
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

(dASA-CH-lbtft3.i5) CLUSLU-i^U6d SOLUTIC65 Of	 kt!W-22d9b

QEBFOBhABILITY plicbigan Univ.) 30 p

ifC A03/MF A01	 C SCL 09 B
Unclas

G3/60 19928	 1

r.

CLOSED-FORM SOLUTIONS OF PERFORMAHILITY'

J. F. Meyer, J	yer, Senior Member, IEEE	
MpY

1^g2	a

	

r ,	
aE^E^V E

p
	Depatment of Electrical and Computer Engineering',	gpP1'

Department of Computer and Communication Sciences
The University of Michigan
Ann Arbor, 'Michigan 48109

If computing system performance is degradable then, as recognized in a
number of recent studies, system evaluation must deal simultaneously with
aspects of both performance and reliability. One approach is the evaluation of a
system 's "performability" which, relative to a specified performance variable Y,
generally requires solution of the probability distribution function of Y. In this
paper we examine the feasibility of closed -form solutions of performability when
Y is continuous. In particular, we consider the modeling of a degradable
buffer/miAtiprocessor system whose performance Y is the (normalized) average
throughput rate realized during a bounded interval of time. Employing an
approximate decomposition of the model, we show that a closed -form solution
can indeed be obtained.

I. INTRODUCTION

In the evaluation of computing systems, issues of performance and reliabil-

ity have traditionally been distinguished by regarding "performance" as "how

well the system performs, provided it is correct" (see [1] -[3], for example) and

regarding "reliability" as "the probability of performing successfully" (see [4]-

[7]., for example). Although this distinction is meaningful for hardware and

sof t r are architectures which exhibit "all or nothing" behavior in the presence of

fau_s, it becomes blurred in the context of distributed, multifunction systems

(computers, computer-communication networks, operating systems, data bases,

etc.) where performance is "degradable." As recognized in a number of recent

studies [8]-[i6], !:he evaluation of degradable systems calls for unified

perf ormance-reliaW ity measures which, in the terminology of [12], quantify a

system 's "performabiltty." Such measures, in turn, call for appropriate general-

izations of the types of analytic models and solution methods employed in per-

formance and reliability evaluation:

Tks work wait xupyxt ale 113r the NASA Ia*ey Research Center under Grant No. NSG 1306.

s

r,

a V. seW. ome.. se.e,.4d FMdWNNwr:	 2

To accommodate these needs, a general modeling framework was intro-

duced in [8] (and subsequently refined in [12]) wherein the "performance" of a

system S over a specified time period T is represented by a random variable Ys

taking values in a set A. Elements of A are the "accomplishment levels" (perfor-

mance outcomes) to be distinguished in the evaluation process. With respect to

Ys, the "performability" of S is the probability measure induced by Ys where, for

any measurable set B of accomplishment levels (B C A),

ps(B) = probability that S performs at

a level in B.

(For more precise development of this and related concepts, see [12].) Perfor-

mab'lity evaluation thus entails a complete probabilistic description of the per-

formance variable Ys, as opposed to partial information such as its expected

value, its variance, etc.

Prior work on the development of specific performability models and solu-

tions has dealt primarily with discrete performance variables ranging over a

countable and typically finite set of accomplishment levels (see [11], [14], for

example). In the overall process of system design and validation, the use of

these discrete variable methods is best suited to validation of a completed sys-

tam design with respect to "bottom line" performability requirements. However

if the evaluation results disclose that a design is deficient, the performability

data need not be indicative of just how the design should be modified. This is

due to the fact that lower level, design-oriented details are often suppressed by

a high level, discrete performance variable. Hence early validation (during the

design process) at lower system and subsystem levels is require: if negative

results are to indicate how the design should be modified.

In the latter validation context and, more generally, in the context of

"design aids," we believe that pertormability models and solutions can likewise

play an important role. Here, there is a need to consider more detailed aspects

of system and subsystem behavior(e.g., speed, responsiveness, etc.) which,

when modeled as performance variables, can assume a continuum of values.

Accordingly, the evaluation methods called for here must deal with continuous

performance variables as well as discrete performance variables. Moreover, to

support the investigation of various design trade-offs, there is a, need to develop

methods which yield closed-form performability solutions, expressed as a func-

tion of the underlying model parameters. Some initial results, aimed at fulfilling

i 91Wr. oww"Wm sdwu^ of PMffiW=d 01r	 3

these needs, are established in the presentation that follows. The presentation

expands on an earlier, more condensed description of this work that appeared in

[17].	 1

II. MODEL CONSTRUCTION

t
The system we consider is a total system S = (C,E) where, informally, com-

puter C and environment E can be described as follows. C is a degradable mul-

tiprocessor system consisting of N identical processors (N z 1) and a buffer

(queue) for temporary storage of incoming tasks (see Fig. 1). The buffer B is

assumed to have a finite capacity L (L z 0), that is, B is capable of storing at

most L tasks. Note that, by allowing N = 1, we are including the degenerate case

of a (nondegradable) uniprocessor system. Similarly, by allowing L = 0, we are

including the case where C actually has no buffer at all. The environment E is

the arrival of computational tasks at the input to the computer. We assume

here that tasks arrive randomly (one at a time) and that there is no upper,

bound on the total number of arrivals. More detailed descriptions of C and E will

be supplied momentarily.

Performance Variable

Regarding performance, we presume that, ideally, the user wants the com-

puter to process all tasks that arrive during some specified utilization period T.

However, due to the finite capacity of the buffer and to faults which may occur

in the buffer and processors, ideal behavior will generally not be attainable.

Accordingly, an interesting measure of performance in this context is the frac-

tion of task arrivals that C in fact processes during utilization. To define this

more precisely, if t e [0 ,m), let At = number of tasks that arrive during [O,t]

and let DL = number of tasks that are processed during [O,t]. Then, relative to
i

the utilization period T = [O,t], we take the performance of S to be the random'

r	variable

Dt
Ys =	= fraction of arrived tasks processed during T.	 (1)

Alternatively, if we let

cat	= average arrival rate during [O,t]	 (2)

I

L It KWW. Cbme"W . adeam dtFW&E..ry

6t A =-average throughput rate of S during [O,t]

then

Ys Pt =
Dtl

t =
6t

At	At/ t	at

average throughput rate of S during T

average arrival rate during T

4

(3)

(4)

In other words, the performance of S can also be interpreted as the "normalized

average throughput rate," normalized with respect to the average arrival rate

and averaged over the utilization period T = [O,t].

To solve the probability distribution function of Ys and, hence, the perfor-

mability of S, the specific nature of the computer C and environment E must be

spelled out in more detail, We begin with the environment.

Environment Modol

If, as above, we let At denote the number of task arrivals during the inLarval

[O,t], the environment E can be regarded as a stochastic process

Xs = jAt It E [0,03 where' the variables At take values in the state set

Qg = 10,1,2,...(. To designate the speciAc nature of Xs, we suppose further that

arrivals are "purely random" in the sense that interarrival times are indepen-

dent random variables with identical exponential distributions. This is

equivalent to saying that the arrival process XE is a Poisson process. Accord

Ing ly if we let

a = average arrival rate (in the long run),	 (5)

that is, a limat (see (2)), then Xg is uniquely determined by a.

Cbm vwtsr Model

As depicted in Fig. 1, the fault-free structure of the computer is determined

by values of two basic parameters:	 -

N = number of processors (N z 1)	 (8)

L = storage capacity of the buffer (L a 0).	 (7)

To describe how the system is altered by faults, we assume the following. If C is

fault-free (i.e., resources B. P l , P=,..., PN are fault-free) then all processors are

active (no "stand-bys") and are able to process tasks concurrently. Each pro-

cesstar is self-testing and, in the presence of a single faulty processor, the sys-

tem is able to recover (with a specified "coverage") to an (N-1)-processor

configuration, provided N z 2. In this configuration, C behaves the same as a

fault-free version of the system with N-1 processors (provided (N-1) z 2). When

only a single processor remains fault-free, fault recovery is no longer possible.

The input buffer B is assumed to be nondegradable, i.e., it either performs

correctly or fails. (In a more general example, the buffer could likewise be

treated as a degradable resource.) Either failure to recover from a processor

fault or failure of the buffer results in a total loss of processing capability (sys-

tem failure)

Under the above assumptions, the relevant structural configurations of C

can be represented by the state set QR J0,1,...,N(where state i is interpreted

as follows:

i : fault-free buffer and i fault-
free processors (1sisN)

0: system failure

Modeling how structure varies (probabilistically) as a function o pt time thus

reduces to a standard problem encountered in reliability modeling. In this

regard, let us assume that resources fail (become faulty) at constant rates equal

to their respective long run average failure rates. More specifically, for each of

the processors, let

Ap = processor failure rate

and let cp denote the coverage referred to above, i.e.,

_cp = probability of recovering from

a processor fault.

For the buffer B with capacity L, we assume that B is constructed from L

r	 "stages" (a stage can store a single task) where, for each stage,

Ab = buffer stage failure rate.	 (10)

Then,; if stages fail independently and any stage failure results in a buffer failure,

it follows that

As = buffer failure rate = Lk ti,.	 01.)

Finally, if we suppose that resource failures- are independent and permanent

(8)

(9)

(i.e., there is no "repair") then the structure of C can be modeled as the Markov

process XR of Fig. 2, where the state set of X R is QR.

Tile parameters A,(1 s L!9 N) and c i(2 s i s N) of Fig. 2 are formulated as

follows in terms of the basic parameters defined above. The transition rate A,

from structure state i is just the accumulated failure rate of fault-free

resources associated with state i, that is,

Af = iAp t AB = iAp ♦ LAb .	 (12)

The combined "coverage" ci in state i (when interpreted directly in terms of Fig.

2) is the probability of a transition to state i-1 given a transition from state i. In

terms of resource faults, c, is therefore the probability that a transition from

state i is caused by a processor fault and, in turn, C is able to recover from that

fault via self-test and reconftvration. As the latter is specified by the coverage

parameter cp (9), it follows, vie, a simple conditional probability argument, that

_ iAPcp _	Cp
ci iAp + LAb	

i +
LAb	(13)
i Ap

` For each structure state i E QR, we now proceed to construct a submodel

of C that accounts for the internal state behavior of C when its structure is fixed

at i. Suppose, first, that all resources are fault-free (i=N). Then when the buffer

is empty and at least one processor is idle, processing of an incoming task is

immediately undertaken by an idle processor. If all processors are busy, an

incoming task is stored in buffer B, provided B is not "full" (i . e., the number of

tasks stored in B is less than L); as soon as one of the processors becomes idle,

r

	

	it begins to process the task that was least recently stored in the buffer.

Finally, if B is full when a task arrives, the task is rejected (lost) and hence not

i

	

	processed at all. When only i processors are fault -free (structure state i,

0<i<N), the system behaves as described above if each occurrence of the word

"processor" is replaced by "fault-free processor." Upon failure of the system
L

(Mate 0), processing ceases and any incoming task is rejected.

^m On closer inspection and in queueing theoretic terms (see [18], [19], for

example), structure state 1 (1 s 1 s N) can be viewed as a queueing system with i

servers (the fault-free processors), a finite queue of size L (the buffer), and a

first-come -first-served queueing discipline. If, further, we assume that the pro-

cessing times for each fault-free processor are independent and exponentially

r	
_

^ V. show. CWMWWWM moor of rw`udmr
	

7

dstributed with parameter

= average processing rate (in the long run),	 (14)

then structure state i is an M/M/i/i+L queueing system. With this identification,

a submodei of C in structure state i follows immediately by taking the internal

states to be the set Q1,1 = Ij 10 s j s i+L; where j = number of tasks in C. Letting

XLi denote the submodel in question, that is, the stochastic representation of an

U/M/i/i+L queue with stale set Q1,i , it follows that XI,i is the "birth-death" Markov

process given by the state-transition-rate diagram of Fig. 3. (In case i=0, we

take XLO to be a degenerate process consisting of a single absorbing state j=0.)

The model parameters indicated in Fig. 3 are the task arrival rate a (2) associ-

ated with the environment X8, the processing rate µ (14) of each processor, and

the capacity L (7) of the buffer.

Composing the internal state submodels X t,i (Fig. 3) with the structure

model X$ (Fig. 2), C can be modeled as a single Markov process Xc with state set

QC = f(i,j) I E QR, j E Q1,,; where, as defined above, i is the structure state of C

and j is the number of tasks in C. The state-transition-rate diagram of the com-

posite model Xc is shown in Fig. 4. For a structure state i such that 2!9 1 !9 N. the

transition to state (0,0) indicated at the far left of the diagram applies to each

state (i,j) in the corresponding row of the diagram. Xc, together with the

environment model Xs, thus constitute the base model of the system S = (C,E).

However, with respect, to the performance variable Ys (see (1), (4)) we tdnd that

the relevant aspects of Xs have been incorporated in Xc, so that Xc can serve as

the base model of S, i . e., Xs=Xc.

As a base model, XC is similar in both its purpose and its appearance (Fig. 4)

to the kind of "workload models considered by Gay and Ketelsen [10]. One

difference is that we make no assignment of "capacities" to the states of the

model. Rather, the computational capacity of a given structural configuration is
r

implied by certain transition rates, i.e., in structure state i, the maximum pro-

cessing rate is 4u tasks /unit time. The major difference, however, is that the

systems considered in [10] are repairable, resulting in irreducible Markov

= models where all states are recurrent non-null. The model of Fig. 4, on the other

hand, has transient (non-recurrent) states; indeed, all the states of Xc are tran-

sient except for the absorbing state (0,0). This difference has a considerable

impact on techniques that can be used to solve the model, as we discuss in the

section that follows.

' III. MODEL SOLUTION

Since the performance variable Ys (see (1),(4)) is continuous, a solution of

performability requires solution of the probability distribution function (PDF) of

Ys. To this end and to simplify notation, let Y denote Ys and let Fy denote the

PDF of Y, that is, FY(y) = Prob[Y s y]. Then, ideally, we would like to solve Fy as

an exact formulation of FY(y), expressed in terms of y, t (the duration of utiliza-

tion), and the parameters of the base model Xs = Xc (Fig. 4). The parameters

involved, including'	those derived from basic parameters, are summarized in

Table L Such a formulation, however, would require (among other things) an

exact, time-dependent solution of the state probabilities of the base model.
3

Although this is possible, in principle, it is fraught with practical difficulties.

Indeed, for even the simplest models of this sort, e.g.,p 	an M/M/1 queue, such a

solution is far from trivial (see [18], pp. 73-78). On the other hand, if we are wil-

ling to settle for a good approximate solution, many of these difficulties may be

circumvented.

Adopting the latter strategy, let us suppose the system is such that the util-

ization time and the average failure times of the resources are much larger than

the average interarrival time of incoming tasks and the average processing time

I
of a processor, i.e.,

t, 1/ XP, 1 /Xb>> 1 /a, 111A.	 (15)

Note that this situation will prevail in most computing system applications since

the qu,'mtities on the left are usually multiples of hours while those on the right

are typically fractions of seconds.	For example, if t = 10 hours and 1/a = 1

second then	t= 36,000. ,Assuming (15) (as we do throughout the remainder
1 /a

r of the discussion), from the formulation of Aj (see (12)), it follows that

t, 1/ Al >> 1/ a, 1/µ.

Accordingly, for each structure state i (1&WN) let

Wi=total time spent in state i during [O,t]	 (16)

and suppose that the systems enters state i during utilization, i.e., WL > 0. Then,

with high probai.ie y, !1 >> 1/ a, 1/ Fc. In other words, the time spent in a struc-

ture state (it entered) is likely to be long compared to the intertransition times

Ays

i

i
L F. now. an"hn adwur of PW§Wnm^r

among the internal states of that structure (see Fig. 4).

Thus, to a good first approximation, the internal state behavior in structure

state i can be viewed as the long run. equilibrium behavior of the process. XU

(Fig. , 3). More precisely, if we let S i denote an M/M/i/i+L queueing system (the

system modeled by XL1) and we let

r1 = normalized average throughput rate
of S1 (in equilibruim)	

(17)

then r1 is the rate at which i contributes to the performance of S. Moreover,

accounting for the fact that r0=0, one can easily verify that

Y = r1 WI	 (18)
1s3

i

where, by (16), ^ is just the fraction of the period [0,t] that the system is in

structure state i.

Mathematically, the performance variable Y is now expressed as a function

of lower level variables r1 and Wi (ls i!9 N). By their definitions, each variable r;

can be solved in terms of the equilibrium behavior of its corresponding queueing

model XLI. As is well known (see [18], [19], for example), the equilibrium distri-

bution of each r1 is deterministic (i.e., r1 assumes a constant value with probabil-

ity 1) whence Y reduces to a linear combination of the (dependent) variables

Wt, Wi,..., WN. Accordingly, the first step is to obtain closed-form solutions of the

equilibrium rates r l , rz,..., rN.

Equilibrium. Solutions

As above, let Si denote an M/M/i/K queue, with K =i+L, and let pK denote the

equilibrium probability of finding Sj in state K (full queue). Then it is known (see

[19], for example) that the average arrival rate (in equilibrium) of tasks that

actually enter the system is a(l—pK). Since this coincides vrith the average
1

throughput rate of Si (in equilibrium), on normalizing by the arrival rate a we

conclude that	 9

{	 r1 = 1—pK.	 (19)

The general solution of pK is known (see [19], Appendix C, Table 8, for exam-

ple) and can be expressed as a function of i and the model parameters L=K

and µ. Moreover, the dependence on a and µ is only through their ratio
7

.a^

I'r

a. F. IW7W. a..A-ram s xun of A.a...lmy
	

10

U= a (20)

the so-called "traffic intensity." By (19), these remarks apply as well to r, which,

in a general form, can be expressed as follows:

1—
u	

un + ui
u —	

I U IL+i

	

i	n=o n!	i!	1	i!	i
if u^ii

	

u 	it
	u

JR 1 	tiL+i+ 1

n=o n! + V	i	ii	i

rj =

itE t +.L'
n=o n!	i!	

if u=i

E in	li
n=0 n!	i!

From these expressions it follows that, for fixed L, the normalized average

throughput rate ri is a monotonically decreasing function of u where, in the

limit, ri- O as u-+-. On the other hand, for fixed u, ri is a monotonically increas-

ing function of the buffer capacity L, as one would expect, since the larger the

buffer, the less chance there is of losing a task. Although we could examine the

functional properties of r i in greater detail, they are well understood (by people

familiar with queueing systems) and, for the purpose of the development that

follows, the above observations should suffice.

Solution of Plerfo77nabiiity

Since the variables ri assume constant values for fixed values of the base

model parameters, by (18) the performance variable Y can be expressed as a

linear combination of lower level random variables, viz.

N
Y = 1 ^; ri 1NL

	

t	
(22)

 ia i	 i

where Wi (16) is the total time spent in structure state i during [O,t]. Moreover,

as the variables Wt depend only on the structure model XR (Fig. 2), XR can serve

Os the base model for the remaining part of the solution process. Accordingly, it

equation (22) is extended to include state i = 0 where, trivially, ro = 0 (see (17)),

the equilibrium solutions ro, r l ,	rN may be thought of as "yield rates"

Ir

(21)

	

a F. sow. tinw&#h SdWA. of PWIM= Mr
	

11

assigned to states 0, 1, ..., N, respectively. In other words, the ri constitute a

"reward structure" (see [20]) for the Markov process XR. To the best of our

knowledge, however, the analysis of reward models has dealt exclusively with the

solution of expected rewards, e.g., for the variable in question, the expected

value E[Y] of Y. Performability evaluation, on the other hand, requires a com-

plete probabilistic description of Y, as provided by its PDF FY.

At this point, however, we find that a probabilistic characterization is

difficult to obtain since the random variables Wt1 , WL , • • , WN are (statistically)

dependent. This is due to the fact that the combined times spent in states

1, 2,..., N cannot exceed t. Thus, for example, Prob[WN'1 > OWN = t] = 0

whereas Prob[WN-1 > 01 0 < Wt < 0 = cN (see (13)), thereby demonstrating the

dependence between WN and WN -1 . In general, whenever performance is defined

with respect to a bounded utilization period, such dependencies are likely to

exist among variables that are closely related to the performance variable.

To circumvent this difficulty, a possible approach (which, in retrospect,

appears to be the key to solving such problems) is to search for a lower level

model which, at the expense of a more complex relation to Y. has a simpler pro-

babilistic description. For the situation in question, we obtain such a model by

considering the times spent in structure states 1, 2,..,, N over the entire

unbounded interval [0,-). More precisely, we take tha lower level model to be

the sequence of variables V = (V1• V$, ... , VN) where

	

Vi = lim Wt'time spent in	
(23)t-OW

state i during [0,m).

Although this model is no less "abstract" than that described by the sequence

(W^ WL,...,WN), it should be clear that it contains more information, thereby per-

mitting Y to be formulated as function y of V. To establish the specific nature of

y (referred to in [12] as a- "capability, function"), let v = (v1,v2,.,.,vN) denote, a

value of V and, for notational convenience, let aj denote the sum

Qi =vi 1SisN.
f•i

Then it is relatively easy to verify that

T I BMW. {ms s slbmr of ltiel^^^^

1 t rivi if a 1 s t
tin

Y(V) —7O -

	

	r^ + t i t
(ri rj)vi	if al+1 s t, °1 > t

rN if QN > t .

At the cost of a more complicated capability function, we are now at a level

where a probabilistic characterization is easier to obtain. This, in turn, can pro-

vide the solution we seek, since Y = y(V) and hence Fy(y)=Prob [y(V)sy]. Conse-

quently, if we let By= lb Ibsy; then

Fir(y) = Prob [Vay'1(B,)].	 (25)

To formulate these probabilities, we note first that, over the unbounded period

[0,m), a state trajectory (sample path) of XR (see Fig.2) will, with probability 1,

pass through a finite sequence of distinct states, beginning in some initial state

k and terminating in the absorbing state 0. For each state i > 0 that is visited,

the variable Va is thus the time of a single "sojourn' is state i. Moreover, since XR

is 'a Markov process, it is known (see [21], for example) that these sojourn times

	

are exponentially distributed and are conditionally independent, given the	 3

sequence of states that are visited.

With these observations, the solution of Fy can be conveniently decomposed

by considering the conditional PDF of Y with respect to the random variable

U = sequence of states (excluding 0) visited during [0,-).

More speciacally, by the transition structure of XR, if a trajectory begins in state

k where k > 0 and ends in state t (prior to entering state 0) then 1 s k and

U = (k,k-1,...,t).

If a trajectory begins in state 0 then no states (other than 0) are visited during

[0,.-), in which case

U = A (the null sequence).

Thus, for an N-processor system, there are N 2+1 + 1 possible values of U.
. J

Accordingly, if we let u denote a value of U and let

'	 Fy1U = conditional PDF of Y given U=u

then FY(Y) may be expressed as

12

(24)

a F s IM. OMN" mSOME.49PWOM..iew
	

13

FY(y) = EFYlu(y Iu)Prob[U=u]	 (26)
u

where the sum is taken over all possible values of U. Moreover, for a given u, the

terms FYIu(y I u) and Prob [U = u] can be solved as follows.

Regarding FYlu(y I u), if we let Cy=y-1 (E^) then, in view of (25), when Y is con-

ditioned by U=u we have

FYlu(y I u) = Prob[V E Cy I U = u].

This says, in turn, that Fy lu(y I u) can be solved by integrating the conditional

joint probability density function (pdf) of V given U = u over the region Cy. More

precisely, if we let

fv 1U = conditional joint pdf of V given U=u

then

FYIu(y, 	l u) = f ... f fv l u(v I u) dv l dv2	dvN .	 (27)
Cy

The formulation of fv l u(v I u) is straightforward, due to the independence of

the sojourn times Vi corresponding to states in the sequence u. Given u, for

each state i E u (meaning, with a slight abuse of notation, that i appears in the

sequence u), we know that Vi is exponentially distributed with parameter a i (see

(12) and Fig. 2); if iAu then, with probability 1, Vi = 0. Consequently, by the

independence of the Vi , if u is nonnull then

J xie- ^` if vi = 0, for all j A u
ic u

NIUM U) _ (28)

0 if vi > 0, for some j it u.

In case u = A (the null sequence) the formulation is trivial, i.e.,

1 if v1=v2= ... = vN=O
fvlu(vIA) _ (29)

0 otherwise.

Determining the multiple integral of equation (27), on the other hand, is gen-

orally quite difficult, due to the nonlinear form of the capability function y (see

(24)). Details of this process are illustrated, for the case N = 2, in the section

that follows.

r-

As for the second product term in equation (28), the solution of Prob[U = u]

is immediate by inspection of the transition-rate diagram of XR (Fig. 2). Given a

state sequence u, u may be viewed a trajectory of the "imbedded" discrete-time

Markov process X obtained by sampling XR each time it changes state. More-

over, by inspection of XR, if i Z 2, then Probl%+ i = i-1 ljC, = i] = ci (see (13)) and

Prob[XII+r = 01% = i] = 1 — c l; if i = 1, Prob[%+1 = 01& = 1] = 1. Accordingly, it

we let JpI 10!9 i s NJ denote the initial state probability distribution of XR, i.e.,

Pi = Prob[XR.o i]

then, for a nonnull sequence u = (k,k-1,...,1)

P',%CkCk-1 . .: Ci+1(1 — CI) if k > 12! 2

Prob[U = u]	
PkCkCk-I

 ...
 CZ if k > t 1	

(30)
pk(1 ck) if k = 1 z 2

Pi ifk=1= 1.

In rase u is the null sequence, the corresponding trajectory must initially be in

state 0 hence

Prob[U = A) = po .	(31)

This completes the description of the solution procedure which, in sum-

mary, involves the following steps:

1) For each structure state i, apply (21) to determine the equilibrium solution

ri of the normalized average throughput rate in state i.

2) For each state sequence u, apply (28), (29) to determine the conditional

joint pdf of Y given U = u and then apply (27) to determine the PDF of Y

given U = U.

3) For each state sequence u, apply (30), (31) to determine the probability

that U = u.
f

4) Combining the results of 2) and 3), apply (28) to determine the PDF FY of

the performance variable Y.

DUal-Processor Example

To illustrate this procedure and, particularly, the kind of solutions it is

capable of producing, let us consider the case of a buffered dual.-processor

(N = 2).

14

1 — uL+1

r, c	1 — U.	
if u Pe 1

L+1	if u=1
L+2

1 +2 — 2(2)L+l

itui2

re =	
1 + 2 — 2(2)L+s

2L+3
it u =2

2L + 5

6

t.	.

a V. Elpen. okM&s"sdoukEn dM -srr

Step l)

On substituting the values i=1 and i=2, respectively, in the genet+

brium solution (21) and after appropriate simpIMcations, r i and r= have

lowing solutions:

Stop 2)

When N = 2, there are four state sequences to consider: ul = (2,1), u= _ (2),

us = (1), and u, = A. Interpreting these sequences, if a state trajectory (of XR)

has sequence u l then the system is initially fault-free and, during [0, m), recovers

from a single processor fault before eventually failing. If the sequence is us, the

system is initially fault -free but tails on the first occurrence of a processor or

buffer fault. us says that one processor is initially faulty. w says that the sys-

tem failed prior to utilization. Applying Step 2) with respect to sequence u l (the

remaining cases are simpler and we omit their illustration), by (28) we have	 {

fviu(o) u t) = A l e -^
^
z•'Age

-^^^•^ i

To subsequently obtain its integral (see (27)) over the region Cr = JvIy(v) s y{, it

is necessary to characterize C^ for various ranges of y so as to determine the

specific limits of integration. This is done by specializing y (24) to the case in

point (N = 2) and examining the boundary y -l (y) that delimits the region C..

Thus, for example, if y is in the range r l s y < rs, then C. is the region of the vl-

vs plane depicted in Fig. 5. For convenience in stating the resulting solution. let

v, denote the quantity

rl

v^ =	 (34)

	

1! n^ OMi^lessrW^ill^l^i^
	

16

Note that when Xi (12) and r, (32), (33) are fully expressed, vj is a fuenction of i

and the base model parameters Ap, kb, L. a, andµ (sJe Table 1). Then. for the

instance where y is in the range r l s y < re, integea`ioia over Cr (see Fig. 5) yields

the solution

(vs-vl)eTg

V2 e-v'ty
a	(r:—rl)	_ e—vsti	-

.	 ^'xIu(YIul)	
—v

= 1 -	e atr +	
(ve-vl)	 '

Solutions with respect to other ranges of y and other values of U are obtained in

a like manner.
i..

step 3)

By the definitions of u l , us and on applying (30), (31), we have
b

Prob[U = ui] = p2 e- c ?

Prob[U = ue] = pz(1 - cg)

Prob[U = pal = pl ,

Prob[U = u4]-- po = 1 - (pi + pe)

Stop

Applying equation (26) to the results obtained in steps 2) and 3), we obtain

a closed-form solution of FY. expressed in terms of y, r, (see (32). (33)) and v,

(see (34)). This solution is displayed in Table 2. thereby completing the pro-

cedure.

Given FY, we thus obtain a closed-form solution of the performability ps for

intervals of the form Er lb I b !% y;, i.e.,

ps(By) = Fy(y).

To get a clearer picture of what this solution looks like, Figs. 6 and 7 display

plots of ps (E^) = Fy(y) as a function of y for various choices of t and the base

model parameters. Fig. 6 considers the system where t 240 (10 days),

u = a = 1.5. Ap = 10-0, ab = 10-4. cp = 0.999, p= = 0.9, p, 0.09, and po = 0.01.

The figure furnishes several plots showing how Fy(y) varies as L ranges from 0 to

10 in steps of 2. Fig. 7 is similar to Fig. 6 except that pe = 1.0 (whence

' ar.SqW. Ck=dV..MdMVW=dr+s...ry	 17

pi po = 0), i.e., the system is initially faalt-tree.

Solutien. with respect to an arbitrary measurable set B of accomplishment

levels can then be formulated via integration (see (12], eqn. (9)). In practice,

however, the sets B are typically intervals, in which case the performability

values are provided directly by ^y. For example, if one is interested in the

system's abil ty to perform within speci fied limits bo and b l (bo<bi) then

B=tb J bo<bsb 1 ;, whence ps(B)=Fy(b 1) —Fy(b0). Another example, and one that
x

arises even more frequently in practice, is the ability of the system to perform

above a specified "performance threshold" bo. In this case, B=Jb b>bo; and

ps(B)=1—Fy(bo)•

Application of the solution

To illustrate an application of the dual-processor solution (Table 2), let us

suppose the designer wants to maximize the probability that the normalized

average throughput rate exceeds a specified fraction bo. In other words, as dis-

cussed above, the accomplishment set in question is B= lb I b>bo; and we want to

maximize the probability ps(B)=1—Fy(b 0). Suppose further that the design

choice is the value of the buffer capacity L, which is interesting since this choice

can influence performance and reliability in a compensating manner. Were per-

formance the only issue, then L should be made as large as possible (subject to

other practical constraints such as cost) since the larger the buffer, the higher

the normalized average throughput rate (see (21)). On the kither hand, if relia-

bility were the only issue, then no buffer at all (L = 0) is the best choice since it

will minimize the probability of system failure. Realistically, however, both per-

formance and reliability are issues and, when considered simultaneously, we find

that. the performability (relative to a specified set B) can be optimized by an

appropriate choice of L.

For example, suppose B = f bib > 0.751, i.e., the system S performs within B

it the normalized average throughput rate is greater than 0.75. Then, for vari-

ous choices of the buffer stage failure rate Xb (the remaining parameter values

are as in Fig. 7), the variation of ps(B) as a function of buffer capacity L is

	

displayed in Fig. 8. In the case of a perfectly reliable buffer N = 0), we note	
i

that performability is a monotonically increasing function of the buffer capacity

4 as one would expect. On the other hand, when buffer stages fail at a nonzero

rate, we see that L can be chosen so as to maximize performability where, the

w

t'	rc

EX
1. -

4

iB

z

higher the failure rate, the lower the optimum value of L.

This is but one example of how such a closed-form solution of performability

might be applied. Indeed, for the solution in question (Table 2), we have only

begun to investigate its implications. Therefore, we intend to continue our

exploration of various properties of this solution. We also want to investigate

havy the modeling and solution techniques discussed herein might be extended

so as to apply to a more general class of systems.

REFERENCES

Fe	aeD. Ferrari, Computer Systems rformce Sualuation. Englewood Cliffs,
NJ: Prentice-Hall, 1978.

H. Kobayashi, Modeling and Analysis: An Introduction to System Perfor-
mance Eualuation Methodology. Reading, HA: Addison Wesely, 1978.

L. Moinroek, Queusing Systems, Mume II: Computer Applications. New
York: John Wiley do Sons, 1976.

W. G. Hourieius, X. C. Carter, and P. R. Schneider, "Reliability modeling
techniques for self-repairing computer systems," Proc. ACM 1989 Annual
Cbnf . pp. 295-309, Aug. 1969.

J. C. Laprie, "Reliability and availability of repairable structures," in Proc.
1875 Int I Symp. on Fault-Tolerant Computistg, Paris, France, pp. 87-92.
June 1975.

[6] Y.-1I. Ng and A. Avizienis, "A reliability model for gracefully degrading and
re airable fault-tolerant s stems 11 in Proc 19777 dnt Z S?/mP on Fault-P	 Y	 •
Tolerant O)mpu,ting, Los Angeles, CA, pp. 22-28, June 1977.

[7] A. Costes, C. Landrault, and J. C. Laprie, "Reliability and availability
models for maintained systems featuring hardware failures and design
faults," IEEE Trans. Comput., vol. C-27, pp. 548-560, June 1978.

[8] JP F. Mayer, "On evaluating the performability of degradable computing	 j

	

systems." in Proc. 1978 het? ,Syrup. on Fault-Tolerant Computing,	 j
Toulouse, France, pp. 44-49. June 1978.

f

	

	 [9] M. D. Heaudry, "Performance-related reliability measures for computing
systems." IEEE 7bim. Cbmput., vol. C-27. pp. 540-547. June 1978.

f

[1]

[2]

[3]

[4]

[5]

it

r ,'	L 1, . ^^	/i11r dllal^^^lsi^	 1 9

k .

[10] F. A. Gay and M. L. Ketelsen, "Performance evaluation for gracefully
degrading systems," in Proc. 1979 Int I Symp. on Fault-Tolerant Cbmput-
ing, Madison, Wisconsin, pp. 51-58, June, 1979.

,.	
[11] J. F. Meyer, D. G. Furchtgott, and L. T. Wu, "Performability evaluation of

the SIFT computer," IEEE Trans. Cbmput., vol. C-29, pp. 501-509. June
1980.

[12] J. F. Meyer, "On evaluating the performability of degradable computing
P systems," IEEE Trans. Comput., vol. C-29, pp. 720-731, Aug. 1980.

[13] X. Castillo and D. P. Siewiorek, "A performance-reliability model for com-
puting systems.',' in Proc. 1980 Intl $y p. Fault-Tolerant Computing,

i	 Kyoto, Japan, pp. 187-102, Oct. 1980.

[14] J. F. Meyer and L. T. Wu., "Evaluation of computing systems using function
als of a Markov procc as," in Proc. 14th Annual Hawaii, Int Z Conf. on Sgs-
tam ZNiences, Honolulu, HI, pp. 74 -83. Jan. 1981.

[15] X. Castillo and D. P. Siewiorek, "Workload. performance, and reliability of
digital computing systems," in Proc. 1981 Intl B3 mp. Fault-Tolerant
CbmputlAg, Portland, ME, pp. 84-89, June 1981.

[16], R. HuAlende, "A combined evaluation of performance and reliability for
degradable systems," in 'ACMISIGKETRICS Conf. on Measurement and
Modeling of Computer Systems, Las Vegas, NV, pp. 157-164. Sept. 1981.

[17] J. F.)Meyer, "Closed-form solutions of performability," in Proc. 1981 Intl
8`IIMp. Fault-Tolerant Computing. Portland, ME, pp. W71, June 1981.

[18] L. `Kleinroc k, Queuabeg Systems, Volume 1. Theory. New York: John Wiley
& Sons, 1975.

[19] A. 0. Allen, Probability, Statistics, and Queusing Theory— With Applica-
tions, New York: Academic Press, 1978.

[20] R. A. Howard, Dynamic Probabilisitc Systems, Val. II: Semi-Markov and
Decision Processes. New York: John Wiley, 1971.

[21] E. Cinlnr, Introduction to Stochastic Processes. Englewood Cliffs, NJ:
Prentice-Hall, 1975. 3

i
3

:q

', . _

CAPTIONS

Figure 1. Block diagram of C.

Figure 2. State-transition-rate diagram of XR.

Figure 3. State-transition-rate diagram of XLj.

Figure 4. State-transition-rate diagram of X,
4.

Figure 5. Cr for y in the range r1sy<rs.

Figure S. Plot of ps(By) = Fy(y) as a function of y for the indicated choices of t

and the base model P arameters.

Figure 7. Plot of ps(By) = Fy(y) as a function of y for the indicated choices of t

and the base model parameters.

Figure B. ps(B) as a function of the buffer capacity L.

Table 1.. Base model parameters.
i

Table 2. Closed-form solution of F..

L't

e

r

,s

a...^

€^

•^

^^

+
	

z
z
	

o
<

a
 z

+
z

Z
Z

Z
•

4
40

C
4

C
4

z

	

.
<
	

+

z

Cos
r
-
4

r
f

r
-
4

r
-
I•

z
	

•

	

r
-
1

N

b

^'s

4
J

4
J

4
J

	

Z
S

z
	

r
-
I

C
4

0
<

	

z
	

I	
P
<
	

r
-
I

w
.

z

0

th
r
4

T
-
L
I

T
-
K

t

r2

t(y-rl)

(r2-r1)

0

v2

r 1) v 2

v
p	 t(r2-y)	t

(r2-rl)

Fig.5 Cy .tor y in the range r1< y< r2'

i;

A
... 	

j

U

{

5e'
.4J

W

4
4>
1

w0

W
.	•
r
4

V

^
I

b
d

r
o

0

c
	

ro	
a^ 	

_^I
b

.
.
	
oS

-
N

1
o

u
ro

>
1

q

U

z

a
a
^
 4

J

--
o
	

ra
44 	

9:
0

o

to

o
'

..;	
c
	

o
o

c; 	
4
1

4
1

0r-4
	

w
a

o

S
d

w

s

L
n

(
1

O
^

c
	

II'

0
1
	

r--I
C
1

O

O

r
J
o

0
0

r
-
I

r
- 4
0

N
	

Z
!

11	
II'	

II

•

11'	
0
	

it
-

p
	

II

4' 	
a
	

u
a

a

a
,

Rfrtc^
O

r^.
V

4i
E

b
	

1

±
R

O

-
^
	

i

Ir ^
W

1

,
T
.n

I
+

-

$0
i':.

MO
D

W

_
O

i

W0
'

M

•
0

$
4

d
J
J

4

(.
O

C
s

^^

wb

a

o
b

a
̂

b
	

^

^
oa

a
^

o
w

c
^
	

c
c
	

o
C
5

0

to

4
J
	

4
J

a

0

rlo

-
,

w

'
r
l

M

C
t

1	
1	

C
^

0
.

O

O

O

O
	

O
O
	

II	
O
	

O
	

•
V
	

r--I	
r-I	

O
N

'

^
^
,
^

it	
II	

JI

.	
.	

•
r
l 	

O
	

O

II	
If 	

11

z

0 	
II

't 	
i

r^trs
1

LO
1

x}
L
nI

Ô
„
^

1
XL

0
..

O
O
	

r
• 1

XL
A

O
,

N
XIll

II	
II

II
If

IF
II

A

A

A
A

A
A

'
a

1

I
N

C
I
A

u

^
w

.

ww

^

a
^
'

A
'

O
'

m

I

4
4Ce0

trn

F
w
,
.

O
m
'

G
C

c
^m

':

y
C

AI
cr,.

c
s^

'a

t
p

w
,..,

Y
i
n,

o
-

L
n

A
C
A

A

c
n^

O
N
	

0
	

0
v
+
	

0
	

0

00
o

_ 	
A
	

N
w

II	
o

L
S

 ^
 3
	

'••I
O
	

r
-
I
	

O
O

a
a	

II	
n

n
u

n
o

m
	

..+
-
 a

u

ly

a

c
°

SYMBOL

°az
a task arrival rate (5)

2
L•:

N number of processors (6)

L buffer capacity (7)

H ap processor failure rate (8)

m
cp processor coverage (9)

E-4

u processor processing rate (14)
a4

p
U

x
buffer stage failure rate (10)

x
buffer failure rate (11)

a i transition rate from structure (12)

W
state i

N
a
Q c i coverage in structure state i (13)

,r

71
1

A
A
,
,

^

1
'.fit

^

1
1

^
..

W

41N
^7

I
I
N

`^
'

C
i

1

1

C
4

^
N

Q

Y
I

I
N

m
s'
"

7
v

1
O4
4

N7
N̂

V
(
N

I
♦

♦
V

>
1

^
N

•
N

,

1
1

i
r-Ij

d
l

m
If

E
N

N

1
1

t

r
l

N
N

r„1

N
M

v
f

N

V^
'

1
=

MN
h

	GeneralDisclaimer.pdf
	0006A02.pdf
	0006A03.pdf
	0006A04.pdf
	0006A05.pdf
	0006A06.pdf
	0006A07.pdf
	0006A08.pdf
	0006A09.pdf
	0006A10.pdf
	0006A11.pdf
	0006A12.pdf
	0006A13.pdf
	0006A14.pdf
	0006B01.pdf
	0006B02.pdf
	0006B03.pdf
	0006B04.pdf
	0006B05.pdf
	0006B06.pdf
	0006B07.pdf
	0006B08.pdf
	0006B09.pdf
	0006B10.pdf
	0006B11.pdf
	0006B12.pdf
	0006B13.pdf
	0006B14.pdf
	0006C01.pdf
	0006C02.pdf
	0006C03.pdf

