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ABSTRACT

In this paper, closed forms of the sum formulas for the squares of generalized Fibonacci numbers
are presented. As special cases, we give summation formulas of Fibonacci, Lucas, Pell, Pell-Lucas,
Jacobsthal and Jacobsthal-Lucas numbers. We present the proofs to indicate how these formulas,
in general, were discovered. Of course, all the listed formulas may be proved by induction, but that
method of proof gives no clue about their discovery. Our work generalize second order recurrence
relations.

Keywords: Fibonacci numbers; Lucas numbers; Pell numbers; Jacobsthal numbers; sum formulas.

2010 Mathematics Subject Classification: 11B37, 11B39, 11B83.

1 INTRODUCTION

Sequences have been fascinating topic for
mathematicians for centuries. The Fibonacci and

Lucas sequences are very well-known examples
of second order recurrence sequences. The
Fibonacci numbers are perhaps most famous for
appearing in the rabbit breeding problem,
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introduced by Leonardo de Pisa in 1202 in
his book called Liber Abaci. The Fibonacci
sequences are a source of many nice and
interesting identities. A similar interpretation
exists for Lucas sequence.

The sequence of Fibonacci numbers {Fn} is
defined by

Fn = Fn−1 + Fn−2, n ≥ 2, F0 = 0, F1 = 1.

and the sequence of Lucas numbers {Ln} is
defined by

Ln = Ln−1 + Ln−2, n ≥ 2, L0 = 2, L1 = 1.

The Fibonacci numbers, Lucas numbers and
their generalizations have many interesting
properties and applications to almost every field.
In 1965, Horadam [1] defined a generalization
of Fibonacci sequence, that is, he defined
a second-order linear recurrence sequence

{Wn(W0,W1; r, s)}, or simply {Wn}, as follows:

Wn = rWn−1 + sWn−2; W0 = a, W1 = b, (n ≥ 2) (1.1)

where W0,W1 are arbitrary complex numbers
and r, s are real numbers, see also Horadam [2],
[3] and [4]. Now these generalized Fibonacci
numbers {Wn(a, b; r, s)} are also called Horadam
numbers. The sequence {Wn}n≥0 can be
extended to negative subscripts by defining

W−n = −r

s
W−(n−1) +

1

s
W−(n−2)

for n = 1, 2, 3, ... when s ̸= 0. Therefore,
recurrence (1.1) holds for all integer n.

For some specific values of a, b, r and s, it
is worth presenting these special Horadam
numbers in a table as a specific name. In
literature, for example, the following names and
notations (see Table 1) are used for the special
cases of r, s and initial values.

Table 1. A few special case of generalized Fibonacci sequences.

Name of sequence Notation: Wn(a, b; r, s) OEIS: [5]
Fibonacci Fn = Wn(0, 1; 1, 1) A000045

Lucas Ln = Wn(2, 1; 1, 1) A000032
Pell Pn = Wn(0, 1; 2, 1) A000129

Pell-Lucas Qn = Wn(2, 2; 2, 1) A002203
Jacobsthal Jn = Wn(0, 1; 1, 2) A001045

Jacobsthal-Lucas jn = Wn(2, 1; 1, 2) A014551

The evaluation of sums of powers of these sequences is a challenging issue. Two pretty examples
are

n∑
i=1

F 2
i = FnFn+1

and
n∑

i=1

Q2
i =

1

2
(QnQn+1 − 4).

In this work, we derive expressions for sums of second powers of generalized Fibonacci numbers.
Our results generalize second order linear recurrence relations.

We present some works on sum formulas of powers of the numbers in the following Table 2.

Table 2. A few special study on sum formulas of second, third and arbitrary powers

Name of sequence sums of second powers sums of third powers sums of powers
Generalized Fibonacci [6,7,8,9,10] [11,12] [13,14,15]
Generalized Tribonacci [16]
Generalized Tetranacci [17,18]
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An application of the sum of the squares of the
numbers is circulant matrix. Computations of
the Frobenius norm, spectral norm, maximum
column length norm and maximum row length
norm of circulant (r-circulant, geometric circulant,
semicirculant) matrices with the generalized m-
step Fibonacci sequences require the sum of
the squares of the numbers of the sequences.
For generalized m-step Fibonacci sequences see
for example Soykan [19]. If m = 2,m = 3
and m = 4, we get the generalized Fibonacci
sequence, generalized Tribonacci sequence and
generalized Tetranacci sequence, respectively.
Next, we recall some information on circulant
(r-circulant, geometric circulant) matrices and
Frobenius norm, spectral norm, maximum

column length norm and maximum row length
norm.

Circulant matrices have been around for a
long time and have been extensively used in
many scientific areas. In some scientific areas
such as image processing, coding theory and
signal processing we often encounter circulant
matrices. These matrices also have many
applications in numerical analysis, optimization,
digital image processing, mathematical statistics
and modern technology.

Let n ≥ 2 be an integer and r be any real or
complex number. An n × n matrix Cr is called a
r-circulant matrix if it of the form

Cr =


c0 c1 c2 · · · cn−2 cn−1

rcn−1 c0 c1 · · · cn−3 cn−2

rcn−2 rcn−1 c0 · · · cn−4 cn−3

...
...

...
...

...
rc1 rc2 rc3 · · · rcn−1 c0


n×n

.

and the r-circulant matrix Cr is denoted by Cr = Circr(c0, c1, ..., cn−1). If r = 1 then 1-circulant
matrix is called as circulant matrix and denoted by C = Circ(c0, c1, ..., cn−1). Circulant matrix was
first proposed by Davis in [20]. This matrix has many interesting properties, and it is one of the most
important research subject in the field of the computational and pure mathematics (see for example
references given in Table 3). For instance, Shen and Cen [21] studied on the norms of r-circulant
matrices with Fibonacci and Lucas numbers. Then, later Kızılateş and Tuglu [22] defined a new
geometric circulant matrix as follows:

Cr∗ =


c0 c1 c2 · · · cn−2 cn−1

rcn−1 c0 c1 · · · cn−3 cn−2

r2cn−2 rcn−1 c0 · · · cn−4 cn−3

...
...

...
...

...
rn−1c1 rn−2c2 rn−3c3 · · · rcn−1 c0


n×n

.

and then they obtained the bounds for the spectral norms of geometric circulant matrices with the
generalized Fibonacci number and Lucas numbers. When the parameter satisfies r = 1, we get the
classical circulant matrix. See also Polatlı [23] for the spectral norms of r-circulant matrices with a
type of Catalan triangle numbers.

The Frobenius (or Euclidean) norm and spectral norm of a matrix A = (aij)m×n ∈ Mm×n(C) are
defined respectively as follows:

∥A∥F =

(
m∑
i=1

n∑
j=1

|aij |2
)1/2

and ∥A∥2 =

(
max
1≤i≤n

|λi|
)1/2

where λi ’s are the eigenvalues of the matrix A∗A and A∗ is the conjugate of transpose of the matrix
A . The maximum column length norm c1(.) and the maximum row length norm r1(.) of an matrix of
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order n× n are defined as follows:

c1(A) = max
1≤j≤n

(
n∑

i=1

|aij |2
)1/2

and r1(A) = max
1≤i≤n

(
n∑

j=1

|aij |2
)1/2

.

The following inequality holds for any matrix A = Mn×n(C):

1√
n
∥A∥F ≤ ∥A∥2 ≤ ∥A∥F .

Calculations of the above norms ∥A∥F , ∥A∥2 , c1(A) and r1(A) require the sum of the squares of the
numbers aij . As in our case, the numbers aij can be chosen as elements of second, third or higher
order linear recurrence sequences.

In the following Table 3, we present a few special study on the Frobenius norm, spectral norm,
maximum column length norm and maximum row length norm of circulant (r-circulant, geometric
circulant, semicirculant) matrices with the generalized m-step Fibonacci sequences which require
sum formulas of second powers of numbers in m-step Fibonacci sequences (m = 2, 3, 4).

Table 3. Papers on the norms.

Name of sequence Papers
second order↓ second order↓

Fibonacci, Lucas [24,22,25,26,27,28,29,21,30,31,32,33]
Pell, Pell-Lucas [34,35]

Jacobsthal, Jacobsthal-Lucas [36,37,38,39]
third order↓ third order↓

Tribonacci, Tribonacci-Lucas [40,41]
Padovan, Perrin [42,43,44]

fourth order↓ fourth order↓
Tetranacci, Tetranacci-Lucas [45]

Also linear summing formulas of the generalized m-step Fibonacci sequences are required for the
computation of various norms of circulant matrices circulant matrices with the generalized m-step
Fibonacci sequences. We present some works on summing formulas of the numbers in the following
Table 4.

Table 4. A few special study of sum formulas.

Name of sequence Papers which deal with summing formulas
Pell and Pell-Lucas [46],[47,48]

Generalized Fibonacci [49,50,51,52,53]
Generalized Tribonacci [54,55,55,56]
Generalized Tetranacci [57,58,59]
Generalized Pentanacci [60,61]
Generalized Hexanacci [62]

2 SUMMING FORMULAS OF GENERALIZED FIBONACCI
NUMBERS WITH POSITIVE SUBSCRIPTS

The following theorem presents some summing formulas of generalized Fibonacci numbers with
positive subscripts.
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Theorem 2.1. For n ≥ 1 we have the following formulas: if (s+ 1) (r + s− 1) (r − s+ 1) ̸= 0 then
(a)

n∑
i=1

W
2
i =

(1 − s)W2
n+2 + (1 − s − r2 − r2s)W2

n+1 + 2rsWn+1Wn+2 + (s − 1)W2
1 + s2 (s − 1)W2

0 − 2rsW1W0

(s + 1) (r + s − 1) (r − s + 1)
.

(b)
n∑

i=1

Wi+1Wi =
rW2

n+2 + rs2W2
n+1 + (1 − r2 − s2)Wn+1Wn+2 − rW2

1 − rs2W2
0 + s(−r2 + s2 − 1)W1W0

(s + 1) (r + s − 1) (r − s + 1)
.

Proof. Using the recurrence relation

Wn+2 = rWn+1 + sWn

i.e.
sWn = Wn+2 − rWn+1

we obtain

s2W 2
n = W 2

n+2 + r2W 2
n+1 − 2rWn+2Wn+1

s2W 2
n−1 = W 2

n+1 + r2W 2
n − 2rWn+1Wn

s2W 2
n−2 = W 2

n + r2W 2
n−1 − 2rWnWn−1

s2W 2
n−3 = W 2

n−1 + r2W 2
n−2 − 2rWn−1Wn−2

s2W 2
n−4 = W 2

n−2 + r2W 2
n−3 − 2rWn−2Wn−3

...

s2W 2
2 = W 2

4 + r2W 2
3 − 2rW4W3

s2W 2
1 = W 2

3 + r2W 2
2 − 2rW3W2.

If we add the above equations by side by, we get

s2
n∑

i=1

W 2
i =

n+2∑
i=3

W 2
i + r2

n+1∑
i=2

W 2
i − 2r

n+1∑
i=2

Wi+1Wi. (2.1)

Note that
n+2∑
i=3

W 2
i = −W 2

1 −W 2
2 +W 2

n+1 +W 2
n+2 +

n∑
i=1

W 2
i ,

n+1∑
i=2

W 2
i = −W 2

1 +W 2
n+1 +

n∑
i=1

W 2
i ,

n+1∑
i=2

Wi+1Wi = −W2W1 +Wn+2Wn+1 +

n∑
i=1

Wi+1Wi.

We put them into the (2.1) we obtain

s2
n∑

i=1

W 2
i = (−W 2

1 −W 2
2 +W 2

n+1 +W 2
n+2 +

n∑
i=1

W 2
i ) + r2(−W 2

1 +W 2
n+1 +

n∑
i=1

W 2
i ) (2.2)

−2r(−W2W1 +Wn+2Wn+1 +

n∑
i=1

Wi+1Wi).

Next we calculate
∑n

i=1 Wi+1Wi. Again, using the recurrence relation

Wn+2 = rWn+1 + sWn
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i.e.
sWn = Wn+2 − rWn+1

we obtain

sWn+1Wn = Wn+2Wn+1 − rW 2
n+1

sWnWn−1 = Wn+1Wn − rW 2
n

sWn−1Wn−2 = WnWn−1 − rW 2
n−1

...

sW3W2 = W4W3 − rW 2
3

sW2W1 = W3W2 − rW 2
2 .

If we add the above equations by side by, we get

s

n∑
i=1

Wi+1Wi =

n+1∑
i=2

Wi+1Wi − r

n+1∑
i=2

W 2
i . (2.3)

Note that

n+1∑
i=2

Wi+1Wi = −W2W1 +Wn+2Wn+1 +

n∑
i=1

Wi+1Wi,

n+1∑
i=2

W 2
i = −W 2

1 +W 2
n+1 +

n∑
i=1

W 2
i .

If we put them into the (2.3) then it follows that

s

n∑
i=1

Wi+1Wi = (−W2W1 +Wn+2Wn+1 +

n∑
i=1

Wi+1Wi)− r(−W 2
1 +W 2

n+1 +

n∑
i=1

W 2
i ). (2.4)

Then, using
W2 = (rW1 + sW0)

and solving the system (2.2)-(2.4), the required results of (a) and (b) follow.
Taking r = s = 1 in Theorem 2.1 (a) and (b), we obtain the following proposition.

Proposition 2.1. If r = s = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

i=1 W
2
i = 1

2
(−2W 2

n+1 + 2Wn+2Wn+1 − 2W1W0).

(b)
∑n

i=1 Wi+1Wi =
1
2
(W 2

n+2 +W 2
n+1 −Wn+1Wn+2 −W 2

1 −W 2
0 −W1W0).

From the above proposition, we have the following corollary which gives sum formulas of Fibonacci
numbers (take Wn = Fn with F0 = 0, F1 = 1).

Corollary 2.2. For n ≥ 1, Fibonacci numbers have the following properties:

(a)
∑n

i=1 F
2
i = 1

2
(−2F 2

n+1 + 2Fn+2Fn+1).

(b)
∑n

i=1 Fi+1Fi =
1
2
(F 2

n+2 + F 2
n+1 − Fn+1Fn+2 − 1).

Taking Wn = Ln with L0 = 2, L1 = 1 in the last proposition, we have the following corollary which
presents sum formulas of Lucas numbers.

Corollary 2.3. For n ≥ 1, Lucas numbers have the following properties:
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(a)
∑n

i=1 L
2
i = 1

2
(−2L2

n+1 + 2Ln+2Ln+1 − 4).

(b)
∑n

i=1 Li+1Li =
1
2
(L2

n+2 + L2
n+1 − Ln+1Ln+2 − 7).

Taking r = 2, s = 1 in Theorem 2.1 (a) and (b), we obtain the following proposition.

Proposition 2.2. If r = 2, s = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

i=1 W
2
i = 1

2
(−2W 2

n+1 +Wn+2Wn+1 −W1W0).

(b)
∑n

i=1 Wi+1Wi =
1
4
(W 2

n+2 +W 2
n+1 − 2Wn+2Wn+1 −W 2

1 −W 2
0 − 2W1W0).

From the last proposition, we have the following corollary which gives sum formulas of Pell numbers
(take Wn = Pn with P0 = 0, P1 = 1).

Corollary 2.4. For n ≥ 1, Pell numbers have the following properties:

(a)
∑n

i=1 P
2
i = 1

2
(−2P 2

n+1 + Pn+2Pn+1) =
1
2
PnPn+1.

(b)
∑n

i=1 Pi+1Pi =
1
4
(P 2

n+2 + P 2
n+1 − 2Pn+2Pn+1 − 1).

Taking Wn = Qn with Q0 = 2, Q1 = 2 in the last proposition, we have the following corollary which
presents sum formulas of Pell-Lucas numbers.

Corollary 2.5. For n ≥ 1, Pell-Lucas numbers have the following properties:

(a)
∑n

i=1 Q
2
i = 1

2
(−2Q2

n+1 +Qn+2Qn+1 − 4) = 1
2
(QnQn+1 − 4).

(b)
∑n

i=1 Qi+1Qi =
1
4
(Q2

n+2 +Q2
n+1 − 2Qn+2Qn+1 − 16).

If r = 1, s = 2 then (s+ 1) (r + s− 1) (r − s+ 1) = 0 so we can’t use Theorem 2.1 directly. Therefore
we need another method to find

∑n
i=1 W

2
i and

∑n
i=1 Wi+1Wi which is given in the following theorem.

Theorem 2.6. If r = 1, s = 2 then for n ≥ 1 we have the following formulas:

(a)
∑n

i=1 W
2
i = 1

9
(W 2

n+2 −W 2
n+1 − 4 (W0 +W1)W0 + (2W0 −W1)

2 n).

(b)
∑n

i=1 Wi+1Wi =
1
36
(5W 2

n+2 + 4W 2
n+1 + (−9W 2

1 − 20W 2
0 − 20W1W0)− 4 (W1 − 2W0)

2 n).

Proof.

(a) The proof will be by induction on n. Before the proof, we recall some information on generalized
Jacobsthal numbers. A generalized Jacobsthal sequence {Wn}n≥0 = {Wn(W0,W1)}n≥0 is
defined by the second-order recurrence relations

Wn = Wn−1 + 2Wn−2; W0 = a, W1 = b, (n ≥ 2) (2.5)

with the initial values W0,W1 not all being zero. The sequence {Wn}n≥0 can be extended to
negative subscripts by defining

W−n = −1

2
W−(n−1) +

1

2
W−(n−2)

for n = 1, 2, 3, .... Therefore, recurrence (2.5) holds for all integer n. The first few generalized
Jacobsthal numbers with positive subscript and negative subscript are given in the following
Table 5.
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Table 5. A few generalized Jacobsthal numbers

n Wn W−n

0 W0

1 W1 − 1
2
W0 +

1
2
W1

2 2W0 +W1
3
4
W0 − 1

4
W1

3 2W0 + 3W1 − 5
8
W0 +

3
8
W1

4 6W0 + 5W1
11
16
W0 − 5

16
W1

5 10W0 + 11W1 − 21
32
W0 +

11
32
W1

6 22W0 + 21W1
43
64
W0 − 21

64
W1

Binet formula of generalized Jacobsthal sequence can be calculated using its characteristic
equation which is given as

t2 − t− 2 = 0.

The roots of characteristic equation are

α = 2, β = −1

and the roots satisfy the following

α+ β = 1, αβ = −2, α− β = 3.

Using these roots and the recurrence relation, Binet formula can be given as

Wn =
Aαn −Bβn

α− β
=

A× 2n −B(−1)n

3
(2.6)

where A = W1 −W0β = W1 +W0 and B = W1 −W0α = W1 − 2W0.

We now prove (a) by induction on n. If n = 1 we see that the sum formula reduces to the
relation

W 2
1 =

1

9
(W 2

3 −W 2
2 +W 2

1 − 8W1W0). (2.7)

Since

W2 = 2W0 +W1,

W3 = 2W0 + 3W1,

(2.7) is true. Assume that the relation in (a) is true for n = m, i.e.,

m∑
i=1

W 2
i =

1

9
(W 2

m+2 −W 2
m+1 − 4 (W0 +W1)W0 + (2W0 −W1)

2 m).

Then we get

m+1∑
i=1

W 2
i = W 2

m+1 +
m∑
i=1

W 2
i

= W 2
m+1 +

1

9
(W 2

m+2 −W 2
m+1 − 4 (W0 +W1)W0 + (2W0 −W1)

2 m)

=
1

9
(W 2

m+2 + 8W 2
m+1 − 4 (W0 +W1)W0 + (2W0 −W1)

2 m)

=
1

9
(W 2

m+2 + 8W 2
m+1 − (2W0 −W1)

2 − 4 (W0 +W1)W0 + (2W0 −W1)
2 (m+ 1))

=
1

9
(W 2

m+3 −W 2
m+2 − 4 (W0 +W1)W0 + (2W0 −W1)

2 (m+ 1))

=
1

9
(W 2

(m+1)+2 −W 2
(m+1)+1 − 4 (W0 +W1)W0 + (2W0 −W1)

2 (m+ 1))
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where
W 2

m+2 + 8W 2
m+1 − (2W0 −W1)

2 = W 2
m+3 −W 2

m+2. (2.8)

(2.8 ) can be proved by using Binet formula of Wn. Hence, the relation in (a) holds also for
n = m+ 1.

(b) We now prove (b) by induction on n. If n = 1 we see that the sum formula reduces to the relation

W2W1 =
1

36
(5W 2

3 + 4W 2
2 − 13W 2

1 − 36W 2
0 − 4W1W0). (2.9)

Since

W2 = 2W0 +W1,

W3 = 2W0 + 3W1,

(2.9) is true. Assume that the relation in (b) is true for n = m, i.e.,

m∑
i=1

Wi+1Wi =
1

36
(5W 2

m+2 + 4W 2
m+1 + (−9W 2

1 − 20W 2
0 − 20W1W0)− 4 (W1 − 2W0)

2 m).

Then we get

m+1∑
i=1

Wi+1Wi = Wm+2Wm+1 +
m∑

i=1

Wi+1Wi

=
1

36
(5W

2
m+2 + 4W

2
m+1 + 36Wm+2Wm+1 + (−9W

2
1 − 20W

2
0 − 20W1W0) − 4 (W1 − 2W0)

2
m)

=
1

36
(5W

2
m+2 + 4W

2
m+1 + 36Wm+2Wm+1 + 4 (W1 − 2W0)

2
+ (−9W

2
1 − 20W

2
0 − 20W1W0)

−4 (W1 − 2W0)
2
(m + 1))

=
1

36
(5W

2
m+3 + 4W

2
m+2 + (−9W

2
1 − 20W

2
0 − 20W1W0) − 4 (W1 − 2W0)

2
(m + 1))

=
1

36
(5W

2
(m+1)+2 + 4W

2
(m+1)+1 + (−9W

2
1 − 20W

2
0 − 20W1W0) − 4 (W1 − 2W0)

2
(m + 1))

where

5W 2
m+2 + 4W 2

m+1 + 36Wm+2Wm+1 + 4 (W1 − 2W0)
2 = 5W 2

m+3 + 4W 2
m+2. (2.10)

(2.10) can be proved by using Binet formula of Wn. Hence, the relation in (b) holds also for
n = m+ 1.

From the last theorem we have the following corollary which gives sum formulas of Jacobsthal
numbers (take Wn = Jn with J0 = 0, J1 = 1).

Corollary 2.7. For n ≥ 1, Jacobsthal numbers have the following property:

(a)
∑n

i=1 J
2
i = 1

9
(J2

n+2 − J2
n+1 + n).

(b)
∑n

i=1 Ji+1Ji =
1
36
(5J2

n+2 + 4J2
n+1 − 9− 4n).

Taking Wn = jn with j0 = 2, j1 = 1 in the last theorem, we have the following corollary which presents
sum formulas of Jacobsthal-Lucas numbers.

Corollary 2.8. For n ≥ 1, Jacobsthal-Lucas numbers have the following property:

(a)
∑n

i=1 j
2
i = 1

9
(j2n+2 − j2n+1 − 24 + 9n).

(b)
∑n

i=1 ji+1ji =
1
36
(5j2n+2 + 4j2n+1 − 129− 36n).
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3 SUMMING FORMULAS OF GENERALIZED FIBONACCI
NUMBERS WITH NEGATIVE SUBSCRIPTS

The following theorem presents some summing formulas of generalized Fibonacci numbers with
negative subscripts.

Theorem 3.1. For n ≥ 1 we have the following formulas: If (s+ 1) (r + s− 1) (r − s+ 1) ̸= 0 then

(a)

n∑
i=1

W
2
−i =

(s − 1)W2
−n+1 + (r2 + r2s + s − 1)W2

−n − 2rsW−n+1W−n + 2rsW1W0 + (1 − s)W2
1

+(1 − s − r2 − r2s)W2
0

(s + 1) (r + s − 1) (r − s + 1)
.

(b)
n∑

i=1

W−i+1W−i =
−rW2

−n+1 − rs2W2
−n + (r2 + s2 − 1)W−n+1W−n + (1 − r2 − s2)W1W0 + rW2

1 + rs2W2
0

(s + 1) (r + s − 1) (r − s + 1)
.

Proof. Using the recurrence relation

W−n+2 = rW−n+1 + sW−n ⇒ W−n = −r

s
W−n+1 +

1

s
W−n+2

i.e.
sW−n = W−n+2 − rW−n+1

we obtain

s2W 2
−n = W 2

−n+2 + r2W 2
−n+1 − 2rW−n+2W−n+1

s2W 2
−n+1 = W 2

−n+3 + r2W 2
−n+2 − 2rW−n+3W−n+2

s2W 2
−n+2 = W 2

−n+4 + r2W 2
−n+3 − 2rW−n+4W−n+3

s2W 2
−n+3 = W 2

−n+5 + r2W 2
−n+4 − 2rW−n+5W−n+4

...

s2W 2
−3 = W 2

−1 + r2W 2
−2 − 2rW−1W−2

s2W 2
−2 = W 2

0 + r2W 2
−1 − 2rW0W−1

s2W 2
−1 = W 2

1 + r2W 2
0 − 2rW1W0.

If we add the above equations by side by, we get

s2
n∑

i=1

W 2
−i = (W 2

1 +W 2
0 −W 2

−n+1 −W 2
−n +

n∑
i=1

W 2
−i) + r2(W 2

0 −W 2
−n +

n∑
i=1

W 2
−i) (3.1)

−2r(W1W0 −W−n+1W−n +

n∑
i=1

W−i+1W−i)

Next we calculate
∑n

i=1 W−i+1W−i. Again using the recurrence relation

W−n+2 = rW−n+1 + sW−n ⇒ W−n = −r

s
W−n+1 +

1

s
W−n+2

i.e.
sW−n = W−n+2 − rW−n+1

we obtain
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sW−n+1W−n = W−n+2W−n+1 − rW 2
−n+1

sW−n+2W−n+1 = W−n+3W−n+2 − rW 2
−n+2

sW−n+3W−n+2 = W−n+4W−n+3 − rW 2
−n+3

sW−n+4W−n+3 = W−n+5W−n+4 − rW 2
−n+4

...

sW−2W−3 = W−1W−2 − rW 2
−2

sW−1W−2 = W0W−1 − rW 2
−1

sW0W−1 = W1W0 − rW 2
0 .

If we add the above equations by side by, we get

s

n∑
i=1

W−i+1W−i = (W1W0 −W−n+1W−n +

n∑
i=1

W−i+1W−i)− r(W 2
0 −W 2

−n +

n∑
i=1

W 2
−i). (3.2)

Then, solving the system (3.1)-(3.2), the required results of (a) and (b) follow.

Taking r = s = 1 in Theorem 3.1 (a) and (b), we obtain the following proposition.

Proposition 3.1. If r = s = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

i=1 W
2
−i =

1
2
(2W 2

−n − 2W−n+1W−n + 2W1W0 − 2W 2
0 ).

(b)
∑n

i=1 W−i+1W−i =
1
2
(−W 2

−n+1 −W 2
−n +W−n+1W−n −W1W0 +W 2

1 +W 2
0 ).

From the above proposition, we have the following corollary which gives sum formulas of Fibonacci
numbers (take Wn = Fn with F0 = 0, F1 = 1).

Corollary 3.2. For n ≥ 1, Fibonacci numbers have the following properties.

(a)
∑n

i=1 F
2
−i =

1
2
(2F 2

−n − 2F−n+1F−n).

(b)
∑n

i=1 F−i+1F−i =
1
2
(−F 2

−n+1 − F 2
−n + F−n+1F−n + 1).

Taking Wn = Ln with L0 = 2, L1 = 1 in the last proposition, we have the following corollary which
presents sum formulas of Lucas numbers.

Corollary 3.3. For n ≥ 1, Lucas numbers have the following properties.

(a)
∑n

i=1 L
2
−i =

1
2
(2L2

−n − 2L−n+1L−n − 4).

(b)
∑n

i=1 L−i+1L−i =
1
2
(−L2

−n+1 − L2
−n + L−n+1L−n + 3).

Taking r = 2, s = 1 in Theorem 3.1 (a) and (b), we obtain the following proposition.

Proposition 3.2. If r = 2, s = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

i=1 W
2
−i =

1
2
(2W 2

−n −W−n+1W−n − 2W 2
0 +W1W0).

(b)
∑n

i=1 W−i+1W−i =
1
4
(−W 2

−n+1 −W 2
−n + 2W−n+1W−n +W 2

1 +W 2
0 − 2W1W0).

From the last proposition, we have the following corollary which gives sum formulas of Pell numbers
(take Wn = Pn with P0 = 0, P1 = 1).

Corollary 3.4. For n ≥ 1, Pell numbers have the following properties.
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(a)
∑n

i=1 P
2
−i =

1
2
(2P 2

−n − P−n+1P−n).

(b)
∑n

i=1 P−i+1P−i =
1
4
(−P 2

−n+1 − P 2
−n + 2P−n+1P−n + 1).

Taking Wn = Qn with Q0 = 2, Q1 = 2 in the last proposition, we have the following corollary which
presents sum formulas of Pell-Lucas numbers.

Corollary 3.5. For n ≥ 1, Pell-Lucas numbers have the following properties.

(a)
∑n

i=1 Q
2
−i =

1
2
(2Q2

−n −Q−n+1Q−n − 4).

(b)
∑n

i=1 Q−i+1Q−i =
1
4
(−Q2

−n+1 −Q2
−n + 2Q−n+1Q−n).

If r = 1, s = 2 then (s+ 1) (r + s− 1) (r − s+ 1) = 0 so we can’t use Theorem 3.1 directly. Therefore
we need another method to find

∑n
i=1 W

2
−i and

∑n
i=1 W−i+1W−i which is given in the following

theorem.

Theorem 3.6. If r = 1, s = 2 then for n ≥ 1 we have the following formulas:

(a)
∑n

i=1 W2
−i = 1

9
(−W2

−n+1 + W2
−n + (W2

1 − W2
0 ) + (W1 − 2W0)

2 n).

(b)
∑n

i=1 W−i+1W−i = 1
27

(−2W2
−n+1 + 4W2

−n − 7W−n+1W−n + (W1 + 4W0) (2W1 − W0) − 3 (W1 − 2W0)
2 n).

Proof. (a) and (b) can be proved by mathematical induction.

(a) The proof will be by induction on n. If n = 1 we see that the sum formula reduces to the relation

W 2
−1 =

1

9
(2W 2

0 − 4W0W1 + 2W 2
1 +W 2

−1). (3.3)

Since
W−1 = (−1

2
W0 +

1

2
W1)

(3.3) is true. Assume that the relation in (a) is true for n = m, i.e.

m∑
i=1

W 2
−i =

1

9
(−W 2

−m+1 +W 2
−m + (W 2

1 −W 2
0 ) + (W1 − 2W0)

2 m).

Then we get

m+1∑
i=1

W
2
−i = W

2
−(m+1) +

m∑
i=1

W
2
−i

= W
2
−m−1 +

1

9
(−W

2
−m+1 + W

2
−m + (W

2
1 − W

2
0 ) + (W1 − 2W0)

2
m)

=
1

9
(−W

2
−m+1 + W

2
−m + 9W

2
−m−1 + (W

2
1 − W

2
0 ) + (W1 − 2W0)

2
m)

=
1

9
(−W

2
−m+1 + W

2
−m + 9W

2
−m−1 − (W1 − 2W0)

2
+ (W

2
1 − W

2
0 ) + (W1 − 2W0)

2
(m + 1))

=
1

9
(−W

2
−m + W

2
−m−1 + (W

2
1 − W

2
0 ) + (W1 − 2W0)

2
(m + 1))

=
1

9
(−W

2
−(m+1)+1 + W

2
−(m+1) + (W

2
1 − W

2
0 ) + (W1 − 2W0)

2
(m + 1))

where
−W 2

−m+1 +W 2
−m + 9W 2

−m−1 − (W1 − 2W0)
2 = −W 2

−m +W 2
−m−1. (3.4)

(3.4) can be proved by using Binet formula of Wn. Hence, the relation in (a) holds also for
n = m+ 1.
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(b) We now prove (b) by induction on n. If n = 1 we see that the sum formula reduces to the relation

W0W−1 =
1

27
(−W 2

1 − 18W 2
0 + 4W 2

−1 + 19W0W1 − 7W0W−1). (3.5)

Since
W−1 = (−1

2
W0 +

1

2
W1),

(3.5) is true. Assume that the relation in (b) is true for n = m i.e.,
m∑

i=1

W−i+1W−i =
1

27
(−2W

2
−m+1 + 4W

2
−m − 7W−m+1W−m + (W1 + 4W0) (2W1 − W0) − 3 (W1 − 2W0)

2
m).

Then we get

m+1∑
i=1

W−i+1W−i = W−(m+1)+1W−(m+1) +
m∑

i=1

W−i+1W−i

= W−mW−m−1 +
1

27
(−2W

2
−m+1 + 4W

2
−m − 7W−m+1W−m

+(W1 + 4W0) (2W1 − W0) − 3 (W1 − 2W0)
2
m)

=
1

27
(−2W

2
−m+1 + 4W

2
−m − 7W−m+1W−m + 27W−mW−m−1

+(W1 + 4W0) (2W1 − W0) − 3 (W1 − 2W0)
2
m)

=
1

27
(−2W

2
−m+1 + 4W

2
−m − 7W−m+1W−m + 27W−mW−m−1 + 3 (W1 − 2W0)

2

+(W1 + 4W0) (2W1 − W0) − 3 (W1 − 2W0)
2
(m + 1))

=
1

27
(−2W

2
−m + 4W

2
−m−1 − 7W−mW−m−1 + (W1 + 4W0) (2W1 − W0)

−3 (W1 − 2W0)
2
(m + 1))

=
1

27
(−2W

2
−(m+1)+1 + 4W

2
−(m+1) − 7W−(m+1)+1W−(m+1) + (W1 + 4W0) (2W1 − W0)

−3 (W1 − 2W0)
2
(m + 1))

where

−2W
2
−m+1+4W

2
−m−7W−m+1W−m+27W−mW−m−1+3 (W1 − 2W0)

2
= −2W

2
−m+4W

2
−m−1−7W−mW−m−1.

(3.6)

(3.6) can be proved by using Binet formula of Wn. Hence, the relation in (b) holds also for
n = m+ 1.

From the last theorem, we have the following corollary which gives sum formula of Jacobsthal numbers
(take Wn = Jn with J0 = 0, J1 = 1).

Corollary 3.7. For n ≥ 1, Jacobsthal numbers have the following property:

(a)
∑n

i=1 J
2
−i =

1
9
(−J2

−n+1 + J2
−n + 1 + n).

(b)
∑n

i=1 J−i+1J−i =
1
27
(−2J2

−n+1 + 4J2
−n − 7J−n+1J−n + 2− 3n).

Taking Wn = jn with j0 = 2, j1 = 1 in the last proposition, we have the following corollary which
presents sum formulas of Jacobsthal-Lucas numbers.

Corollary 3.8. For n ≥ 1, Jacobsthal-Lucas numbers have the following property:

(a)
∑n

i=1 j
2
−i =

1
9
(−j2−n+1 + j2−n − 3 + 9n).

(b)
∑n

i=1 j−i+1j−i =
1
27
(−2j2−n+1 + 4j2−n − 7j−n+1j−n − 27n).

35



Soykan; AJARR, 9(1): 23-39, 2020; Article no.AJARR.55441

4 CONCLUSION

Recently, there have been so many studies of
the sequences of numbers in the literature and
the sequences of numbers were widely used
in many research areas, such as architecture,
nature, art, physics and engineering. In this work,
sum identities were proved. The method used
in this paper can be used for the other linear
recurrence sequences, too. We have written sum
identities in terms of the generalized Fibonacci
sequence, and then we have presented the
formulas as special cases the corresponding
identity for the Fibonacci, Lucas, Pell, Pell-Lucas,
Jacobsthal, Jacobsthal-Lucas numbers. All the
listed identities in the corollaries may be proved
by induction, but that method of proof gives no
clue about their discovery. We give the proofs
to indicate how these identities, in general, were
discovered.

Computations of the Frobenius norm, spectral
norm, maximum column length norm and
maximum row length norm of circulant (r-
circulant, geometric circulant, semicirculant)
matrices with the generalized m-step Fibonacci
sequences require the sum of the squares of
the numbers of the sequences. Our future work
will be investigation of the closed forms of the
sum formulas for the squares of generalized
Tribonacci numbers.
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[37] Uygun Ş. Some bounds for the norms
of circulant matrices with the k-jacobsthal
and k-jacobsthal lucas numbers. Journal of
Mathematics Research. 2016;8(6):133-138.
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[45] Özkoç A, Ardıyok E. circulant and
negacyclic matrices via tetranacci numbers.
Honam Mathematical J. 2016;38(4):725-
738.
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