique. In this technique a hole is 

drilled through the plate and the resulting distortion of the plate due to the release of residual stress at the 

hole is measured using either surface mounted strain gauges [6-8] or full-field measurement of 

displacement [9-12]. This work has been based on either the solution of Smith [13] or Lekhnitskii [4] for 

the deformation around a hole in an orthotropic plate. The Smith solution is only valid for a limited range 

of material properties, but for this range it gives identical results to the Lekhnitskii solution. 
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2. LEKHNITSKII’S ANALYSIS 

In this section we revise the equations presented by Lekhnitskii to find the stresses and displacements 

around an open hole in an orthotropic plate loaded away from the hole. We use the same notation as 

Lekhnitskii [4]. 

When the coordinate axes coincide with the principal material directions, the characteristic equation is 
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1E , 2E  are the Young’s moduli of the material in the major and minor principal material directions, 1  is 

Poisson’s ratio for loading in the major principal material direction and G  the shear modulus. In general 

there are four roots given by 
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Lekhnitskii recognised three cases. When  
2

1 1 1 22 4E G E E   and 1 12E G  , as is usual, the four 

roots are imaginary ( 0  ). When  
2

1 1 1 22 4E G E E   and 1 12E G   there are two pairs of equal 

imaginary roots ( 0   and   ). This case includes the case when the material is isotropic. Finally 

when  
2

1 1 1 22 4E G E E   there are four complex roots ( 0   and   ). For each of these three 

cases it can be shown that both the product and sum of the roots 1  and 2  are imaginary. 
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Lekhnitskii provides a solution for the stresses and displacements around an open elliptic hole in a plate 

loaded by a tension p  far away from the hole at an angle   to the major axis of the ellipse, where the 

axes of the ellipse coincide with the principal material directions. The solution is constructed by summing 

the stresses in a uniform plate loaded in tension at an angle   with those applied to the edge of the 

elliptic hole in such a way that the sum of the normal and shear stresses in the direction normal to the 

hole edge are zero. For simplicity the equations are specialised for a circular hole of radius a . 

The stresses around the hole in the principal material directions are calculated by 
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 (4) 

The first term in each of the equations is that due to the stress in a uniform plate while the second term is 

that due to the loading applied to the hole edge. 

In Eq. (4) 
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In general,  1 1z  and  2 2z  are represented by a Fourier series, but for the case considered here a 

solution is achieved using only the first term in the series. 

At the hole edge, the direct and shear stresses n  and n  may be calculated from Eq. (4) as 
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where the position around the hole from the major principal material direction is defined by the angle  . 

Note that at the hole edge 

 1 1cos sinz a     ,  2 2cos sinz a      (10) 

and 

1 2 cos sini       (11) 

The Mathematica file Demonstration of zero traction at the hole edge.nb included in the supplementary 

material shows that both n  and n  in Eq. (9) are zero for any angle   and for any angle  . Therefore 

the expressions derived by Lekhnitskii are precise. 

The displacements around the hole are evaluated by 
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Again, the first term in each of the equations corresponds to the displacements in a uniform plate while 

the second term corresponds to those due to the loading applied to the hole edge. These equations take 

0u v   at the centre of hole and assume zero rigid body rotation. 

In Eq. (12) 
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The Mathematica file Solution for tension at an angle.nb allows the calculation of the stresses and 

displacements at any point in a plate with a hole loaded in tension at an angle to the principal material 

direction. 

3. DISTORTION OF THE HOLE EDGE 

In this section the results of the previous description regarding Lekhnitskii’s solution are specialised to 

the radial distortion of the hole edge. In this form they are directly applicable to the deep-hole drilling 

(DHD) method for measuring the residual stress in an orthotropic composite laminate: 

 0 0 0

11 22 12

1

1
      ru

f g h
a E

 (16) 

where ru  is the radial displacement at the hole edge at angle   to the major principal material direction, 

𝑎 is the radius of the hole, 0

11 , 0

22  and 0

12  are far-field applied stresses, and f , g  and h  are 
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coefficients that are used in the DHD calculations of residual stress. These coefficients are dimensionless 

functions of   that depend on the orthotropic material constants. 

For applied stresses at the edge of the plate in the major principal material direction, that is for 0   and 

0

11p  , Lekhnitskii presents a closed-form expression for the hole edge displacement at positions on the 

hole edge defined by 0   and 2  . The Mathematica file Closed form expressions for hole edge 

displacement.nb included in the supplementary material shows that the hole edge displacement for 

intermediate angles of   may be calculated by 

 
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1 1 cos2
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In Eq. (17) and in following equations 
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Note that 0 1f n   and 2f k    

Lekhnitskii does not provide expressions for the cases of applied stress normal to the major principal 

material direction, or for applied shear. For the case of applied stress normal to the major principal 

material direction the Mathematica file Closed form expressions for hole edge displacement.nb shows 

that for 2   and 0

22p   

 2 21
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Again, note that 0g k   and 2

2g k nk    
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Finally, for applied shear stress the solution for the hole edge displacement is obtained by superposition 

of two cases where 4   and 0

12p  , and where 4    and 0

12p    giving 

 21
sin 2

2
h n nk n     (20) 

The relationships presented in this section apply to all three cases of the solution to the characteristic 

equation (Eq. (1)) since the relationship between the parameters k , n  and the complex parameters 
1 , 

2  in Eq. (18) are always valid. 

4. COMPARISON WITH FINITE ELEMENT ANALYSIS 

Finite element analysis was carried out using ABAQUS/CAE version 6.12 [14] to provide validation of 

the correctness of the equations for the distortion of the hole presented in the previous section. Three 

separate two-dimensional finite element analyses were performed as shown in Figure 1 to determine the 

distortion of the hole for far-field applied stress in the major principal material direction, for applied 

stress in the direction normal to the major principal material direction and for far-field shear. The material 

properties used for these analyses are for unidirectional carbon/epoxy (AS4/8552): 1 135 GPaE , 

2 9.6 GPaE , 5.2 GPaG   and 1 0.3  . The dimensions of the square model are 100 mm by 100 

mm and the radius of the reference hole is 2 mm, small enough compared to the size of the square model 

that the results are considered to be close to those for an infinite plate.   
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(a) (b) 

 

 

(c) (d) 
 

Figure 1. (a) Dimensions of the finite element model, (b) far-field loading 

applied to the model in the major principal material, (c) far-field loading normal 

to the major principal material direction and (d) far-field shear loading. 

 

The finite element mesh used to perform the analyses consisted in 8-node biquadratic elements (CPS8R) 

with reduced integration and plane stress conditions. There were 18 elements for every 90 degrees around 

the edge of the hole and 20 elements radially, between the edge of the hole and the edge of the plate, see 

Figure 2.  
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Figure 2. Finite element mesh used for calculation of the hole distortion 

 

Figure 3 shows a comparison of the values of the coefficients obtained by finite element analysis with the 

equations presented in this technical note (Eqs. (17), (19) and (20)). Note that gq
 and hq

 have been 

divided by k  so that the ranges of values are similar. 

 

Figure 3. Comparison of coefficients calculated by finite element analysis 

with the equations presented in this technical note based on the analysis of 

Lekhnitskii. 
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Two additional finite element studies were carried out for the ranges of material properties shown in 

Table 1. For the first study the value of 2E  was varied while the other material properties were held 

constant. For the second study the value of G  was varied. A further study was carried out where 1n  was 

varied but it was found that the coefficients did not change significantly and therefore the results of this 

simulation will not be reported here. 

Material property Study 1 Study 2 

E1 100 GPa 100 GPa 

E2 10, 20, 50, 80 GPa 10 GPa 

1n   0.3 0.3 

G 5 GPa 5, 10, 15, 20 GPa 

Table 1. Mechanical properties used in the models for study 1 and study 2. 

The results of the finite element studies are compared to those of the equations presented here in Figure 

4(a) where 2E  was varied and in Figure 4(b) where G  was varied. The figure shows the value of the fq  

coefficient for angles of 0q =  and 2q p= , the value of the gq  coefficient for angles of 0q =  and 

2q p=  and the value of the hq  coefficient for an angle of 4q p= . Some of the coefficients have been 

divided by 2k  to allow the values of the coefficients to be presented easily on the same graph. The 

figures show close agreement for a wide range of material properties. The vertical dashed line in Figure 

4(b) at 1 0.144G E »  shows the point when  
2

1 1 1 22 4E G E E   which divides the cases in the 

solution of the characteristic equation. It can be seen that the equations presented here are valid for all 

cases. 
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     (a) 

 
     (b) 

 

Figure 4. Comparison between coefficients calculated by Lekhnitskii’s 

solution and by finite element analysis using the models of (a) study 1 and 

(b) study 2. 

 

5. CONCLUSIONS 

A set of closed form solutions have been presented for the distortion of a circular hole due to far-field 

applied direct stress and shear stress in an orthotropic plate based on Lekhnitskii’s analysis. Excellent 

agreement with the results of finite element analysis has been demonstrated for a range of material 

properties. 
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