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CLOSED GEODESICS IN HOMOLOGY CLASSES ON
SURFACES OF VARIABLE NEGATIVE CURVATURE

STEVEN P. LALLEY

0. Introduction. Let M be a compact Riemannian manifold of negative curva-
ture. It is well known that there exist countably many closed geodesics in M, and
that if N(z) is the number of such closed geodesics with lengths < t then

0.1) N(t) ~ e"/ht

as t —» o0, where h > 0 is the topological entropy of the flow [9]. Recently, Phillips
and Sarnak [12] and Katsuda and Sunada [6] have investigated the asymptotic
behavior (as t - o0) of N(t; m), the number of closed geodesics in the homology
class m with lengths < ¢. For manifolds M with constant negative curvature they
prove that for each homology class m, as t - oo

(0.2) N(t; m) ~ CeM/titri2

for a constant C > 0, where r is the rank (over Z) of the homology group H, M (i.e.,
H,M = 7" ® G, where G is the torsion subgroup).

The purpose of this paper is to extend (0.2) to manifolds of variable negative
curvature, and to describe the asymptotics of N(t; m) when m varies with ¢t in a
roughly linear fashion. For simplicity we shall only consider surfaces M whose first
homology groups are torsion free, i.e., H; M = 7?9, g > 2. There exist C* forms v,
..., Wy, on M such that for any smooth closed curve y on M the homology class of
yis (f, @y, ..., [, 0,,). Let SM be the unit tangent bundle of M; define W;: SM — R
by Wi(x, v) = {w;(x), v (here <, > denotes dot product). For ¢ € R?? define — (&)
to be the maximum entropy of an invariant probability measure A on SM satisfying
j W, dA = &Yi=1,2,...,2g (invariant means invariant with respect to the geodesic
flow on SM). In sec. 4 we will show that —I'(£) is well defined and C* for ¢ in some
neighborhood of the origin, and that the Hessian matrix V2I'(¢) is strictly positive
definite for every £ in this neighborhood.

The main result of this paper is

THEOREM 1. Let & =t7Y(my, ..., m,,); then as t —> oo
0.3)  N(t;m)~ e O 2m)79(det V2T'(£))2(KVI(€), &> —T(¢E)™!

uniformly for & in some neighborhood of the origin.
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The result (0.2) is a special case of this because —I'(0) = h (Prop. 7 below).
Observe that the asymptotics of N(t; m) for m varying linearly with t'2 may be
deduced from (0.3); in particular, if { = t™2(m,, ..., m,,) then uniformly for { in
any compact subset of R?%, as t » o

04)  N(t;m) ~ e™ exp{—<{, V’T(0)0/2}¢ 7" (2m)*(det V>T'(0))"/h.

(Note that VI'(0) = 0 because —I'(¢) has its maximum at ¢ = 0.) The formula (0.4)
may be interpreted as a (local) “central limit theorem” for closed geodesics: if one
randomly chooses a closed geodesic from the set of closed geodesics with lengths < ¢
then the distribution of the (renormalized) homology class t"'?m is approximately
the 2g-dimensional Gaussian distribution with mean vector 0 and covariance matrix
V2I'(0). Similarly, (0.3) may be interpreted as a “large deviation theorem”.

Our approach to Th. 1 is completely different from that of [6] and [12], which
is based on the Selberg trace formula. We use the symbolic dynamics for geodesic
flows developed by Sinai, Ratner, and Bowen to reformulate the problem as a
counting problem in a sequence space, then use certain aspects of Ruelle’s “thermo-
dynamic formalism” to solve this counting problem. The method is more intricate
than that of [6] and [12], and the details of the Fourier analysis more demanding;
moreover, it appears to be ill suited for asymptotic expansions. However, it applies
to a large class of flows (those admitting “symbolic dynamics™) [7], and variations
on the method are suitable for a large variety of counting problems in hyperbolic
geometry (see [8] for some examples).

The overall organization of the calculation is virtually the same as that in our
earlier paper [7]. However, some simplifications are possible here ((i) there are no
“rapidly oscillating terms”, as in [7], Lemma 7; and (ii) all of the functions except
the height function r(x) are integer-valued, which makes the Fourier analysis less
complicated). Also, there is a (correctable) error in the unsmoothing argument of
[7], sec. 6. For these reasons we shall give a complete proof of Th. 1 here, without
reference to [7].

Another advantage of the methods used here and in [7], [8] is that they yield as
a by-product sharp information about the distribution of individual closed geodesics
in SM. Let y be a closed geodesic (considered as a path in SM) and let G: SM — R
be a continuous function; define y(G) to be the integral of G over y, i.e., y(G) =
j"g' G(y(s)) ds where y is parametrized by arclength s. Let ji, be the invariant prob-
ability measure for the geodesic flow with maximum entropy subject to the con-
straints { W, dig, = ¢,,i =1, ..., 2g. For ¢ > 0 define N(¢; m; G; ¢) to be the number
of closed geodesics y of length |y| < t, in homology class m, and satisfying

9 (au,

] S¢

where & = m/t.
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THEOREM 2. As t— o0, N(t; m; G; &)/N(t; m) - 1 for any ¢ > 0, uniformly for
& = my/t in some neighborhood of the origin.

In other words, most of the closed geodesics counted in N(t; m) are distributed on
SM approximately (in the weak topology) as ji;. We shall not prove Th. 2, as it is
very similar to results proved in [7], [8] (cf. [7], Th. 4; [8], Th. 7).

Note. After writing this paper I received preprints of Pollicott and Katsuda/
Sunada, each extending (0.2) to compact manifolds with variable negative curvature.
The methods used in these papers do not appear to be capable of yielding the
stronger result (0.3).

1. Symbolic dynamics. The counting arguments of this paper rely on the repre-
sentation of the geodesic flow by a suspension flow over a shift of finite type.
Geodesics are coded in a more-or-less bijective fashion into infinite sequences from
a finite alphabet, with the closed geodesics corresponding to periodic sequences.
The enumeration of periodic sequences then proceeds by way of “thermodynamic
formalism”.

Let A be an irreducible, aperiodic, I x I matrix of zeros and ones; define

z, = {x eTT{L2 ..., 1}: AGty, Xrs) = 1 Vn},

z; = {XGH {1, 2, ceey l}ZA(x,,, xn+1) = 1 Vn}-
[\]

These spaces are compact, metrizable, and totally disconnected in the topology of
coordinatewise convergence. The maps 6: X} - 1 and 6:Z, - X, defined by
(6x), = X,4, are called the one-sided shift and the two-sided shift, respectively; the
two-sided shift is a homeomorphism, whereas the one-sided shift is continuous and
surjective but not injective. For each p € (0, 1) there are metrics d,, d, on Z}, X,
defined by

dy(x,y)= i 1{x, # y.}/p",

dp(x’ y) = _i l{xn # yn}/plnl,

each inducing the topology of coordinatewise convergence. Let #,7, %, denote the
spaces of complex-valued, Lipschitz-continuous functions on £}, X, respectively,
relative to the metrics d,, d,. Observe that #,* is naturally embedded in %,, and
that &#,, &, are Banach spaces when endowed with the norms | {, = [ [l + | ,s

where | f1, = sup{| f(x) — f(3)I/d,(x, y)} (or d;).
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Suspension flows over the shift (X, o) are defined as follows. Let r € %, be a strictly
positive function on X, (r is called the height function), and let

={(x1):xeXand 0 <t < r(x)}

with the points (x, r(x)) and (ox, 0) identified for each x € £,. The suspension flow
o), —00 <t < o0, on X is defined by

al(x,8) = (x,s + 1) if 0<s<r(x)and0<s+t<r(x),
0/ oag) =0/, Vs, teR.

The dynamics of the flow ¢ may be described as follows: starting at any point
(x, 8) € 2, move at unit speed up the vertical fiber over (x, 0) until reaching (x, r(x)),
then jump instantaneously to (ox, 0) and continue along the vertical fiber over
{ox, 0). Observe that the periodic orbits of this flow are precisely those orbits that
intersect the “floor” X, x {0} at points (x, 0) where x is a periodic sequence. If an
orbit passes through (x, 0) where ¢"x = x and ¢'x # xfori=1,2,...,n— 1, then
the orbit is periodic with least period

Snr(X) N r(x) + r(gx) + -4 r(O'”-lx),

Consider now the geodesic flow @ on the unit tangent bundle SM of a compact,
C>, Riemannian manifold M. This flow is known to be an Anosov flow, hence the
results of Bowen [3] and Ratner [17] are applicable. In particular, there exists a
suspension flow ¢" on X}, with height function r € &, for some 0 < p <1, and a
Lipschitz continuous map n: £, - SM such that

(1.1) = is surjective;

(1.2) mis at most N to 1 for some N < oo;

(1.3) moo/ =®,0on ¥Vt 2 0; and

(1.4) all but finitely many of the periodic orbits {y} of ® have the property that n~(y)
consists of a single periodic orbit of 6" with the same least period.

Because the representation of the geodesic flow @ as a suspension flow is funda-
mental to our analysis, we shall give a resumé of the main features of the Bowen/
Ratner construction. Codimension one “rectangles” Ry, R,, ..., R, are constructed
in SM transverse to the flow ®; each side of R; lies either in a leaf of the stable
foliation W* or in a leaf of the unstable foliation W* Now each orbit of & cuts
through { Ji~; R; in a doubly infinite sequence of points, and if the rectangles R; are
suitably chosen then the sequence of indices ... i_;iyi; ... uniquely determines the
orbit, and conversely for a suitable transition matrix A every sequence in X,
corresponds to an orbit. The assumption of negative curvature is crucial for this
because it ensures that no two orbits pass through the same sequence of rectangles
R;. The correspondence between orbits and sequences is 1 — 1 except for orbits
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which pass through the boundary of some R;. (Note: only finitely many closed orbits
of @ pass through the boundary of some R;, since these boundaries lie in leaves of
W* or W*; this explains (1.4) above.)

Assume now that M is a compact surface of genus g = 2. Let Wy, W,, ...,
W,,: SM — R be as in sec. 0; thus for any smooth closed curve y(s) parametrized by
arc-length the homology class of y in H{ M =~ 7% is

Iyl {7l
( . Wi (y(s), V’(S))ds,---,L W ((5), v’(S))dS>-

For x € Z, the path (x, t), 0 < ¢ < r(x) projects via n to a segment of an orbit of the
geodesic flow in SM. Define

r(x)
Pi(x) = Win(x, 1)) dt,i=1,...,2g.

t=0

Let x € £, be a periodic sequence with smallest period n; then the path (x, 1),
0 <t < §,r(x), is a periodic orbit of the suspension flow with least period S,r(x).
The projection via 7 of this periodic orbit is a closed geodesic. If the minimal period
of this closed geodesic is also S, r(x) then its homology class is (S, ¢, (x), ..., S,@2,4(x))
where S,f = f + foo + - + f oo™ L, It therefore follows from (1.4) above that
the number of closed geodesics in M with least period < = and in homology class
(my,my,...,my,)is R(t; my, ..., my,) + O(1), where

(1.5) R(t;my,...,my)2 > nt Y 1{S,r(x) < v S,0x) =m;Vi=1,..., 2g}
n=1

xeP,

and Z, is the set of periodic sequences in X, with least period n. In the subsequent
sections we shall undertake an asymptotic analysis of the function R(t; my, ..., m,,).

The symbolic dynamics described in (a)—(g) above is by no means canonical (in
fact, Bowen’s construction shows that there are infinitely many such representa-
tions). In the remainder of this section we will show that the suspension flow may
be chosen in such a way that the functions r, ¢4, ..., ¢,, are in a form advantageous
to the Fourier analysis of secs. 2—3 below.

Two functions f, g € #, are said to be cohomologous if there exists a continuous
function h on X, such that f — g = h — h o 6. Note that if f, g are cohomologous
and if ¢"x = x then §, f(x) = S,g(x). According to Lemma 1.6 of [4], for any f € &Z,
there exists f* € 3’*’% such that f and f* are cohomologous; a close examination
of the proof shows that if f > 0 then f* can be chosen so that f* > 0. Let r*,
oF e 37\’7; be such that 7, r* are cohomologous and r* > 0, and ¢,, ¢ are cohomolo-
gous. If x € £, satisfies "x = x then S,7(x) = S,r*(x) and S, ¢,(x) = S, @*(x), so none
of the quantities in (1.5) is changed if r is replaced by r* and ¢, is replaced by ¢}*.
Moreover, Prop. 2 of [15] implies that ¢ may be chosen so as to be an integer-
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valued function, because if 6"x = x then S,¢;(x) is integer-valued, as it is the i
coordinate of the homology class of a closed geodesic.

The main result of [16] and Prop. 7 of [14] imply that the height function r
cannot be cohomologous to any piecewise constant function. Since ¢f, ..., @3, are
integer-valued, they are piecewise constant; hence

2g
(1.6) r#Y ao¥+y+h—hoo
A

for any scalars a;, any piecewise constant y, and any continuous h.

LEMMA 0.  The vector-valued function (¢, ..., ¢3,) is not cohomologous to any
function valued in a proper subgroup of 729,

Proof. Each homology class m = (m,, ..., m,,) € Z* =~ H, M contains a closed
geodesic ([2], sec. 11.7, Th. 10). Hence, by (1.4), there exist closed geodesics y,, ...,
7,4 in homology classes m!, ..., m?* such that m!, ..., m?¢ generate Z?¢ and such
that the preimage (under n) of any 7, consists of a single periodic orbit of the
suspension flow with the same minimal period. It follows that there are periodic
sequences x', x?,...,x% € £, with least periods ny, ..., n,,, such that S, ¢*(x’) = m’
foreachi=1,...,2g. Since m!, ..., m?? generate 729, this proves that ¢* cannot be
cohomologous to a function valued in a proper subgroup of 724, a

PROPOSITION 0.  The suspension flow may be chosen so that (¢, ..., ¢3,) is not
cohomologous to any function valued in a coset of a proper subgroup of 729,

The proof is given in the Appendix. It is not absolutely essential for the Fourier
analysis of sects. 23 that (¢f, ..., ¢¥,) have this property; the important fact is
really Lemma 0. However, it does simplify the calculations somewhat. As to the
proof of Prop. 0, we remark that it is based on a coding trick—no new geometric
argument is needed. We just change the sequence space by replacing each symbol
ie{l,2,...,1} by a block iji,...iyy and redefining the functions r, r*, ¢,, etc.
accordingly. By choosing M (1), M(2),..., M(l) appropriately we get rid of unwanted
“periodicities” in ¢f, ..., ¢F,.

In the remaining sections of the paper (excluding the appendix) we shall drop
the superscript * on r*, of, ..., ¢3,, as the original r, ¢, , ..., ¢,, will play no further
role. Thus, from here onr, ¢y, ..., @,, are functions in %," such that (r, ¢y, ..., @,,)
is valued in (0, c0) x Z29 and (¢, ..., ¢,,) is not cohomologous to any function
valued in a coset of a proper subgroup of Z?%, Note that (1.5) is still valid.

2. Ruelle operators and thermodynamic functions for the shift. For any func-
tion f € #," the Ruelle operator %;: #,* — Z," is defined by

Lgx)= Y e'V%(y).

y:oy=x
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This is a bounded linear operator; if f is real-valued it is a positive operator. The
spectrum of %, has been described by Ruelle 18] and Pollicott [15]:

(@) If fisreal-valued then there is a simple eigenvalue A, € (0, c0) whose eigenfunction
hy € Z,F is strictly positive on 7. The rest of the spectrum is contained in a disc
of radius < A;. Moreover, there is a positive Borel measure v; on ] such that
L = Apvy. '

() If f=u+iv, where u, ve F, are real-valued, then (b,) if for some constant
a € [— =, n] the function (v — a)/27 is cohomologous to an integer-valued function
then e}, is a simple eigenvalue of %;, and the rest of the spectrum is contained
in a disc of radius < A,; (b,) otherwise, the entire spectrum of ¥, is contained in
a disc of radius < A,.

We may assume that the eigenfunctions and eigenmeasures in (a) are normalized

so that

Standard perturbation theory shows that A, h; are analytic in f in some open
neighborhood of the real-valued functions in &,*; v, is weakly analytic in f in the
sense that for any g € #," the real-valued function | g dv, is analytic. Observe that
if f, f* are cohomologous then A, = A.«; also, if f* = f+ g —goo then hy» =
e %h; and dvp« = e? dv;.

For each real-valued f e %, the measure u, defined by du, = h, dv, is a o-
invariant probability measure on X} called the Gibbs state or equilibrium state for
S ([5], ch. 1). Because it is g-invariant, u, extends to a s-invariant measure on X,
which we also denote by p,. If f, g are cohomologous then u, = u,; otherwise p,,
u, are mutually singular. The Gibbs state y, is a strongly mixing invariant measure
for o.

The asymptotic expansions of section 0 involve the entropies of certain invariant
measures. The key to identifying the quantities in these expansions as entropies is
the Gibbs variational principle. This states that if f € &#," is real-valued and if u is a
g-invariant Borel probability measure on X, then

(2.1) log A, = H(y, 0) + ff du

with equality iff 4 = u, (here H(y, o) is the entropy of p relative'to o).
Recall now the functions r, ¢y, ..., @,, € %, constructed in sec. 1. For z =
(20> 215 - -+ » Z5,) € R**! define the pressure function

B(Z) = log(lzof+ ,zgl zi‘l’i)'
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It is known ([19], Ch. 5, Ex. 5) that

2.2) 0p/0zo = Jr du,,  0Bfoz; = f(/)i du,, izl

(2.3) V2B(z) is strictly positive definite Vz € R20%1,

where u, = U, 15,4, 8 the Gibbs state associated with the function zor + Y#, z,0.
(The fact that V2B(z) is strictly positive definite uses the fact that no linear combina-
tion of r, @y, ..., @,, is cohomologous to a constant; cf. (1.6).) It follows that § is
strictly convex, strictly increasing in z,, and that V8 is a diffeomorphism of R2¢*!
onto an open subset Q of R?9*!,

The Legendre transform 7y of § is defined by

(&) = sup | (K& 2> — B(2), Ee R,

where <, > denotes dot product. The function y is convex on R29*!, For £ € Q the
sup is attained uniquely at that z for which V(z) = £, because of the strict convexity
of B. The inverse function theorem therefore implies that

2.4) Vy o VB = identity on R2¢*1;
(2.5 VB o Vy = identity on Q;
(2.6) V(&) = (V?B@)™ ifVB() =¢.

Thus v is strictly convex on Q. The Gibbs variational principle implies that

&) = —H(p,,0) VP(z)=2¢.
For { = ({0, {1, .-+, 02p) € C?%*1 we shall use the abbreviated notation
218505

’% = "%0”‘23!’

PROPOSITION 1. For each z € R*™*! there is an open neighborhood A" of zin C2*!
and an ¢ > 0 such that for every { € N and every g € F,}

e MOLrg — <Jg dvc> h,

Proof. Recall that the functions { — hy, v, ({) extend to analytic functions for
{ in some neighborhood of z. In this neighborhood,

(2.7 <Clgl,(1 +e™"Vn=1.

p

& =& + & where £/g = <Jg dvc> he.
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Clearly, spectrum (%") = (spectrum (£)\{4;}) L {0}; thus for all { near z the
spectral radius of %" is < A, — 6 for some 6 > 0. Moreover, for any n > 1

agzn — (icgz/)n + (Q%l!)ﬂ
= l;"«gf + ("%ﬂ)n;
since B({) = log 4, (2.7) follows from the spectral radius formula. a

PRrOPOSITION 2. For any z € R*** and small 6 > 0 there exist ¢ > 0, C < oo such
that if |0)] < 0™  and 6 < |6;| < m forj=1,...,2g then

(28) ”"gz"+i0” < Ce"P@—ne yy >1

where 8 = (0, 04, ..., 0,,). Moreover, C and & can be chosen so as to vary continuously
with z.

Proof.  Recall (sec. 1) that the vector-valued function (¢, ..., ¢,,) is not coho-
mologous to any function valued in a coset of a proper subgroup of Z2¢ and that r
is not cohomologous to any piecewise constant function. By Pollicott’s theorem
(statement (b) at the beginning of this section), the spectral radius of .%; is strictly
less than 1, unless 8,r + X7, 6,¢; is cohomologous to a constant plus a function
valued in 2nZ. This is impossible unless 6, = 0 and (0, ..., 8,,) € 2nZ?. Since A,
and spectral radius (%},)* are continuous functions near z € R%**,(2.8) follows from
the fact that {6:(6,| < 67! and 6 < |6}/ <= Vj=1, ..., 2g} is compact, by the
spectral radius formula. O

3. A saddlepoint calculation. Our approach to (0.3) will be to analyze the series
(1.5) term by term, using Fourier analysis. For various reasons it is easier to work
with modified versions of these terms; thus, for ¢, 7€ (0, c0) and my, ..., my, € Z
define

Qn(ta ma T) = z 1{0 < Snr(x) —t < T; Sn(pi(x) = mi VI S l S 2g}

X:0nx=Xx

PROPOSITION 3. Letn™!(t, my, ..., my) = (&o, &y, ..., Ep)) = EIf (e Qand & =
VB(z) for some z € R**! then

3.1 Q.(t, m; 1) ~ e7""O2nn)~ 262 (det V3y(£))H? f e "% s

0o

as n — oo, uniformly for & in any compact subset of Q.

PROPOSITION 4.  There exist positive constants K, varying continuously with z €
R20*! sych that for each z, t, m,

(3.2 Q(t, m; 7) < K, exp{np(z) — <z, {} + |zo|7}

for every n = 1, where { = (t, my, my, ..., my,).
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The rest of this section is devoted to the proofs of these results. To use Fourier
analysis we must relate the Fourier transform of @, to the thermodynamic functions
B, y; for this we shall appeal to Ruelle’s operator theorem. Thus, the first order of
business is to replace the sum X, ;n,=. by sums ., n,—,.

Fix k;let xV, x®, ..., x®” € ] be chosen in such a way that the set {xPx?... x{?,
i=1,2,...,p} is the set of all finite sequences of length k + 1 from the alphabet
{1,2,..., 1} with transitions allowed by 4. Assume that no two of the finite sequences
x@PxP ... x® are the same. Define

0:0) = L{x, = X0 V0 < n < ),

Qim = Y g(0)1{0<S,r(x) ~ £ < 7 S,0,x) = m; V1 <j < 2g}.

x:onx=xl0)

Observe that X, g; = 1. Consider x such that ¢"x = x, n > k, and suppose ¢;(x) =
1. The sequence X defined by %; = x;, 1 <j <n+ k, %4, = x{? has the property
that ¢"% = x and g,(%) = 1, hence is included in the sum defining Q’; moreover,
d,(x, %) < (const)p™*¥, 50 |S,r(x) — 8,r(%)| < (const)p* and S,¢,(x) = S,¢,(%) (if k is
sufficiently large). Consequently,

P
(3.3) Y, Qut,m; 1) < Q,(t — &, m; T + 28),
i=1
4
(34) 0,6, m; 1)< Y Qilt — &, m; T + 28,),
i=1

where &, = (const)p*. Therefore, to obtain (3.1)—(3.2) it will suffice to analyze Q:,
since by choosing k large we can make ¢, arbitrarily small.

Proof of Proposition 4, Fix z e R29*1; then

j= anx=x(i

2g 29
Q,(t, m; 7) exp { Z;) z;{ ,} exp{—Izolt} < Y exp «{ZOSnr(X) + ; sz,.qo,-(x)} gi(x)

= “%ngi(x(i)) < Kz}': = Kze”ﬁ(z)

by the spectral radius formula and Ruelle’s theorem. The inequality (3.2) now
follows by an easy argument from (3.4). The continuity in z of K, follows from the
continuity of z » .%,. (m]

To prove (3.1) we will show that foreachi=1,2,...,p,asn - o

T

(B3) Ot m; 1) ~ Cla)e ™ O (2rn) IR (det vzy(é))"zf e7=e ds

0
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uniformly for £ in any compact subset of Q, where Ci(z) = ({ g; dv.)h.(x?®) (here v,,
h, are the eigenmeasure and eigenfunction for the leading eigenvalue A, of %,). Recall
that x{...x{?,i = 1, 2, ..., p are the distinct sequences of length k + 1 with transi-
tions allowed by 4, and that g,(x) = 1{x, = x® VO < n < k}. If k is large then

s

C(2) ~ th dv, =1,

i=1

since h,(x) is a continuous function of x. Consequently, in view of (3.3)—(3.4), (3.5)
implies (3.1).

Forn>1,ie{1,2,...,p},and m = (my, ..., m,,} € Z* define a positive Borel
measure M} ,.(ds) on R by

Miad) = T g)L{S,r(x) € ds; Sgx) = my V1 < j < 2.

onx=x(

Observe that Qi(t, m; t) = [1** M} . (ds). A standard approximation argument shows
that to prove (3.5) it suffices to prove that for every nonnegative, compactly sup-
ported, C® functionu: R - R

(3.6) Ju(s — )M (ds) ~ Ci(z)e”™®(2nn)~ 28 V2(det V2y(£))1? Ju(s)e‘z"s ds

uniformly for £ in any compact subset of Q. Define yet another positive Borel
measure N} ,(ds) on R by
N, (ds) = e*°M;, ,(ds);

then to prove (3.6) it suffices to prove that for every compactly supported, C*
function u > 0,

3.7 fu(s — )N (ds) ~ Ci(z)e ™D * 70! (2gn)~ 28+ 102 (det V2y(&))H2 fu(s) ds.

This we will accomplish by Fourier analysis.

Unfortunately, we have no control over the behavior of the Fourier-Stieltjes
transform of N} , at i oo, so an additional unsmoothing argument is necessary. (This
is also the reason for making the transformation from M} ,, to Ni ,..) Let 2 be the
set of even probability density functions k(s), s € R, whose Fourier transforms
k(@i6) = f e®k(s) ds are compactly supported (in iR). It is well known that 2 # .

LemMaA 1. To prove (3.7) it suffices to prove that for every k € P
(3.8) ju(s —t)(k= N ,)(ds) ~ RH.S.(3.7)

uniformly for & in any compact subset of Q, as n — co.
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The proof will be given later. To analyze (3.8) we use Parseval’s formula to rewrite
the integral in terms of Fourier transforms:

fu(s — t)(k* N, )(ds) = (2m) ™! jw 0(i8 ) k(— i0p) N .(—i0,)e"™ do,

—a0

= (277:)_1 f ﬁ(lHO)IE(_IGO)M:;,m(—IBO + Zo)eiteo d00

—a0

(here 4(0) = [ e*u(s) ds, N: ,,({) = [ e*N. ,.(ds), etc.). Now we express M} ,, in terms
of the Ruelle operators. Observe that

2g g
§2g M:n,m(Co) exp{; L‘jmj} = Z . eXp {(Osnr(x) + ZZ stn(Pj(x)} gi(x)

anx=x(1 Jj=1
- a%ngi(x(i)) VC € CZg+1 .

Consequently, the inversion formula for Fourier series and Fubini’s theorem (since
k has compact support) imply that

@)™t f " i) k(= i00) ML (i + zo)e™ d6,
= (271:)‘29—1 J"‘ . .‘J‘" J'oo ﬁ(i@o)k(-—ieo)ipz”—mgi(x(i))

29
* eXp {itgo + Z ml(iel b Z])} deo d@l ‘oo dezg
Jj=1

2

INgE

— (n) 2! exp{~—n zjfj+Zot}' f T f ' f " (00— i00) L7 10

j=0

2g
*€Xp {ln Z 0161} deo d91 e dezg.
=0
For 6 = (6,, 0,, ..., 0,,) near the origin,
Ly 109:(xV) ~ exp{np(z — i0)} <Jgi dvz—i0> h,—ip(x?),

by Prop. 1, and for 8 bounded away from the origin

| £ 69:ll < (const) exp{np(z) — ne}
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for some & > 0, provided 6, € support (k), by Prop. 2. Thus the main contribution
to the last integral comes from 6 near the origin, say || < d (the fact that k has
compact support is crucial for this). For 6 near the origin, ({ g; dv,_)h._;p(x?) &
(] g: dv.)h,(x®) = Ci(z). Consequently,

Ju(s — t)(k* Ni ,)(ds) ~ (2m)"*"" exp {nﬂ(z) —n % z;&; + zot} Ci(2)
=0

” . f 4(i0)k(— i0) exp {n (ﬁ(z —i0) — B(z) — i f 0;6,-)} d, do, ...d0o,,.
lol<a i=0

Note that f(z) — Y 3, z;¢; = — (), because V(z) = £, so the leading exponential
factor is e ™@)*20f a5 desired. Also

Blz — i0) — B2) + i z 6,¢, = —<0, V2B(2)0)/2 + 0(16]?)

as |0| —» 0. Therefore, the last integral may be evaluated by Laplace’s method of
asymptotic expansion, yielding

J u(s — 1) (k ¥ Ni, o(ds)) ~ (2mn)~Ge+D2e=mO 20 Cz)(det V2B(z))” 2a(0)k(0),

which is the same as R.H.S. (3.7). This holds uniformly for ¢ in compact sub-
sets of Q, because all the approximations made involve only the thermodynamic
functions z - %,, B(z), v,, h,, which vary continuously with z, and hence
with & = Vf(z). Except for the proof of Lemma 1, this completes the proof of
Proposition 3.

Proof of Lemma 1. First we will show that there is a constant C = C(¢) < o
varying continuously with £ such that

39 sup N ,(J) < C|J[n~Coti2gm@+zot,
(39 p N,.(J)<ClJ|

Jre<|J| <L

Here the sup is over all intervals J whose lengths |J| are between ¢ and 1/e. Let v(s)
be a nonnegative, compactly supported, C* function such that v(s) = 1 Vs e J and
fv(s) ds < 2|J|; then N} (J) < [v(s)N} ,(ds). Let k € 2 be such that {2;k(s) ds >
1 — & for some small é > 0. Then since v = 0,

Jv(s)N,‘,,m(ds) < (const) fv(s) (k* NE ) (ds)
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(the constant depends only on é and on the modulus of continuity of v). But

2

L

f (s)(k * Ni, ) (ds) = (2m)" 2717 exp {—n 78+ Zot}

Jj=0

il

: j_ J_ f (6(85) exp{ — it0o } k(— i60) L1691 (x)

29
"exp {in Y. 0,-5,} do,...do,,
Jj=0
as before. Using Laplace’s method and Props. 1-2 as earlier one may show that
fv(S) (k * N ,.)(ds) < (const)p(0)n~(Pa+12g=me) 2ot

since #(0) = j'v < 2|J|, this proves (3.9). The uniformity in J follows from the fact
that the corresponding functions v may all be taken from {v, ,,(s) = v((s — t1)/t,),
t, € Rand ¢, € K} where K is a compact subset of (0, co). The fact that the constant
C = C(¢) can be made to vary continuously in ¢ follows again from the fact that
the approximations made in using the Laplace method depend only on the continuity
and smoothness of the functions { — %, v, h, B({).

Given (3.9) the rest of the proof is fairly routine. Choose ke 2 such that
f25k(s)ds > 1 — forasuitably small 6 > 0,and such that % |s|k(s) ds < co. Since
k is even,

Ju(s — )(k* N, ) (ds) = f(k *u)(s ~ )N, n(ds).

Consequently

j u(s — £)(k i) (ds) — j uls — N} u(ds) | < j luls — £) — (kwu)(s — )| N&, n(ds)

If 6 > 0 is sufficiently small (how small depends on u) then ju(s) — k *u(s)| < ¢ for
allse [a — 1, b + 1], where supportu < [a, b], whilefors ¢ [a — 1, b + 1],u(s) =0
and

k*u(s)<(r k(y)dy) o s < a,

a=s

k*u(s)sqw k(y)dy) [4lor s > b.
s—b
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Now k € 2 may be chosen so that |, |s|k(s) ds is arbitrarily small, and hence

M8

1

f.w k(y)dy < e.

i

Therefore, by (3.9)

ju(s — (k% Ni,)(ds) — fu(s — DN}, u(d3)

< 8Nri|,m([a - 13 b + 1])

o0

+ 21 llulle k(y) dyN, w(la —j— La—jlulb+j,b+j+11)
F=

j

< C(E)n~ oD @F 2ot (g(h — g + 2) + 2¢]|ull,)-

Since ¢ > 0 may be made arbitrarily small by a judicious choice of k € 2, (3.8) implies
(3.7). (The local uniformity in & follows from (3.9).) O

4. Thermodynamic functions for the suspension flow. Before we can use (3.1)-
(3.2) to prove Th. 1 we must relate the thermodynamic functions g, y for the shift
(X4, 0) to corresponding functions for the suspension flow (£, ¢"). For ¥: X, - R
bounded and Borel measurable define

Y(x) = j " W(x, 5) ds
0

§=

(thus, upper case letters denote functions on X, lower case letters the corresponding
functions on X,). Let &, = {¥: y € &,}. For real-valued ¥ € %, define P(‘¥) to be
the unique real number such that

'll//—P(‘l’)r =1;

since log 4, is a strictly decreasing, continuous function of p that converges to
F oo as p — +oo (cf. (2.2)), P(P) is well defined.

Let .#(#7) denote the set of invariant probability measures for the shift (suspen-
sion flow). There is a 1-to-1 correspondence between .# and #" given by

u<—>ﬁiﬂj“l’dﬁ= J./, dy/er,uV‘Peﬁf;'.
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If y«> i then
4.1 H(g, o") = H(p, a)/jr du.

(here H denotes entropy; cf. [1]). As before there is a Gibbs variational principle
relating the pressure and entropy functions P and H: if ¥ € #, is real-valued, then
forany pe "

(4.2) P(¥) > H(ji, ') + J ¥ dp

with equality iff 1 = jiy, where iy <> pty_pw), (se€ [6] or [7]).
Consider now the functions @, ..., ®,, on X constructed in sec. 1. Define

4.3) B(2) = P(% z,-(I>i>, ze R?,
4.4) r¢) = Slulxga (K¢, z) — B(2)), e R¥;

observe that B, f satisfy
4.5) B(—=B(2), 2y, ..., 23)) =0  Vz=(zy,...,2,,) e R*,

(NOTE: the pressure function f for the original (r, ¢,, ..., ¢,,) in sec. 1 is identical
to that for the cohomologue (r*, ¢F, ..., ¢¥,) introduced at the end of sec. 1).

PROPOSITION 5. Fixz = (zy,...,2,5,) € R¥;let & = VB(2), &* = (1, &y, ..., &),
and t; = [rdp where p = py, , _p) is the Gibbs measure on X, for the function
Z 29, 2,00, — B(z)r. Let ji = Fis..0, be the invariant measure for the suspension flow such
that p— . Then

4.6) E=VB(z) = <J(I)1 ag, ..., I@zg dﬁ)t;

@7 V2B(z) is strictly positive definite;
(4.8)  det(V2B(2)) = t;* det(V2B(—B(2), 2y, - .-, 235)) {C*, V2p(t:£*)E* ).

The proof uses (4.5) and properties of the functions f, y obtained in sec. 2. We
shall defer it until the end of this section.

Observe that (4.7) implies that B is strictly convex on R?¢ and that VB is a
diffeomorphism of R24 onto an open subset Q of R?, Consequently, I, the Legendre
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transform of B, is finite and convex on Q. For ¢ e (_E, ¢ = VB(z), the sup in (4.4) is
attained uniquely at z. Therefore, VI' is smooth on Q and

VI o VB = identity on R??,
VB o VI' = identity on Q,
V2I'(¢) = V?B(2) "t if ¢ = VB(2).
The Gibbs variational principle implies that
(49) T(¢) = ~H(Fss 0, ") if VB() = ¢,

and thus that —I'(¢) is the maximum entropy of any invariant measure j satisfying
[®dp=¢.

PROPOSITION 6. Fix ze R?; let £ =VB(z), &* =(1,¢, &5, ..., &8,,), and t: =
fr du where ji = liz; o, ) iS the Gibbs measure for Zz;¢; — B(z)r. Then

(4.10) I'(&) = vt L*)/t; = ‘lilg y(E&*)/t;

(4.11) (d?/de?) (Y (AE*)/t)=, = 151 E¥, V2p(tE¥)E* )5
(4.12) det V2I'(§) = tg"(é*, sz(téf*)f*>_1 det sz(téé*).
4.13) V2T°(¢) is strictly positive definite.

Proof. Notice first that t.&* = ({rdu, (@, dy, ..., [ @, du) = VB(—B(2), z,,
ces Z3,), 80 t£* € Q. Recall (sec. 2) that y is C* in Q. By the chain rule

@/dD((EE*)/t) = —t7p(g*) + TKV(E*), &)

for t near t,; evaluated at ¢ = ¢, this derivative is 0 because —y(t,£*) + {Vy(£,*),
te&* > = P(Vy(t:£*)) = p(—B(2), 24, ..., 25,) = 0. Differentiating a second time and
using the fact that the first derivativeis O at t = ¢, gives (4.11). Since R.H.S. (4.11) > 0,
it follows that t — y(t&*)/t has a local minimum at t = t,. But since y is convex,
s —> sy(&*/s) is also convex for s > 0, so ¢t — y(t&*)/t has a global minimum at ¢ = .
The fact that y(t.£¥)/t, = I'(¢) now follows from the Gibbs variational principles
for the shift and the flow, together with (4.1). This proves (4.10). Finally, (4.12)—(4.13)
follow immediately from (4.7)—(4.8) since V2I'(£) = V?B(z)™' and V2y(t,£*) =
V2B(—B(z), 2y, ..., 225" O

Note that the preceding results have been established only for ¢ € Q, not for all
& e R?. Unfortunately, it does not seem possible to describe Q2 completely; however,
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PROPOSITION 7. Q contains a neighborhood of the origin; also —T°(0) = topological
entropy of ¢".

Proof. Since Q is open, it suffices to show that 0 € Q. Consider the maximum
entropy invariant measure v for the geodesic flow on the unit tangent bundle SM;
it follows from Bowen’s symbolic dynamics (specifically, (1.1)—(1.3)) that v is unique.
Let I: SM — SM be the map that reverses directions, i.e., I(m, 8) = (m, — ), and let
¥ = vo I; clearly, ¥ is an invariant measure for the geodesic flow with the same
entropy as v. Therefore, v = 7. It follows that f W, dv=0fori=1,2,...,2g, because
Wiol = —W,so [Wdv=—[Wadw

The measure jI = v o © on X, is the maximum entropy invariant measure for the
suspension flow. The result of the previous paragraph implies that [ ®; di = 0 for
i=1,...,29.Now H(fi, ") = topological entropy of ¢"; but it is known ([11], Prop.
2) that the topological entropy of ¢" equals P(0). It follows from the variational
principle that & = fi,. Prop. 5 now implies that VB(0) = (j ®, dp, ..., {®,,dx) =0,
so0eQ. O

Proof of Prop. 5. Taking the partial derivative with respect to z; in (4.5) gives
0;B(— B(z), 2) = 0o B(— B(2), 2)(0/02;) B(2)

= 0B/0z; = 0,f(— B(2), 2)/00 f(— B(2), 2)

= f(pidu/frdu = J<I>,-dﬁ,

proving (4.6) (cf. (2.2)). Taking another partial derivative, this time with respect to
z;, gives

00 B(—B(2), 2)(0* B/6z;0z;) = Doo B(— B(2), 2)(0B/0z:)(0B/0z) + 0 f(— B(2), 2)
— 00:B(— B(2), 2)(9B/0z;) — 0,,;8(— B(2), 2)(9B/0z;)

This may be rewritten as
A=CDC,

where
A = 0,p(— B(z), 2)V*B(2),

D = V?B(—B(2), 2),
C=(cy),i=0,1,....,29,j =1,2,..., 29,

C:: =
o 5ij’ i=1,...,zg.
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(Here 6 is the Kronecker delta.) Since D is strictly positive definite (2.3), so is A4;

this proves (4.7).
Let v = D7'¢* e R**; it is easily verified that C'Dv = 0 € R?. Consequently,

(3'->D(u|c) - (——b@*wﬂé* %)

c 0
= (det D)(det(v|C))* = ((£*)'D~'¢*) det A.

Now
vo —&1 —& &
vy 1 0 0
@)= |v, O 1 o -|;
0 1

elementary column operations show that its determinant is (v, £*> = (&*, D71E%),
Thus

det(V2B(— B(2), 2))<&*, V2B(—B(2), 2)'&* ) = 0, f(— B(2), 2)* det(V*B(z))

which proves (4.8) since 8, 8(— B(z), z) = [r du = t;and V2B(— B(z), z) ' = VZp(¢*).
O

5. The final tally

PROPOSITION 8. Let t 7' (my, ..., my,) = (&, ..., &) = & Uniformly for & in some
neighborhood of the origin, as t — oo

(1) Y 7 Qu(t ms 1) ~ e TOrI Q) o(det VAT(E))2Cy(x), where

(5-2) Cel) = J exp{—('() — <VI($), £)s} ds.

Proof. By Prop. 7 there is a neighborhood of the origin contained in Q. Assume
that ¢ is in this neighborhood, and let z, &*, t,, u = . , g be as in Prop. 5. We
will show later, using Prop. 4, that for any 6 > 0,as t -

s

(5.3) nQ,tmty~ Y nT'Q(t,m; 1)

1 [n—tjte| < 3t

n

uniformly in ¢ near 0.



814 STEVEN P. LALLEY

Prop. 3 gives an asymptotic formula for Q,; substituting this in (5.3) gives
(54 Y nQtmn~ X exp{—tn/t)y((t/n)&*)}n7" Y (2m)"0712
[n—t/ty < ot In—t/t| <ot

“(det V2y((t/n)*)1? J e ds

0

where z, = 9yy((t/n)E*). By Prop. 6, s — y(s&*)/s has its minimum at s = t,, where
it has a positive second derivative. Consequently, Taylor’s theorem implies that

exp{—t(n/t)y((t/n)¢*)} ~ exp{—tT'({)} exp{—tb:((t/n) — 1¢)*/2}

uniformly for n such that |n — t/t,| < t'? log t, where

by = (d?/ds?) (y(s&*)/s)
= 7 '(E*, V(L E4)E*D,
and

exp{—t(n/t)y((t/n)¢*)} < exp{—tT'({)} exp{ —tbe((t/n) — t,)*/4}

for all nsuch that |n — t/t.| < dt, provided 6 > Ois sufficiently small. Thus the major
contribution to the sum in (5.4) comes from the terms for which |n — t/t,| < t'? log ¢,
and the sum, suitably renormalized, is a Riemann sum for j‘fm e dy (use u =
t'2b}2((t/n) — t,)). It follows that

n'Q,(t, m; 1)
[n—t/ty < dt

~ e TOIQn) ICER, V(1% %) T et V() 1f f e ds

0

where zy = 9py(t:£*) = —B(VI'(&)) = —(T'(&) — KVI'(§), £>). This, together with
(4.12), proves (5.1), modulo the proof of (5.3).

Recall again that s - y(s¢*)/s has its minimum at s = t,, where the second
derivative is positive. Now t,£* € Q (see the proof of Prop. 6) so s&* € Q for s near
tg; for such s

(d/ds)(y(sE*)/s) = s72(—p(sE*) + {Vy(s*), sE* )
= sT2B(Vy(sE*)),
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hence
B(Vy(sl*)) 20 fors 2 t,.

Let ny = [[t(t;' — 8)1] and n, = [[¢(t;* + 6)]] (here [[-]] denotes greatest
integer); let s; = t/n;,i = 0, 1,and let z' = Vy(s;£*),i = 0, 1. Since s, > t;and s, < t,
we have B(z°) > 0 and B(z*) < 0, by the preceding paragraph. Thus, if n < n, then
Prop. 4 (with { = (¢, m,, ..., m,,) = t&*) implies

Q,(t, m; 1) < Ko exp{np(z°) — <z% > + |23| 1}
= f Qn(t, m; 1) < Ko exp{no f(z°) — (2% £ + 12|t} /(1 — e7#%)

= K0 exp{(t/so)(B(z°) — <2° 50&*>) + 20| T}/(1 — e P¢=%)
= Koo exp{—(t/50)7(50E*) + |23/ /(1 — &),

Since —y(so&*)/so < —y(t:£*)/t = —T'(£), this proves that

21 0,(t, m; 1) = o( 5 0t m; r)>.

n=ng

Similarly, if n > n, then Prop. 4 implies
0.(t, m; ) < K, exp{nB(z*) — {24, () + |23t}
= Y Qu(t.m; ) < Kuv exp{niBz) — <21, 05 + 241 2}/(1 — )
= K1 exp{(t/s;)(B(z") — 2", 5:&*) + |28]7}/(1 — &&Y)
= K1 exp{—(t/s1)7(s:£*) + |25l T} (1 — €PY);
again, —y(s;£*)/s; < —T'(£), so

0.(t.m; %) = o( 5 0,(t,m; r)>.

n=ng

M8

n=n

This proves (5.3). Observe that all the estimates hold uniformly for £ locally, since
the thermodynamic functions are continuous in &. a

Theorem 1 follows easily from Proposition 8. First we argue that (5.1) implies

(5.5) 3 n710,(t, m; 1) ~ RH.S. (5.1),

n=1
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where

gt mty= Y 1O Sr(x)—t < S,0(x)=mVi=1,...,2g}.

n

Recall (cf. (1.5)) that &, is the set of periodic sequences x with least period n; the
difference between Q, and J,, is that Q, counts all x such that 6”x = x. Hence

Qn(ta m; T) - Qn(t, m; T) < d ;>1 Qn/d(t/d9 m/d, T)

= 21 n_l(Qn(t, m; t) - Qn(t, m; T)) < i n_lQn(t/d’ m/d’ ‘L')

2<d<gCtn

(note that Q,(t/d, m/d; ©) = O unless m/d € Z??; also, d < Ct because thereisa é > 0
such that every periodic orbit of the suspension flow has length > §,s0t/d + t = ).
But (5.1) implies that the last (double) sum is < C't exp{—tI'(¢)/2}, which is of
smaller exponential order of magnitude than R.H.S. (5.1). This proves (5.5).
Consider the quantity R(t; my, ..., m,;) = R(t; m) defined by (1.5); we may write

o0

R(t;m)— R(t — Kit;m) = an ( S n71Q,(t — ke, m; ‘L')>.

k=1 \n=1

If ¢ = (" m s sufficiently close to the origin and Kz is not too large (recall that (5.1)
and hence (5.5) may only be valid for £ near the origin) then each of the terms in
the above sum may be estimated by (5.5), yielding

(5.6) R(t;m) — R(t — Ktt; m) ~ [[i]] exp{—(t — k)T ((t — kv) " 'm)}(t — kr)™9!
k=1

-det V2I'((t — k) 'm)2Cyy_pey-1m(7).

Observe that (d/dt)(tT(t"'m)) = Tt "'m) — (VI (t7'm), t 'm) = —B(VI'(t"'m)); if
t 'm is near the origin then VI'(¢t !m) is near the origin, because VB(0) = 0 (Prop.
7), and thus —B(VI'(t 'm)) < 0, because B(0) > 0 by (4.5). Hence the terms in the
above series are exponentially decreasing, and the major contribution comes from
the range 1 < k < \/t/1. Using (5.2) and the above formula for (d/dt)(¢T'(t m)) we
obtain

R(t;m) — R(t — Kty m) ~ e™TOr™071 (2m)~6(det V2I'(£))"2 - ((VI(€), &> — T (€)™,

Finally, we argue that if £ = t'm is in a sufficiently small neighborhood of the
origin and if Kz is suitably chosen then R(t — Ktt; m) = O(exp{—tT'(¢) — t&}) for
some ¢ > 0. If € is near the origin then —I'(£) is near the topological entropy h of
the flow (Prop. 7). Thus Kt may be chosen small enough that (5.6) is valid, but large
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enough that (1 — K1)h < —T'(£) — ¢ for some ¢ > 0. Now R(t — Ktt; m) < the
total number of periodic orbits of the flow with period < (1 — K7)t, which is <
(const)e®* K9 by Margulis’s theorem [9].

This proves that

R(t; m) ~ e”"TO7971 2m) ¢(det V2I'(£))4(KVI(€), &> —T(E)™

provided t™'m = & is in a sufficiently small neighborhood of the origin. All of the
above approximations hold uniformly in £ locally, by the continuity of the thermo-
dynamic functions. This completes the proof of Theorem 1.

Appendix: Proof of Proposition 0. The strategy will be to alter the sequence
space X, furnished by the Bowen/Ratner construction so as to obtain a new
sequence space X. This new sequence space will be constructed in such a way that
all “periodicities” in the functions ¢¥, ..., ¢%, are destroyed.

Step 1. Enlarging the alphabet. The alphabet for the sequence space £, is & =
{1,2,...,1}. Let k > 1 be an integer; define 4 to be the set of all sequences of length
k from «f with transitions allowed by 4, ie, & = {x;x,...%: x;€ &/ and
A(x;, x;41) = 1}. Define a transition matrix 4, on 2/, by

1 fA(x, x)=1land x; =x;, Vi=1,...,k — 1;

Ag(X1X5 .00 Xy X1X5...X5) = )
X1 X200 X X1 X3 Xi) 0 otherwise.

Let g,: o, — & be the projection on the first coordinate (i.e., g,(x;x;...x;) = x;)
and let p,: £, — X, be the induced map on sequence space. Clearly, p; is bijective
and commutes with the shift; moreover, for each p € (0, 1) the maps p, and p; ! are
Lipschitz relative to the metrics d, on X, and X,. Hence, each of the sequence
spaces X, provides an alternative “symbolic dynamics” for the geodesic flow.

The reason for introducing the spaces Z,, is that they provide much enlarged
alphabets. In particular, if {x*, x?, ..., x™} is any finite collection of periodic se-
quences in I, then for all sufficiently large k the periodic sequences p;'(x'), ...,
pi'(x™)in Z,,_are such that no two share a common symbol from /.

In step 2 we will assume that the original sequence space X, has been replaced
by X, for some k; for ease of notation we will drop the subscript k and write the
alphabet as o = {1, 2, ..., I}. In step 3 we will specify k.

Step 2. Inserting “loops” in sequences. For each symbol i € &/ we invent new
symbols iy, i,, ..., iy and let o/ be the alphabet consisting of all the new symbols.
Thus, o = {1, 15, ..., Lp1y 215 23, .-, Iy }- Define a transition matrix A on o/
by _

A(lj,lj+l)=1, j=1,2,...,M(i)—1;

A(i;, i}) =0  otherwise.
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For any sequence in Z, there is a unique sequence in X5 obtained by replacing each
symbol i € o by the word i,i,...iyy,. Conversely, for any sequence in X there is
a corresponding sequence in X, obtained by deleting all symbols in the sequence
except1,,2,,...,1;,then removing the subscript 1 on each of the remaining symbols,
then applying ¢~1. Thus, there is a surjective map p: X7 — X ,; this mapisnot 1 — 1
and does not commute with the shift, unless M(1) = M(2) =--- = M(l) = 1, but it
is continuous. Furthermore, for each p € (0, 1) there exists g € (0, 1) such that p is
Lipschitz relative to the metrics d,, d; on T, 3. Most important, p induces a
bijection between equivalence classes of periodic sequences in X3 and X, (here
periodic sequences x, X' € X, or x, x' € Xy are considered equivalent if they are in
the same orbit, i.e., if x’ = o/x for some j).

Now consider the functions r*, ¢f, ..., @3, on X ;; recall that each of these depends
only on the forward coordinates xqx,x, ... of x € X, hence may be considered a
function on £} . For x € X3 define

g(x) = M((p(x))o)
7*(x) = r*(p(x))/g(x),

¥ —_ gaf(p(x)) ifx06{11’219°"5ll}5
7 {0 otherwise.

Note that 7* > 0, ¢f is integer-valued, and 7*, @F, ..., @3, are Lipschitz relative to
d;. Let x € Z4 be a periodic sequence with minimal period 7, and suppose the
minimal period of p(x) is n. Then

Si*(x) = S,;r*(p(x))  and

Sﬁ(ﬁj*(x) = Sn(p}*(p(x))9 ] = 15 29 e 299

so the R.H.S. of (1.5) remains unchanged if we substitute 7* for r*, ¢f for ¢}, and
2, for #,, where 2, is the set of periodic sequences in X5 with minimal period .

It is clear that the new sequence space X gives an alternative symbolic dynamics
for the geodesic flow. The useful feature of this new symbolic dynamics is that the
minimal period of the periodic sequence representing a particular closed geodesic
can be adjusted by tinkering with the integers M (1), M(2), ..., M(l).

Step 3. Removing the periodicities. We start with the sequence space Z, provided
by the Bowen/Ratner construction, and let ¢of, ¢, ..., 3, be as in sec. 1. Recall
(1.4) that all but finitely many closed geodesics have the property that the preimage
(under ) consists of a single periodic orbit of the suspension flow with the same
minimal period. Recall also ([2], sec. 11.7, Th. 10) that each homology class
me Z* =~ H, M contains a closed geodesic. Consequently, there exist m®, m*, ...,
m?? € 7?9 and periodic sequences x°, x!, ..., x* € £, with minimal periods n,, n,,
..., Ny, such that
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(a) S,,0*(x') =m'foreachi=0,1,...,2g; and

(b) the vectors m* — m®, i = 1, ..., 2g, are the standard unit vectors in Z29.

Next, we replace the sequence space £, by X, as in step 1. Regardless of what
k > 2 is used, the sequences x°, x!, ..., x2¢ pull back to periodic sequences X°, £*,
..., %*%in T, with the same minimal periods o, n,, ..., n,,. Furthermore, if ¢* is
the pullback of ¢* to X, then S, ¢*(%') =m'fori =0, 1,..., 2g, as before.

Choose k so large that no two of the sequences X°, X!, ..., %29 share a common
symbol. Each period of % contains symbols a;;, a;,, ..., g, Which occur with
frequencies k;y, ki, . . ., ki thus, the (minimal) period of x*is k;; + kiy + - + kiyg)-
Observe that the symbols a;, i =0, 1,...,2g and j = 1, ..., v(i), are distinct.

LEMMA. There exist integers M(ay) = 1 fori=0,1,...,2gandj=1,2,...,v(i)
and an integer 7 such that for eachi=0,1,...,2¢g

w(i)
(Al) Z:l M(aij)kij =n.
j=

The proof is deferred to the end of the appendix. The function M(-) may be extended
to the entire alphabet 7, by setting M(«) = 1 for any a not contained in {a;}.

Now we use the function M(-) to define the sequence space X3 as in step 2 (using
the alphabet 7). The functions #* and ¢} pull back to functions 7* and @} on 3
as explained in Step 2, and the R.H.S. of (1.5) remains unchanged when 7*, ¢}, 2,
are substituted for r, ¢;, and 2. We will show that the vector-valued function
@* = (¢7, ..., P3,) on X5 is not cohomologous to any function ¥ valued in a coset
of a proper subgroup of Z?¢; this will complete the proof of Prop. 0.

Consider the periodic sequences %°, %', ..., X% in £, . There are periodic se-
quences x°, X', ..., X2 in X that project to %°, X, ..., X%¢; by (A1) the minimal
period of each X' is 7. By construction, S;@*(x’) = S, @*(%) = m' foreach i =0, 1,
..., 2g. Now suppose that @* is cohomologous to a function y valued in h + G,
where G is a subgroup of Z2%. Then S;p*(x!) = S;¥(x)enrh + Gfori=0,1,...,
2g. But S;0*(x") = m’, and (m* — m°), (m? — m°), ..., (m*® — m®) are the standard
unit vectors in Z24; therefore G = 79,

Proof of the Lemma. Letk,,k,,...,k, be any finite collection of positive integers,
and define

J = {i niki: ni € Z},

i=1

r

Jt = {Z nk;:n;eZandn; > 1}.

i=1

The set J is an ideal, so J = {nd: n € Z} for some d > 1. We will show that J\J™ is
bounded above, i.e., that nd € J* for all n sufficiently large.
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Without loss of generality we may assume that d = 1 (if not, replace k,, ..., k, by
ki/d, ..., k./d). Choose s, ..., s, € Z so that Zs;k;, = 1, and set k = Zk; > 1. Now
every n € Z may be written uniquely as n = kx + y where 0 < y < k, so

n=>y (x+ ys)k;.

i=1

If n is sufficiently large then (x + ys;) = lforeachi=1,...,r,soneJ™.
Now define

v(i)
=

v(i)
Ji = {Zl sik;: s;€ Z and 5; > 1}-
=

Foreachi=0,1,...,2g, J\J; is bounded above. Furthermore, since each J; is an
ideal, so is ﬂJi; consequently, ﬂJi = {nd: n e Z} for some d > 1, and thus ﬂJ,. is
not bounded above. It follows that

(N3
o

gy =

13

Il
<
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