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CLOSED GEODESICS IN HOMOLOGY CLASSES ON
SURFACES OF VARIABLE NEGATIVE CURVATURE

STEVEN P. LALLEY

0. Introduction. Let M be a compact Riemannian manifold of negative curva-
ture. It is well known that there exist countably many closed geodesics in M, and
that if N(t) is the number of such closed geodesics with lengths < then

(0.1) N(t) eht/ht

as , where h > 0 is the topological entropy of the flow [9]. Recently, Phillips
and Sarnak [12] and Katsuda and Sunada [6-1 have investigated the asymptotic
behavior (as ) of N(t; m), the number of closed geodesics in the homology
class m with lengths < t. For manifolds M with constant negative curvature they
prove that for each homology class m, as

(0.2) N(t; m) Ceht/t+/

for a constant C > 0, where r is the rank (over 7/) of the homology group H1M (i.e.,
H1M Z G, where G is the torsion subgroup).
The purpose of this paper is to extend (0.2) to manifolds of variable negative

curvature, and to describe the asymptotics of N(t; m) when m varies with in a
roughly linear fashion. For simplicity we shall only consider surfaces M whose first
homology groups are torsion free, i.e., H1M 7/20, g > 2. There exist C forms 091

o92o on M such that for any smooth closed curve 7 on M the homology class of
), is (r o91, r o20). Let SM be the unit tangent bundle of M; define W: SM
by W/(x, v) (ogi(x), v) (here <, > denotes dot product). For [20 define -F()
to be the maximum entropy of an invariant probability measure 2 on SM satisfying
W d2 i’i 1, 2,..., 29 (invariant means invariant with respect to the geodesic

flow on SM). In sec. 4 we will show that -F() is well defined and C for in some
neighborhood of the origin, and that the Hessian matrix VZF() is strictly positive
definite for every in this neighborhood.
The main result of this paper is

THEOREM 1. Let -1(ml, m20); then as

(0.3) N(t; m) e-W()t--l(2rc)-(det VzF())I/z((vF(), ) F())-1

uniformly for in some neighborhood of the origin.
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The result (0.2) is a special case of this because -F(0)= h (Prop. 7 below).
Observe that the asymptotics of N(t; m) for rn varying linearly with 1/2 may be
deduced from (0.3); in particular, if ( t-1/2(ml,..., m20) then uniformlY for ( in
any compact subset of R2, as o

(0.4) N(t; m) e ’h exp{--(, VZF(O))/2} t--(2)-O(det VzF(O))X/Z/h.

(Note that VF(0) 0 because -F() has its maximum at 0.) The formula (0.4)
may be interpreted as a (local) "central limit theorem" for closed geodesics: if one
randomly chooses a closed geodesic from the set ofclosed geodesics with lengths <
then the distribution of the (renormalized) homology class t-ram is approximately
the 20-dimensional Gaussian distribution with mean vector 0 and covariance matrix
V2F(0). Similarly, (0.3) may be interpreted as a "large deviation theorem".
Our approach to Th. is completely different from that of [6] and [12-1, which

is based on the Selberg trace formula. We use the symbolic dynamics for geodesic
flows developed by Sinai, Ratner, and Bowen to reformulate the problem as a
counting problem in a sequence space, then use certain aspects of Ruelle’s "thermo-
dynamic formalism" to solve this counting problem. The method is more intricate
than that of [6] and [12], and the details of the Fourier analysis more demanding;
moreover, it appears to be ill suited for asymptotic expansions. However, it applies
to a large class of flows (those admitting "symbolic dynamics") [7-1, and variations
on the method are suitable for a large variety of counting problems in hyperbolic
geometry (see [8] for some examples).
The overall organization of the calculation is virtually the same as that in our

earlier paper [7]. However, some simplifications are possible here ((i) there are no
"rapidly oscillating terms", as in [7], Lemma 7; and (ii) all of the functions except
the height function r(x) are integer-valued, which makes the Fourier analysis less
complicated). Also, there is a (correctable) error in the unsmoothing argument of
[7-1, sec. 6. For these reasons we shall give a complete proof of Th. 1 here, without
reference to [7].

Another advantage of the methods used here and in [7], [8-1 is that they yield as
a by-product sharp information about the distribution of individual closed geodesics
in SM. Let y be a closed geodesic (considered as a path in SM) and let G: SM
be a continuous function; define y(G) to be the integral of G over 7, i.e., y(G)=
11G((s)) ds where is parametrized by arclength s. Let be the invariant prob-
ability measure for the geodesic flow with maximum entropy subject to the con-
straints W/d , 1, 2g. For e > 0 define N(t; m; G; e) to be the number
of closed geodesics 7 of length I1 < t, in homology class m, and satisfying

where m/t.



SURFACES OF VARIABLE NEGATIVE CURVATURE 797

THEOREM 2. As , N(t; m; G; e)/N(t; m)- 1 for any e > O, uniformly for
m/t in some neighborhood of the origin.

In other words, most of the closed geodesics counted in N(t; m) are distributed on
SM approximately (in the weak topology) as . We shall not prove Th. 2, as it is
very similar to results proved in [7], [8] (cf. [7], Th. 4; [8], Th. 7).

Note. After writing this paper I received preprints of Pollicott and Katsuda/
Sunada, each extending (0.2) to compact manifolds with variable negative curvature.
The methods used in these papers do not appear to be capable of yielding the
stronger result (0.3).

1. Symbolic dynamics. The counting arguments of this paper rely on the repre-
sentation of the geodesic flow by a suspension flow over a shift of finite type.
Geodesics are coded in a more-or-less bijective fashion into infinite sequences from
a finite alphabet, with the closed geodesics corresponding to periodic sequences.
The enumeration of periodic sequences then proceeds by way of "thermodynamic
formalism".

Let A be an irreducible, aperiodic, x matrix of zeros and ones; define

Y.a= x I-I {1,2,...,l}’A(x,,x,+l)= l Vn

Y x I-I {1, 2,..., l}" A(x., x,+l) 1 Vn
0

These spaces are compact, metrizable, and totally disconnected in the topology of
coordinatewise convergence. The maps a: Y,] --. E] and a: EA Ea defined by
(tx), x,+t are called the one-sided shift and the two-sided shift, respectively; the
two-sided shift is a homeomorphism, whereas the one-sided shift is continuous and
surjective but not injective. For each p (0, 1) there are metrics d, do on El, ZA
defined by

n=O

do(x, Y)--

each inducing the topology of coordinatewise convergence. Let +, denote the
spaces of complex-valued, Lipschitz-continuous functions on El, Ea, respectively,
relative to the metrics d, do. Observe that+ is naturally embedded in, and
that +, are Banach spaces when endowed with the norms II" ]lp IIoo + l" Ip,
where l/lo sup{If(x)- f(y)l/do(x, y)} (or d).
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Suspension flows over the shift (Za, tr) are defined as follows. Let r be a strictly
positive function on EA (r is called the height function), and let

Z] { (x, t): x e ZA and 0 < < r(x)}

with the points (x, r(x)) and (trx, 0) identified for each x Ea. The suspension flow
rf,- < < , on E] is defined by

a(x, s) (x, s + t) if 0 < s < r(x) and 0 < s + < r(x),

a; o a; a;+, Vs, te R.

The dynamics of the flow tr( may be described as follows: starting at any point
(x, s) e El, move at unit speed up the vertical fiber over (x, 0) until reaching (x, r(x)),
then jump instantaneously to (trx, 0) and continue along the vertical fiber over
(trx, 0). Observe that the periodic orbits of this flow are precisely those orbits that
intersect the "floor" EA x {0} at points (x, 0) where x is a periodic sequence. If an
orbit passes through (x, O) where a"x x and ax v x for 1, 2, n 1, then
the orbit is periodic with least period

Sr(x) = r(x) + r(crx) +’" +

Consider now the geodesic flow on the unit tangent bundle SM of a compact,
C, Riemannian manifold M. This flow is known to be an Anosov flow, hence the
results of Bowen I-3] and Ratner [17] are applicable. In particular, there exists a
suspension flow tr on El, with height function r for some 0 < p < 1, and a
Lipschitz continuous map n" E] SM such that

(1.1) rc is surjective;
(1.2) r is at most N to 1 for some N <
(1.3) r o a[ t orc Vt > 0; and
(1.4) all but finitely many of the periodic orbits {7} of have the property that r- ()

consists of a single periodic orbit of rr with the same least period.

Because the representation of the geodesic flow as a suspension flow is funda-
mental to our analysis, we shall give a resum6 of the main features of the Bowen/
Ratner construction. Codimension one "rectangles" R1, R2 Rt are constructed
in SM transverse to the flow ; each side of Ri lies either in a leaf of the stable
foliation W or in a leaf of the unstable foliation Wu. Now each orbit of cuts
through I-1Ri in a doubly infinite sequence of points, and if the rectangles R are
suitably chosen then the sequence of indices.., i-1 ioil uniquely determines the
orbit, and conversely for a suitable transition matrix A every sequence in Za
corresponds to an orbit. The assumption of negative curvature is crucial for this
because it ensures that no two orbits pass through the same sequence of rectangles
R. The correspondence between orbits and sequences is 1 1 except for orbits
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which pass through the boundary ofsome R. (Note: only finitely many closed orbits
of pass through the boundary of some R, since these boundaries lie in leaves of
W or WS; this explains (1.4) above.)
Assume now that M is a compact surface of genus g > 2. Let W1, W2,

W2g: SM --+ R be as in sec. 0; thus for any smooth closed curve (s) parametrized by
arc-length the homology class of in H1M g Z2g is

w,((s), ’(s)) ds, w((s), r’(s)) ls

For x e Ea the path (x, t), 0 < < r(x) projects via n to a segment of an orbit of the
geodesic flow in SM. Define

r(x)

cpi(x) Wi(n(x, t)) dt, 1,..., 20.
dt=O

Let x EA be a periodic sequence with smallest period n; then the path (x, t),
0 < < Snr(X), is a periodic orbit of the suspension flow with least period S,r(x).
The projection via rc of this periodic orbit is a closed geodesic. If the minimal period
of this closed geodesic is also Snr(X) then its homology class is (Snqg (x),..., Snq)2l(X))
where Snf f + f o tr + + f o trn-. It therefore follows from (1.4) above that
the number of closed geodesics in M with least period < z and in homology class
(m, m2, m2) is R(z; m, m2) + 0(1), where

(1.5) R(z; ml,..., m2a) n-* Z l{&r(x) < ; &cp,(x) m, Vi 1,..., 2/}
n=l Xn

andn is the set of periodic sequences in Ea with least period n. In the subsequent
sections we shall undertake an asymptotic analysis ofthe function R(r.; m,..., m2g).
The symbolic dynamics described in (a)-(g) above is by no means canonical (in

fact, Bowen’s construction shows that there are infinitely many such representa-
tions). In the remainder of this section we will show that the suspension flow may
be chosen in such a way that the functions r, p, (/02 are in a form advantageous
to the Fourier analysis of secs. 2-3 below.
Two functions f, # e are said to be cohomolo#ous if there exists a continuous

function h on Ea such that f- # h h o tr. Note that if f, # are cohomologous
and if trnx x then Snf(x) Sng(x). According to Lemma 1.6 of [4], for any f
there exists f* ff, such that f and f* are cohomologous; a close examination
of the proof shows that if f > 0 then f* can be chosen so that f* > 0. Let r*,
o* ,, be such that r, r* are cohomologous and r* > 0, and q9i, q* are cohomolo-
gous. Ifx e Ea satisfies trnx x then Snr(X) Snr*(x) and Sn(Di(X) Snqy/*(x), so none
of the quantities in (1.5) is changed if r is replaced by r* and qg is replaced by
Moreover, Prop. 2 of [15] implies that qg* may be chosen so as to be an integer-
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valued function, because if a"x x then S.qg(x) is integer-valued, as it is the th

coordinate of the homology class of a closed geodesic.
The main result of [16] and Prop. 7 of [14] imply that the height function r

cannot be cohomologous to any piecewise constant function. Since qg, o* are20
integer-valued, they are piecewise constant; hence

2g

(1.6) r v aqg + @ + h h o tr
=1

for any scalars a, any piecewise constant , and any continuous h.

LEMMA 0. The vector-valued function (qg’,..., (/92") is not cohomologous to any
function valued in a proper subgroup of 7/2g.

Proof. Each homology class m (ml, m2g) Z2 H1M contains a closed
geodesic ([2], sec. 11.7, Th. 10). Hence, by (1.4), there exist closed geodesics Yl,...,

’2 in homology classes m:, m2 such that ml, m2 generate 7/2g and such
that the preimage (under zr) of any Yi consists of a single periodic orbit of the
suspension flow with the same minimal period. It follows that there are periodic
sequences x 1, x2, x2 EA with least periods nl,..., n2 such that Sn, tp*(x i) m
for each 1 ,2g. Since m,..., m2 generate 7/2, this proves that qg* cannot be
cohomologous to a function valued in a proper subgroup of Z2g. I"]

PROPOSITION 0. The suspension flow may be chosen so that (tp, tp) is not
cohomologous to any function valued in a coset of a proper subgroup of Z2.
The proof is given in the Appendix. It is not absolutely essential for the Fourier

analysis of sects. 2-3 that (tp, rp2*) have this property; the important fact is
really Lemma 0. However, it does simplify the calculations somewhat. As to the
proof of Prop. 0, we remark that it is based on a coding trick--no new geometric
argument is needed. We just change the sequence space by replacing each symbol
i {1, 2, 1} by a block ii2...iMti) and redefining the functions r, r*, qg, etc.
accordingly. By choosing M(1), M(2), M(l) appropriately we get rid ofunwanted
"periodicities" in qg q92.*

In the remaining sections of the paper (excluding the appendix) we shall drop
the superscript * on r*, 0,... *q92, as the original r, q91, q92g will play no further
role. Thus, from here on r, q:, q2 are functions in/ such that (r, ql, q92)
is valued in (0, ) x 2 and (qg,..., q92) is not cohomologous to any function
valued in a coset of a proper subgroup of 7/2g. Note that (1.5) is still valid.

2. Rueile operators and thermodynamic functions for the shift.
tion f 6+ the Ruelle operator:+ + is defined by

fg(x)= e(Y)g(y).
y:try=X

For any func-
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This is a bounded linear operator; iff is real-valued it is a positive operator. The
spectrum ofL has been described by Ruelle [18] and Pollicott [15]"

(a) Iff is real-valued then there is a simple eigenvalue 2s (0, ) whose eioenfunction
hs + is strictly positive on E.. The rest of the spectrum is contained in a disc
of radius < 2. Moreover, there is a positive Borel measure b" on zT such that

(b) If f u + iv, where u, v + are real-valued, then (bl) if for some constant
a [- n, n] thefunction (v a)/2n is cohomolooous to an integer-valued function
then eia2u is a simple eigenvalue of I, and the rest of the spectrum is contained
in a disc of radius < 2,; (b2) otherwise, the entire spectrum of &’, is contained in
a disc of radius < 2.

We may assume that the eigenfunctions and eigenmeasures in (a) are normalized
so that

l=fldvo=fhydvo=fhydvy.
Standard perturbation theory shows that 2, hy are analytic in f in some open
neighborhood of the real-valued functions in +; v. is weakly analytic in f in the
sense that for any g + the real-valued function g dry is analytic. Observe that
if f, f* are cohomologous then 2 2,; also, if f* f + g g o a then h,,
e-hy and dvs, e dry.
For each real-valued f + the measure # defined by d#i hy dry is a

invariant probability measure on EJ called the Gibbs state or equilibrium state for
f ([5], ch. 1). Because it is a-invariant, #s extends to a a-invariant measure on
which we also denote by #. If f, 9 are cohomologous then # #o; otherwise #,
#0 are mutually singular. The Gibbs state/ is a strongly mixing invariant measure
for a.
The asymptotic expansions of section 0 involve the entropies of certain invariant

measures. The key to identifying the quantities in these expansions as entropies is
the Gibbs variational principle. This states that iff + is real-valued and if # is a
tr-invariant Borel probability measure on Ea then

(2.1) log 2 > H(#, ) + ff d,

with equality iff # # (here H(#, a) is the entropy of # relative to a).
Recall now the functions r, ql, qzo e+ constructed in sec. 1. For z

(Zo, z, z20) E2o+ define the pressure function

fl(z) log(2zor+__.
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It is known ([19], Ch. 5, Ex. 5) that

(2.2) c3fllOzo t-r dlaz, Ofl/c3z t-qgd#z, > 1;

(2.3) VZfl(z) is strictly positive definite Vz 20+1,

where #z #zor+z,, is the Gibbs state associated with the function zor +1 zq.
(The fact that V2fl(z) is strictly positive definite uses the fact that no linear combina-
tion of r, q91,..., q92o is cohomologous to a constant; of. (1.6).) It follows that//is
strictly convex, strictly increasing in Zo, and that Vfl is a diffeomorphism of R2+1
onto an open subset f of R20+l.
The Legendre transform 7 of fl is defined by

7() sup ((, z) fl(z)), 2o+1,

where <, > denotes dot product. The function y is convex on 20+1. For f the
sup is attained uniquely at that z for which Vfl(z) , because of the strict convexity
of ft. The inverse function theorem therefore implies that

(2.4) Vy o Vfl identity on [20+1

Vfl o V, identity on f;

(2.6) V2() (VZfl(z))-1 if Vfl(z)= .
Thus 7 is strictly convex on f. The Gibbs variational principle implies that

() H(lz, a) if Vfl(z) .
For ( ((o, (1, (20) C2+I we shall use the abbreviated notation

r+TMo L,

PROPOSITION 1. For each z [20+1 there is an open neighborhoodU of z in C2+1
and an e > 0 such that for every V" and every 9 +
(2.7) < CIIgll(1 + )-" Vn 1.

Proof. Recall that the functions he, v, fl() extend to analytic functions for
in some neighborhood of z. In this neighborhood,

=2’+"whereL’’O=(odv;)h.
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Clearly, spectrum (")= (spectrum ()\{2})w {0}; thus for all ( near z the
spectral radius of" is < 2z 6 for some 6 > 0. Moreover, for any n > 1

+ (N")";
since fl(() log 2, (2.7) follows from the spectral radius formula. 121

PROPOSITION 2. For any z :2o+1 and small 6 > 0 there exist e > O, C < eo such
that if lOol <- and < Oil < rc for j ,29 then

(2.8) II=zn+0ll Cen#(z)-ne" Vn > 1

where 0 (0o, 01, 02g ). Moreover, C and e can be chosen so as to vary continuously
with z.

Proof. Recall (sec. 1) that the vector-valued function (ql, (/920) is not coho-
mologous to any function valued in a coset of a proper subgroup of 7/2o and that r
is not cohomologous to any piecewise constant function. By Pollicott’s theorem
(statement (b) at the beginning of this section), the spectral radius ofZ is strictly
less than 2 unless Oor + Ef_- 0qg is cohomologous to a constant plus a function
valued in 2nZ. This is impossible unless 0o 0 and (01, 02o)
and spectral radius ()20 are continuous functions near z e R2+1, (2.8) follows from
the fact that {0: 10ol < 6-1 and 6 < 10jl < Vj 1 29} is compact, by the
spectral radius formula.

3. A saddlepoint calculation. Our approach to (0.3) will be to analyze the series
(1.5) term by term, using Fourier analysis. For various reasons it is easier to work
with modified versions of these terms; thus, for t, z s (0, ) and ml, m2o 7/

define
Q,(t, m; z) 1 {0 < Snr(X) < Z; Snqgi(x) m V1 < < 2g}.

PROPOSITION 3. Letn-l(t, ml,...,m2o) (o, 1,..., 2o)= .If efand
Vfl(z) for some z REo+l then

(3.1) Q,(t, m; z) e-"rt)(2nn)-tE+l)/2(det V2),()) 1/2 j e-zs ds

as n -. o0, uniformly for in any compact subset of f.

PROPOSITION 4. There exist positive constants Kz varying continuously with z e
20+1 such that for each z, t, m,

(3.2) Q,(t, m; z) < Kz exp{nfl(z) (z, ) + Izol}

for every n > 1, where (t, ml, m2, m2o)t.
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The rest of this section is devoted to the proofs of these results. To use Fourier
analysis we must relate the Fourier transform ofQ, to the thermodynamic functions
fl, y; for this we shall appeal to Ruelle’s operator theorem. Thus, the first order of
business is to replace the sum Ex:.x=x by sums

Fix k; let x1), x2), xp) E be chosen in such a way that the set toS"")"") Xtk,),"
1, 2,..., p) is the set of all finite sequences of length k + 1 from the alphabet

{ 1, 2 l} with transitions allowed by A. Assume that no two of the finite sequences
x)x]i)... Xtki) are the same. Define

gi(x) l{x, xt,i) V0 < n < k},

Q,(t, m; ) E 9,(x) l {0 < S,r(x) < ; s,%(x) m v1 < j < 29}.
X 5nX’-"x(i)

Observe that Z’=x gi _= 1. Consider x such that tr"x x, n > k, and suppose g(x)
1. The sequence defined by x), 1 < j < n + k, 2+, x)*) has the property
that tr": x") and 9()= 1, hence is included in the sum defining Q,; moreover,
do(x, ) < (const)p "+k, so IS,r(x) S,r(2)] < (const)p k and S,%(x) S,%()(if k is
sufficiently large). Consequently,

p

(3.3) Q.(t, m; z) < Q.(t- ek, m; z + 2ek),
i=1

P
(3.4) Q,(t, m; ) < , Q..(t k, m; + 2k),

i=1

where e (const)p. Therefore, to obtain (3.1)-(3.2) it will suffice to analyze Q,,
since by choosing k large we can make e arbitrarily small.

Proof of Proposition 4. Fix z e =0+; then

Qi,(t, m; z)exp{ zj’} exp{- [Zo[ :} < Z { 2g }exp ZoS.r(x) + zS.%(x) 9i(x)
j=l

,.q’z"O(x) < Kz2, Kze’tz)

by the spectral radius formula and Ruelle’s theorem. The inequality (3.2) now
follows by an easy argument from (3.4). The continuity in z of K, follows from the
continuity ofz 5e El

To prove (3.1) we will show that for each 1, 2,..., p, as n oo

(3.5) n(O (20+1)/2 fQ.(t, m; )~ C(z)e- (2rn)- (det VZy())/2 e-z ds
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uniformly for in any compact subset of f, where Ci(z) ( gi dvz)hz(x")) (here vz,
hz are the eigenmeasure and eigenfunction for the leading eigenvalue 2z of &az). Recall
that xtd)... Xtk, 1, 2 p are the distinct sequences of length k + with transi-
tions allowed by A, and that g(x) 1 {x, o) VO < n < k}. If k is large then

fhzavz 1,
i=1

since h=(x) is a continuous function of x. Consequently, in view of (3.3)-(3.4), (3.5)
implies (3.1).

For n > 1, {1, 2,..., p}, and m (ml, m2o} 7/2 define a positive Borel
measure M,=(ds)on R by

Min, m(dS) E gi(x)l {S.r(x) e ds; S.q(x) m2 V1 < j < 2g}.
trnX--x(i)

l"+M ,.(ds). A standard approximation argument showsObserve that Q(t, m; z) j,

that to prove (3.5) it suffices to prove that for every nonnegative, compactly sup-
ported, Coo function u: R

(3.6) u(s- t)M,m(ds Ci(z)e-nrt{)(2zn)-t2o+l)/2(det V2({)) 1/2 u(s)e-z* ds

uniformly for in any compact subset of f. Define yet another positive Borel
measure Ni,(ds)on by

N,,(ds) eZM,,,(ds);

then to prove (3.6) it suffices to prove that for every compactly supported, C
function u > 0,

(3.7) u(s- t)N,=(ds) Ci(z)e-rg)+zot(2gn)-Zo+l)/Z(det Vzy())/ fu(s)ds.
This we will accomplish by Fourier analysis.

Unfortunately, we have no control over the behavior of the Fourier-Stieltjes
transform of N,,, at , so an additional unsmoothing argument is necessary. (This
is also the reason for making the transformation from M,m to N,,.) Let be the
set of even probability density functions k(s), s , whose Fourier transforms
f(iO) ek(s) ds are compactly supported (in i). It is well known that -: .
LEMMA 1. To prove (3.7) it suffices to prove that for every k

(3.8) f u(s t)(k N’,,m)(ds) R.H.S. (3.7)

uniformly for in any compact subset of, as n .
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The proof will be given later. To analyze (3.8) we use Parseval’s formula to rewrite
the integral in terms of Fourier transforms:

u(s t)(k N,,,.)(ds) (2r)-1 f-oo a(iOo)f(-iOo)I.,m( iOo)e’t dOo

(2r)-1 f-oo a(iOo)(--iOo)JQlin’m(--iO0 + z)ei’ dOo

(here a(’) e;Su(s) ds, 1Qi.,m(() e;SN.,,.(ds), etc.). Now we express ]ri.,m in terms
of the Ruelle operators. Observe that

"g(x") V( C2.+1.

Consequently, the inversion formula for Fourier series and Fubini’s theorem (since
/ has compact support) imply that

(2zr)-1 f_(R) a(iOo)fc(-iOo)lVl.,m(-iOo + zo)e’’ dOo

exp itOo + m(iOj z) dOo dOl...d02o
j=l

(2Zr)-20-1 exp --n z + Zot a(iOo)f(--iOo)q"_ioOi(x"))
j=0

exp in 0 dOo dO1.., d02o.

For 0 (0o, 01,..., 020) near the origin,

2’2_o0i(x") exp{nB(z iO)}

by Prop. 1, and for 0 bounded away from the origin

IIL0gll (const)exp{nfl(z)- ne}
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for some e > 0, provided 0o support (/), by Prop. 2. Thus the main contribution
to the last integral comes from 0 near the origin, say 101 < (the fact that/ has
compact support is crucial for this). For 0 near the origin, ( gi dvz-io)hz-O(x"))
( gi dvz)hz(xti)) Ci(z). Consequently,

u(s t)(k * Nin,)(ds) (2n)-2-x exp nil(z)- n zj + Zot Ci(z)

fi(iO)(- iO) exp n fl(z iO) fl(z) 0 dOo dOa d02o.
j=O

Note that fl(z) oz -7(), because Vfl(z) , so the leading exponential
factor is e-"re)+zt, as desired. Also

2O
fl(z iO)- fl(z) + 0 -(0, V2fl(z)O)/2 + o(1012)

j=O

as 10l 0. Therefore, the last integral may be evaluated by Laplace’s method of
asymptotic expansion, yielding

u(s t)(k N.,(ds)) (2nn)-z+l)/e-"re)+z’Ci(z)(det VZfl(z)) 1/2a(O)](O),

which is the same as R.H.S. (3.7). This holds uniformly for in compact sub-
sets of f, because all the approximations made involve only the thermodynamic
functions z z, fl(z), v, hz, which vary continuously with z, and hence
with Vfl(z). Except for the proof of Lemma 1, this completes the proof of
Proposition 3.

Proof of Lemma 1. First we will show that there is a constant C C() < o
varying continuously with such that

(3.9) sup
J:<lJl<e

N (J) < CIJI n-(2+l)/2e-nr()+z’

Here the sup is over all intervals J whose lengths IJI are between e and 1/e. Let v(s)
be a nonnegative, compactly supported, C function such that v(s) 1 Vs J and

{, v(s)ds < 2 IJI; then N.,,,(J) < v(s)N,,,,(ds). Let k be such that

_
k(s) ds >

1 6 for some small 6 > 0. Then since v > 0,

v(s)N.,(ds) < (const) v(s)(k. N’.,)(ds)
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(the constant depends only on and on the modulus of continuity of v). But

z + Zotv(s)(k N,,m)(ds) (2r)-2g+l)/z exp n

exp in O.i dOo...dO2g
j=O

as before. Using Laplace’s method and Props. 1-2 as earlier one may show that

v(s)(k, N m)(ds) < (const)(O)n-t2+)/2e-"Vt)+"

since 3(0) v < 2lJI, this proves (3.9). The uniformity in J follows from the fact
that the corresponding functions v may all be taken from
tl e and t. e K} where K is a compact subset of(0, c). The fact that the constant
C C() can be made to vary continuously in follows again from the fact that
the approximations made in using the Laplace method depend only on the continuity
and smoothness of the functions --*, v, he, fl().

Given (3.9) the rest of the proof is fairly routine. Choose k e such that
_

k(s) ds > 1 6 for a suitably small 6 > 0, and such thato Isl k(s) ds < . Since
k is even,

u(s t)(k * Ni,m)(ds) f (k u)(s t)Ni,m(ds).

Consequently

u(s t)(k Nin,m)(ds) ; u(s t)Nin,m(ds) < f lu(s t) (k u)(s t)l Ni,.(ds)

If 6 > 0 is sufficiently small (how small depends on u) then [u(s) k, u(s)l < e for
all s [a 1, b + 11, where support u [a, b], while for s [a 1, b + 1], u(s) 0
and

k, u(s) < k(y) dy Ilulloo, s < a,

k, u(s) < k(y) dy Ilullo, s > b.
-b
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Now k may be chosen so that jEoo ]sl k(s) ds is arbitrarily small, and hence

Z k(y) dy < e.

Therefore, by (3.9)

u(s t)(k Ni.,m)(ds) f u(s t)Ni.,m(ds)

< eN.,m(Ea 1, b + 1])

+ 1.- Ilullo k(y) dyN.,m([a -j 1, a -j] w [b + j, b + j + 1])

C()n-(2+l)/2e-"r()+z’(e(b a + 2) + 2llulloo).

Since e > 0 may be made arbitrarily small by ajudicious choice ofk , (3.8) implies
(3.7). (The local uniformity in follows from (3.9).)

4. Thermodynamic functions for the suspension flow. Before we can use (3.1)-
(3.2) to prove Th. 1 we must relate the thermodynamic functions fl, for the shift
(EA, a) to corresponding functions for the suspension flow (;], a"). For: E]
bounded and Borel measurable define

r(x)

O(X) "e(X, S) as
ds=O

(thus, upper case letters denote functions on El, lower case letters the corresponding
functions on Ea). Letr {W. }. For real-valued W r define P(W)to be
the unique real number such that

/k-P(V)r 1

since log 2q,_p, is a strictly decreasing, continuous function of p that converges to
o as p -+-o (cf. (2.2)), P(W) is well defined.
Let J(J") denote the set of invariant probability measures for the shift (suspen-

sion flow). There is a 1-to-1 correspondence between J and o" given by
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If kt/7 then

(4.1) H(fi, a")= H(la,,)/fr d#.

(here H denotes entropy; of. [1]). As before there is a Gibbs variational principle
relating the pressure and entropy functions P and H" ifP r is real-valued, then
for any fie o

(4.2) p(tp) > H(fi, a") + fw dfi

with equality iff fir, where fly #-etv), (see [6] or [7]).
Consider now the functions 1, 2o on E] constructed in see. 1. Define

(4.3) B(z)= P( zOi), z R20,

(4.4) F() sup (<, z> B(z)),

observe that B, fl satisfy

(4.5) fl(--B(z), Z1, Z2O 0 Vz (z 1,..., z2,)’ 2,.

(NOTE: the pressure function fl for the original (r, ql, 20) in sec. 1 is identical
to that for the cohomologue (r*, q*,..., o’o) introduced at the end of sec. 1).

PROPOSITION 5. Fix z (Zl, Z20) . R20; let VB(z), * (1, 1,..., 2o)t,
and t r dg where # #z,o,-Btz)r is the Gibbs measure on YA for the function
-_1 ziqi B(z)r. Let fi fiz,, be the invariant measure for the suspension flow such
that # ft. Then

(4.6) VB(z) Ox d, O2odfi

(4.7) V2B(z) is strictly positive definite;

(4.8) det(V2B(z)) t-2" det(V2fl(-B(z), Zl,..., z2o))<*, V27(t*)* >.
The proof uses (4.5) and properties of the functions fl, ), obtained in sec. 2. We

shall defer it until the end of this section.
Observe that (4.7) implies that B is strictly convex on E2o and that VB is a

diffeomorphism ofE onto an open subsetf of E2o. Consequently, F, the Legendre
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transform of B, is finite and convex on f. For f, VB(z), the sup in (4.4) is
attained uniquely at z. Therefore, VF is smooth on f and

VF o VB identity on R20,

VB o VF identity on

VzF() V2B(z)-x if VB(z).

The Gibbs variational principle implies that

(4.9) F() H(zz,a,,, ar) if VB(z) ,
and thus that F() is the maximum entropy of any invariant measure satisfying

PROPOSITION 6. Fix z [20; let VB(z), * (1, 1, ., zo)’, and t
r dl where/ #z,,,-nCz)r is the Gibbs measure for Ezqg B(z)r. Then

(4.10) F() (t*)/t inf (t*)/t;
t>O

(4.11) (d2/dt2)(7(t*)/t)t=t, t-’ (*, V2(t*)*);

(4.12) det V2F()= t(*, V2,(t*)*)-1 det V2,(t*).

(4.13) V21() is strictly positive definite.

Proof. Notice first that t* ( r d#, (Pl d#,..., tP2o d/) Vfl(- B(z), zl,

z2o), so t* ft. Recall (sec. 2) that ), is C in ft. By the chain rule

(d/dt)(7(t*)/t) t-27(t*) + -1(V(t*), *)

for near t; evaluated at t this derivative is 0 because -(t*) + (V,(t*),
t*) (Vy(t*)) (-B(z), zl, z2o) 0. Differentiating a second time and
using the fact that the first derivative is 0 at t gives (4.11). Since R.H.S. (4.11) > 0,
it follows that y(t*)/t has a local minimum at t. But since , is convex,
s s(*/s) is also convex for s > 0, so 7(t*)/t has a global minimum at
The fact that y(t*)/t F() now follows from the Gibbs variational principles
for the shift and the flow, together with (4.1). This proves (4.10). Finally, (4.12)-(4.13)
follow immediately from (4.7)-(4.8) since V2F()= V2B(z)-x and V2y(t*)
v/(-(z), z, z,)-.
Note that the preceding results have been established only for f, not for all
20. Unfortunately, it does not seem possible to describe f completely; however,
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PROPOSITION 7. f contains a neighborhood of the origin; also F(0) topological
entropy of cr r.

Proof. Since f is open, it suffices to show that 0 e f. Consider the maximum
entropy invariant measure v for the geodesic flow on the unit tangent bundle SM;
it follows from Bowen’s symbolic dynamics (specifically, (1.1)-(1.3)) that v is unique.
Let I" SM - SM be the map that reverses directions, i.e., I(m, O) (m, -0), and let
g v o I; clearly, g is an invariant measure for the geodesic flow with the same
entropy as v. Therefore, v g. It follows that W dv 0 for 1, 2,..., 2g, because
W/o I W/, so W/dv - Wi d.
The measure v o n on Z, is the maximum entropy invariant measure for the

suspension flow. The result of the previous paragraph implies that Oid 0 for
1,..., 2g. Now H(, crr) topological entropy of crY; but it is known ([11], Prop.

2) that the topological entropy of tr equals P(0). It follows from the variational
principle that o. Prop. 5 now implies that VB(0) (1 d, (I)20 dfi) 0,
so0e. [

Proof of Prop. 5. Taking the partial derivative with respect to zi in (4.5) gives

O,fl(- B(z), z) Oofl(- B(z), z)(O/Oz,)B(z)

= OB/Ozi Oifl(-B(z), z)/Oofl(- B(z), z)

proving (4.6) (cf. (2.2)). Taking another partial derivative, this time with respect to

z, gives

Oofl(-- B(z), z)(OZB/OziOzi) C3oofl(- B(z), z)(OB/Ozi)(OB/Ozl) + Oofl(- B(z), z)

Oo,fl(- B(z), z)(OB/Ozi) Ooifl(- B(z), z)(OB/Ozi)

This may be rewritten as
A CtDC,

where
A 0o(- B(z), z)V2B(z),

D Vfl( B(z), z),

C (ci), 0, 1,..., 2g, j 1, 2,..., 2g,

co {, i=0

i=l,...,2g.
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(Here 6i is the Kronecker delta.) Since D is strictly positive definite (2.3), so is A;
this proves (4.7).

Let v D-I* e 2o+1; it is easily verified that CtDv 0 e 2o. Consequently,

=> (det D)(det(vlC))2 ((*)tD-l*) det A.

Now

/)1 0 0

(riG)-- v2 0 0

v3 0 0 1

elementary column operations show that its determinant is (v, * ) (*, D -1* >.
Thus

det(V2fl(-B(z), z))(*, V2fl(-B(z), z)-l*> Oofl(-B(z), z)2 det(V2B(z))

which proves (4.8) since do(- B(z), z) r dg t and V2fl( B(z), z)-1 V2y(*).

5. The final tally

PROPOSITION 8. Let t-l(ml, m2) (1, 2) . Uniformly for in some
neighborhood of the origin, as c

(5.1) n-lQ.(t, m; z)... e-Wt)t--l(2n)-(det V2F(.))I/2C(1:), where

(5.2) C(:) ;[ exp{-(r() <vr(), >)s} ds.

Proof. By Prop. 7 there is a neighborhood of the origin contained in f. Assume
that is in this neighborhood, and let z, *, t, kt =/z,,-ntz)r be as in Prop. 5. We
will show later, using Prop. 4, that for any 6 > 0, as

(5.3) n-lQ,(t, m; ) n-iQ,(t, m; )
n=l In-t/tl <

uniformly in near 0.
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Prop. 3 gives an asymptotic formula for Q.; substituting this in (5.3) gives

(5.4) n-lQn(t, m; ) , exp{--t(n/t)/((t/n)*)}n-O-3/z(2rc)-"-/z
[n-t/t[ <t [n-t/t[ <t

(det V2((t/n)*))m f e- ds

where z. OoT((t/n)*). By Prop. 6, s y(s*)/s has its minimum at s t, where
it has a positive second derivative. Consequently, Taylor’s theorem implies that

exp{-t(n/t)V((t/n)*)} exp{-tF(dj)} exp{-tbe((t/n)- t)/2}

uniformly for n such that In t/t[ < 1/2 log t, where

be (d2/ds2)((s*)/s)

t1(*, V2y(t*)* ),

and

exp{--t(n/t)y((t/n)*)} < exp{-tF()} exp{-tbg((t/n)- t)2/4}

for all n such that In t/tl 6t, provided 6 > 0 is sufficiently small. Thus the major
contribution to the sum in (5.4) comes from the terms for which In t/tl < m log t,
and the sum, suitably renormalized, is a Riemann sum for -oo e-/ du (use u
tl/Zb/Z((t/n) t)). It follows that

n-lQ.(t, m; z)
[n-t/tl < 6t

e-trot-o-x(2n)-(*, V2(t*)*)-l/2(det V2y(tg*))l/2" t f e-zs as

where Zo Oo/(t*) -B(VF()) -(F()- (VF(), )). This, together with
(4.12), proves (5.1), modulo the proof of (5.3).

Recall again that s y(s*)/s has its minimum at s t, where the second
derivative is positive. Now t* f (see the proof of Prop. 6) so s* e f for s near
t; for such s

(d/ds)(7(s*ffs) s-2(-(s*) + (Vv(s*), s*))

s-/(V(s*)),
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hence
fl(Vv(s*)) 0 for s <> t.

Let no [[t(t1- 6)]] and nx [[t(t + 6)]] (here [[.]] denotes greatest
integer); let s t/n, 0, 1, and let z VT(s*), 0, 1. Since So > t and s < t
we have fl(z) > 0 and fl(z t) < 0, by the preceding paragraph. Thus, if n < no then
Prop. 4 (with (t, rot,..., m2o t*) implies

Q.(t, m; z) < Kzo exp{nfl(z) (z, ) + Izolv)

no
= Z Qn(t, m; z) < Kzo exp{nofl(z) (z, ) + IzSI }/(1 e-az))

n=l

Kzo exp{(t/So)((z) (z, So*)) + Izol v}/(1 e-az))

Kzo exp{-(t/So)7(So*) + IzolV}/(1 e-az)).

Since -y(So*)/So < -y(t*)/t -r(), this proves that

Q.(t, m; z) o Q.(t, m; "c)
n=l o

Similarly, if n > nl then Prop. 4 implies

Qn(t, m; z) < Kz, exp{nfl(z) (z, ) + IzAI}

Q.(t, m; z) < Kz, exp{nxfl(z x) (gl, ) + Izlv}/(1 eaz’))
n=l

K exp{(t/sl)((z) (z x, sx*)) + Izl v}/(1 eazl))

KI exp{--(t/sx)v(sx *) + Izlv}/(1

again, v(s *)/s < r(), so

Qn(t, m; z)= o Qn(t, m; z)
n=ll 1= 0

This proves (5.3). Observe that all the estimates hold uniformly for locally, since
the thermodynamic functions are continuous in

Theorem 1 follows easily from Proposition 8. First we argue that (5.1) implies

(5.5) Z n-Q.(t, m; ) R.H.S. (5.1),
n=l
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where

On(t, m; z) 1 (0 < Snr(X) < ; Snq),(x) m, ’qi 1,..., 2g}.
xn

Recall (cf. (1.5)) that n is the set of periodic sequences x with least period n; the
difference between Qn and (n is that Qn counts all x such that trnx x. Hence

Qn(t, m; z) 0n(t, m; z) < Qn/d(t/d, m/d; z)
din, d >

n-l(Qn(t, m; z) n(t, m; "r)) <
n=l

n-lQn(t/d, m/d;
2 <d<Ct n=l

(note that Qn(t/d, m/d; z) 0 unless m/d 7/2g; also, d < Ct because there is a > 0
such that every periodic orbit of the suspension flow has length > 6, so t/d + z > ).
But (5.1) implies that the last (double) sum is < C’t exp{-tF()/2}, which is of
smaller exponential order of magnitude than R.H.S. (5.1). This proves (5.5).

Consider the quantity R(t; m,..., m2 R(t; m) defined by (1.5); we may write

R(t; m)- R(t- Kzt; m)= kl= .=1 n-lO_.,(t- kz, m; z)

If t-lm is sufficiently close to the origin and Kz is not too large (recall that (5.1)
and hence (5.5) may only be valid for near the origin) then each of the terms in
the above sum may be estimated by (5.5), yielding

(5.6)
[[Kt]]

R(t; m) R(t Kzt; m) , exp{-(t kz)F((t kz)-lm)}(t kz)--1
k=l

det V2F((t- kz)-lm)l/2Ct,_ko-lm(Z).

Observe that (d/dt)(tF(t-lm))= F(t-lm)- (VF(t-lm), t-lm) -B(VF(t-lm)); if
t-lm is near the origin then VF(t-lm) is near the origin, because VB(0) 0 (Prop.
7), and thus -B(VF(t-lm)) < 0, because B(0) > 0 by (4.5). Hence the terms in the
above series are exponentially decreasing, and the major contribution comes from
the range < k < x/" Using (5.2) and the above formula for (d/dt)(tF(t-lm)) we
obtain

R(t; m)- R(t- Kzt; m).. e-’rt)t--l(2rc)-(det (<vr(), -’.

Finally, we argue that if t-lm is in a sufficiently small neighborhood of the
origin and if Kz is suitably chosen then R(t Kzt; m) O(exp{-tF() re}) for
some e > 0. If is near the origin then -F() is near the topological entropy h of
the flow (Prop. 7). Thus Kz may be chosen small enough that (5.6) is valid, but large
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enough that (1 Kz)h < -F() e for some e > 0. Now R(t Kzt; m) < the
total number of periodic orbits of the flow with period < (1 Kz)t, which is <
(const)etl-r’)h by Margulis’s theorem [9].

This proves that

R(t; m) e-’rt)t--x(2n)-(det V2I’())I/2(<VI-’(), > l-’())-1

provided t-lm is in a sufficiently small neighborhood of the origin. All of the
above approximations hold uniformly in locally, by the continuity of the thermo-
dynamic functions. This completes the proof of Theorem 1.

Appendix: Proof of Proposition 0. The strategy will be to alter the sequence
space Za furnished by the Bowen/Ratner construction so as to obtain a new
sequence space E. This new sequence space will be constructed in such a way that
all "periodicities" in the functions qg’, qg’g are destroyed.

Step 1. Enlaroin# the alphabet. The alphabet for the sequence space Ea is
( 1, 2, l}. Let k > 1 be an integer; definek to be the set of all sequences of length
k from ’ with transitions allowed by A, i.e., k {XlX2...Xk" Xi and
A(x, xi+l) 1 }. Define a transition matrix Ak onk by

1 ifA(Xk, X;,)=1 and x; x,+l Vi 1,...,k-1;
Ak(Xl X2 Xk, Xtl X2 X)

otherwise.

Let qk:k -- Z be the projection on the first coordinate (i.e., q(xlx2...x) x)
and let Pk" --’ Ya be the induced map on sequence space. Clearly, Pk is bijective
and commutes with the shift; moreover, for each p e (0, 1) the maps p and p-i are
Lipschitz relative to the metrics dp on Za and Ea. Hence, each of the sequence
spaces Ea provides an alternative "symbolic dynamics" for the geodesic flow.
The reason for introducing the spaces Ea is that they provide much enlarged

alphabets. In particular, if {x 1, x2, xm} is any finite collection of periodic se-
quences in Ya, then for all sufficiently large k the periodic sequences p(x 1),...,
pl(x’) in :a are such that no two share a common symbol from.

In step 2 we will assume that the original sequence space Ea has been replaced
by Ea for some k; for ease of notation we will drop the subscript k and write the
alphabet as { 1, 2, l}. In step 3 we will specify k.

Step 2. Insertin9 "loops" in sequences. For each symbol it we invent new
symbols/i, i2, iu,)and let be the alphabet consisting of all the new sy_mbols_
Thus, ’ {11, 12, lutl), 21, 22, lutz)}. Define a transition matrix A on
by

A(ij, i+1) 1, j 1, 2, M(i) 1;

A(ilO, il) 1 if A(i, i’) 1;

A(6, ij,) 0 otherwise.
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For any sequence in Ea there is a unique sequence inX obtained by replacing each
symbol M by the word ia i2... iM(i). Conversely, for any sequence inE there is
a corresponding sequence in YA obtained by deleting all symbols in the sequence
except a, 2a,..., la, then removing the subscript 1 on each ofthe remaining symbols,
then applying a-a. Thus, there is a surjective map p:X Xa; this map is not 1 1
and does not commute with the shift, unless M(1) M(2) M(l) 1, but it
is continuous. Furthermore, for each p (0, 1) there exists fi (0, 1) such that p is
Lipschitz relative to the metrics do, d on Xa, E. Most important, p induces a
bijection between equivalence classes of periodic sequences in X and Xa (here
periodic sequences x, x’ ZA or x, x’ Z are considered equivalent if they are in
the same orbit, i.e., if x’ aJx for some j).
Now consider the functions r*, qg’,..., (/92*0 on A; recall that each of these depends

only on the forward coordinates XoXaX2 of x EA, hence may be considered a
function on X. For x Z define

g(x) M((p(x))o),

-f*(x) r*(p(x))/g(x),

ifxo e {11, 2a, la },
otherwise.

Note that F* > 0, ]’ is integer-valued, and F*, 0’, -*qgzo are Lipschitz relative to
dr. Let x eE be a periodic sequence with minimal period , and suppose the
minimal period of p(x) is n. Then

Sff*(x) S,r*(p(x)) and

s.c7(x) s.o(p(x)), j 1,2,...,29,

SO the R.H.S. of (1.5) remains unchanged if we substitute F* for r*, for qg]’, and, for ,, where, is the set of periodic sequences inE with minimal period n.
It is clear that the new sequence spaceX gives an alternative symbolic dynamics

for the geodesic flow. The useful feature of this new symbolic dynamics is that the
minimal period of the periodic sequence representing a particular closed geodesic
can be adjusted by tinkering with the integers M(1), M(2), M(1).

Step 3. Removing the periodicities. We start with the sequence space Ea provided
by the Bowen/Ratner construction, and let qg, ’, (.192"0 be as in sec. 1. Recall
(1.4) that all but finitely many closed geodesics have the property that the preimage
(under n) consists of a single periodic orbit of the suspension flow with the same
minimal period. Recall also ([2], sec. 11.7, Th. 10) that each homology class
m Z20 HaM contains a closed geodesic. Consequently, there exist m, m a,
m2 7/20 and periodic sequences x, xa,..., x2 YA with minimal periods no,

n2o such that
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(a) S,,go*(x) m for each 0, 1,..., 2g; and
(b) the vectors m m, 1, 20, are the standard unit vectors in 7f’20.
Next, we replace the sequence space EA by EA as in step 1. Regardless of what

k > 2 is used, the sequences x, xt, x2 pull back to periodic sequences 2, 2,
22o in EA with the same minimal periods no, n,..., n2o. Furthermore, if q3* is

the pullback of go* to Ea then S,,r*(2) m for 0, 1, 20, as before.
Choose k so large that no two of the sequences 2, fix, 20 share a common

symbol. Each period of 2 contains symbols at, ai2 ato, which occur with
frequencies k, k2,..., kto; thus, the (minimal) period ofx is k: + k2 + + kt).
Observe that the symbols a, 0, 1, 20 and j 1, v(i), are distinct.

LEMMA. There exist integers M(aij) > 1 for 0, 1,..., 2g and j 1, 2,..., v(i)
and an integer such that for each O, 1 ,29

(A1) M(ao)k, .
j=l

The proof is deferred to the end ofthe appendix. The function M(.) may be extended
to the entire alphabetk by setting M() 1 for any not contained in {a0}.
Now we use the function M(.) to define the sequence space as in step 2 (using

the alphabet k). The functions * and qj pull back to functions* and Up]’ onZ
as explained in Step 2, and the R.H.S. of (1.5) remains unchanged when F*,, ’,
are substituted for r, qg, and ’. We will show that the vector-valued function

P* (’, ’0) onE is not cohomologous to any function $ valued in a coset
of a proper subgroup of 7/2; this will complete the proof of Prop. 0.

Consider the periodic sequences 2, 21, 220 in EAk. There are periodic se-
quences 2o, 1, 20 in X that project to 2, 21, 220; by (A1) the minimal
period of each is . By construction,S*() S,,q3"(2) m for each 0, 1,

20. Now suppose that * is cohomologous to a function valued in h + G,
where G is a subgroup of 7/2. Then S*(2) Sq(2) h + G for 0, 1,
2g. But S*() m i, and (m m), (m2 m), (m2 mO) are the standard
unit vectors in 7/2; therefore G 7/1.

Proof of the Lemma.
and define

Let kl, k2, kr be any finite collection of positive integers,

The set J is an ideal, so J {nd" n 7/} for some d > 1. We will show that J\J+ is
bounded above, i.e., that nd J+ for all n sufficiently large.
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Without loss of generality we may assume that d 1 (if not, replace kl,..., kr by
kl/d,..., kr/d). Choose s, s Z so that Esik 1, and set k Ek > 1. Now
every n 7/may be written uniquely as n kx + y where 0 < y < k, so

n (x + ysi)ki.
i=1

If n is sufficiently large then (x + ysi) > 1 for each 1,..., r, so n e J+.
Now define

J sko: s 7/

Ji ski: s 7/and s > 1

For each 0, 1, 2g, Ji\J- is bounded above. Furthermore, since each Ji is an
ideal, so is N J,; consequently, Ji {nd: n 7/} for some d > 1, and thus NJ, is
not bounded above. It follows that

2g

N J+ :.
i-0

E1
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