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Abstract—This paper presents results from the closed-loop
characterization of an electrically coupled mode-localized sensor
topology including measurements of amplitude ratios over long
duration, stability, noise floor and the bandwidth of operation.
The sensitivity of the prototype sensor is estimated to be -5250 in
the linear operation regime. An input-referred stability of 84ppb
with respect to normalized stiffness perturbations is achieved
at 500s. When compared to frequency shift sensing within the
same device, amplitude ratio sensing provides higher resolution
for long term measurements due to the intrinsic common mode
rejection properties of a mode-localized system. A theoretical
framework is established to quantify noise floor associated
with measurements validated through numerical simulations and
experimental data. In addition, the operating bandwidth of the
sensor is found to be 3.5Hz for 3dB flatness.

Index Terms—MEMS, force sensor, resonant sensor, force
sensitivity, thermal noise

I. INTRODUCTION

ENABLING technologies such as vacuum encapsulation

[2] have accelerated the development of MEMS res-

onators in the past decade. Due to its intrinsic advantage

of high stability, MEMS resonators have been employed as

accurate timing references [3], [4], filters [5], [6], and various

sensors including but not limited to accelerometers [7]–[10],

magnetometers, [11], [12], temperature [13] and pressure

sensors [14].

Due to the quasi-digital nature, conventionally MEMS reso-

nant sensors have used resonant frequency shifts as an output

metric. However, limited by the slow drifts and random walk

[15], the frequency instability of MEMS resonators can af-

fect the long-term measurement accuracies. The conventional

solutions to this problem include temperature compensation

[16], [17], and differential cancellation specifically for sensing

applications [18], [19]. However, there are issues with these

solutions: the temperature compensation electronics typically

consumes more power than the oscillator electronics, which

is less suitable for low power applications; whereas differ-

ential cancellation becomes less effective in the presence of

mismatch between the resonators [20].
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Recently, a new sensing paradigm, termed as mode-

localized sensing [21], [22], has been proposed with an

enhanced common mode rejection capability [23], [24]. This

type of sensor is based on the principle of vibration mode-

localization [25], where the modal amplitude pattern, e.g.

amplitude ratio or difference [26], changes when the system

is subject to an external perturbation. The perturbation can be

an inertial force [27], electrostatic force [28], [29] or a mass

change [30]. Despite the potential relative disadvantage asso-

ciated with amplitude readout [31], an elevated sensitivity, i.e.

up to four orders of magnitude [32], compared to conventional

resonant sensors with frequency shift output, has enabled these

sensors to achieve an improved input-referred stability. This is

particularly the case for long duration measurements, where

the amplitude noise can be reduced by averaging assuming

white noise characteristics.

In this paper, experimental results validating the claim of

amplitude ratio stability, particularly over long integration

times are presented. The prototype mode-localized MEMS

resonant sensor used in the experiment is driven using a

closed-loop configuration. The experimental setup represents

an advancement over the closed-loop configuration previously

reported in [33]. For the first time, the bandwidth associated

with the amplitude ratio measurements in such a configuration

is presented. The amplitude ratio stability is then compared

to the frequency stability. With the sensitivity of amplitude

ratio and frequency shift as output metrics, the input-referred

stability for each sensing approach is consequently compared.

The theoretical prediction of noise in amplitude ratio measure-

ments in a 2-DOF mode localized system is presented, and is

validated by comparison between simulated and experimental

data.

II. THEORY

A. Linear Dynamics

Fig. 1. Spring-mass-damper schematic of a 2-DOF coupled resonator system.

The linear dynamics of a two-degree-of-freedom (2-DOF)

weakly coupled resonator system is schematically expressed



IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2

in Fig. 1. Using the figure, following equations of motion can

be derived:

M1Ẍ1 + c1Ẋ1 +K1X1 +Kc(X1 −X2) = F1 (1a)

M2Ẍ2 + c2Ẋ2 +K2X2 +Kc(X2 −X1) = F2 (1b)

Where Mr, cr,Kr, Fr and Xr(r = 1, 2) denote the mass,

damping, stiffness, actuation force applied and displacement

of the rth resonator. Using the transfer function based model

described in [32], the expressions for displacement of rth

resonator with respect to a force on the jth resonator is derived

in detail in Appendix A. The results of the derivation show

that:

Xr =

2
∑

j=1

HrjFj (2)

The transfer functions (Hrj) for various inputs and outputs

can be described as follows:

H11 =
H2(s)

H1(s)H2(s)−K2
c

;H12 =
Kc

H1(s)H2(s)−K2
c

; (3a)

H21 =
Kc

H1(s)H2(s)−K2
c

;H22 =
H1(s)

H1(s)H2(s)−K2
c

; (3b)

where the individual transfer functions H1 and H2 are given

by the expressions:

H1(s) = M1s
2 + c1s+K1 +Kc (4a)

H2(s) = M2s
2 + c2s+K2 +Kc (4b)

Here, the typical configuration of a mode-localized MEMS

resonant sensor with identical parameters is considered, i.e.

M1 = M2 = M, c1 = c2 = c, K1 = K and K2 = K +
∆K, where ∆K ≪ K is the stiffness perturbation applied

on resonator 2. Assuming the system is only driven from one

side, i.e. F1 = F and F2 = 0, the transfer functions in Eqs.

3a and 3b can be simplified to:

X1 =
H2(s)

H1(s)H2(s)−K2
c

F (5a)

X2 =
Kc

H1(s)H2(s)−K2
c

F (5b)

The modal frequencies and the amplitude ratio at each mode

can be expressed as:

ω2

1
=

2K −∆K −
√

(∆K)2 + 4K2
c

2M
; (6a)
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2
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2M
; (6c)
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(6d)

B. Amplitude Noise

The amplitude noise in the system can be attributed to

thermal noise from the mechanical resonators and electrical

noise from the amplifier circuit. In this section, these two noise

sources are modeled and their impact on the resolution of the

amplitude ratio measurements are discussed.

1) Thermal Noise: The thermal noise originates from the

intrinsic Brownian motion of the particles of mass in the

resonators. Using the transfer function approach as outlined

in Appendix A, the noise power of the amplitude noise can be

modeled (assuming that the thermal noise is a driving force)

as [34]:

〈TXr(ω)〉2 =

2
∑

j=1

| Hrj(ω)Fn,j(ω) |2 (7)

Where Hrj(ω) is the transfer function of the system from

the jth input to the rth output and the power spectral density

of the thermal noise is given by [35]:

Fn,j(ω)
2 =

1

2π
4KBTcr∆ω (8)

Where KB is the Botlzmann’s constant, T is the ambient

temperature of operation and cr is the damping constant of the

rth resonator. Note here that in all the future calculations, the

angular frequency is used so the power spectral density with

respect to the customary 1Hz bandwidth is converted into the

equivalent angular frequency.

Using the transfer functions as described in Eq. 3a and 3b,

the various contributions to a thermal noise forcing stated in

Eq. 8 for each mode can be found to be:

〈TX1(ω)〉2 =| H11(ω) |2 Fn,1(ω)
2+ | H12(ω) |2 Fn,2(ω)

2

(9a)

〈TX2(ω)〉2 =| H21(ω) |2 Fn,1(ω)
2+ | H22(ω) |2 Fn,2(ω)

2

(9b)

The amplitude noise calculated is then converted into sense

noise current using the transduction factor:

〈iTr(ω)〉 = VDC

ǫ0Ae

d2
ω 〈TXr(ω)〉 ; r = 1, 2; (10)

Based on these equations, the thermal noise in both the

resonators is calculated in the operating region (biased away

from veering zone) and a representative response is plotted in

Fig. 2.

2) Electrical noise: The electrical noise is dominated by

the first stage transimpedance amplifier (TIA), which converts

with motional current from the MEMS resonator to voltage.

An ultra-low-noise two-stage transimpedance amplifier struc-

ture (as shown in Fig. 3) is used [36]. A bias-T consisting

of Rb and Cbias1 are used to DC bias the sense electrode of

the MEMS resonator (MEMS input port in Fig. 3). Rf and

Cf provide the feedback network for the first stage charge

amplifier with U1. Cp,d and Cp,u1 are the parasitic capacitance

of the device and the op amp U1, respectively. A second-stage

differentiator consists of Cd, Rd and U2, ensuring a flat gain

and phase response in the frequency band while providing
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Fig. 2. Thermal noise in both resonators simulated across the frequency of
interest.

a gain boost. Since the input parasitic capacitance of U2 is

generally much smaller than Cd, it is therefore neglected.

Fig. 3. A two-stage transimpedance amplifier topology, with the main noise
sources included schematically.

The noise current at the input node, in, can be expressed

by [37]:

īn(f)
2 = (̄iu1)

2 + (ēu1)
2 [2πf(Cf + Cp,d + Cp,u1)]

2

+ (ēu1)
2

[

(

1

Rb

)2

+

(

1

Rf

)2
]

+

[

(

Cf

Cd

)2

+

(

1

2πfRfCd

)2
]

×
[

(̄iu2)
2 + (ēu2)

2(2πfCd)
2 +

(

ēu2
Rd

)2

+
4kT

Rd

]

+
4kT

Rb

+ 4kTRf

[

(

1

Rf

)2

+ (2πfCf )
2

]

(11)

It should be pointed out that near the operating region,

1/2πfCf ≪ Rf ; also due to the high gain of the first stage,

the noise contribution from the second stage can be negligible.

Therefore, the total noise current at the input node can be

approximated as:

īEn(f)
2 ≈(̄iu1)

2 + (ēu1)
2 [2πf(Cf + Cp,d + Cp,u1)]

2

+ (ēu1)
2

(

1

Rb

)2

+
4kT

Rb

(12)

It can be seen that to optimize the noise current, Rb

should be maximized, whereas iu1, eu1, Cf , Cp,d and Cp,u1

should be minimized. However, Rb is directly proportional

to the charge-up time of the circuit due to the bias-T, for a

reasonable balance between the noise and the charge-up time,

1.6MΩ is chosen as the value of Rb. Input noise current,

iu1, input noise voltage, eu1 and input parasitic capacitance,

Cp,u1, are the key specifications for the U1 op-amp; therefore,

ADA4817 (Analog Devices, Inc.) is chosen for its optimal

noise performance near the operating frequency of 250kHz.

Assuming a device parasitic capacitance of Cp,d = 10pF, and

choosing a Cf = 0.1pF (smallest for discrete capacitance), the

estimated noise floor around 250kHz is estimated as 110fA.

C. Amplitude ratio noise

The noise in the individual amplitudes from both the thermal

sources (from Eq. 10) and electrical (from Eq. 12) can be

added in quadratures (since they are uncorrelated) to achieve

the total noise in each of the resonator amplitudes as follows:

〈ir〉2 = 〈iEn〉2 + 〈iTr〉2 ; r = 1, 2 (13)

The simulation and the analytical expressions show that the

electrical noise in each of the measurement channels is higher

than the thermal noise from the resonators themselves. This is

further verified experimentally in Section III. Since the noise

in the system is dominated by electrical noise, we can assume

that the noise in each resonator channel are uncorrelated. With

the noise in individual channels derived, the noise in amplitude

ratio readout,
〈

i1
i2

〉

, is given by [38] [39]:

(〈

i1
i2

〉/

i1
i2

)2

=

( 〈i1〉
i1

)2

+

( 〈i2〉
i2

)2

(14)

where 〈i1〉 and 〈i2〉 represent the noise in the channel

representing resonator 1 and 2 respectively. In the systems

where the electronics noise in the readout path dominates, the

noise of each resonator can be assumed to be equal due to

the typically identical readout paths, thus 〈i1〉 = 〈i2〉. The

operating region in this paper is baised away from veering

region where i1 > i2. Thus, the signal-to-noise-ratio (SNR) in

amplitude ratio readout can be predominantly determined by

the SNR of resonator 2.

III. EXPERIMENT

A. Device Description

Two identical, electrostatically coupled double ended tun-

ing fork (DETF) resonators are used when conducting the

experiments. An optical micrograph of the device is shown in

Fig. 4. The device was fabricated by MEMSCAP Inc. using

SOIMUMPS, a commercial foundry process that uses silicon-

on-insulator (SOI) wafers. The dimensions of the device are

described in Table I.
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Fig. 4. Optical Micrograph of the device.

TABLE I
DEVICE PARAMETERS

Parameter Value

Beam Length 350 µm
Beam Width 6 µm
Electrode Length 260 µm
Electrode Width 6 µm
Device Layer Thickness 25 µm
Proof Mass (2 for each DETF) 40 µm × 40 µm
Electrode Gaps 2 µm
Computed resonator stiffness (k) 1080 N/m
Computed resonator mass (m) 0.46 ng
Computed resonator natural frequency (ω0) 245kHz
Computed coupling stiffness (kc) -0.46 N/m
Experimental Quality factor (kc) 6000

B. Measurement Setup

The experimental setup is shown in Fig. 5. The two res-

onators are weakly coupled with negative stiffness by applying

a DC voltage across the gap between the resonators. The two

sense electrodes were biased at the same DC Voltage and were

used to sense the vibration amplitudes (X1 and X2) of the

resonators. A negative stiffness perturbation was applied to

resonator 2 using the perturbations electrode in the form of

voltage difference for sensitivity measurements.

1) Oscillator Design: The oscillator for the sensor was

created using the master-slave drive configuration. The loop

was closed using the output current of resonator 1 that was first

converted into voltage through a Transimpedance Amplifier

(TIA), then passed through a soft limiter circuit and a phase

shifter to satisfy the Barkhausen criteria. Resonator 1 was

driven with a combination of a DC polarizing voltage and an

AC excitation voltage however, resonator 2 was only indirectly

driven through the coupling. This simple oscillator topology

requires the system to be biased away from the veering zone

with resonator 1 having a higher amplitude of vibration that

does not vary across the range of stiffness perturbations. A

further advantage of working away from the veering zone is

the linearity in the operating range and increased sensitivity to

input perturbations in comparison to working around veering

Fig. 5. Schematic of the experimental setup.

range.

IV. RESULTS AND DISCUSSION

A. Sensitivity Analysis

To achieve high sensitivity, V DC1 was set to 0V and

V DC2 was set to 5V thereby applying a coupling voltage

of 5V. The voltage difference for the drive and sense trans-

ductions were maintained at 35V in order to maintain equal

drive and sense polarization voltages. Stiffness perturbations

were applied to resonator 2 by applying a voltage to the

perturbations electrode (Vp). The perturbation voltage were

swept from -5V to -15V with increments of 2V. The respective

values for the coupling stiffness and perturbations voltages

resulting from these voltages can be calculated from the energy

stored in a parallel plate capacitor and is shown in Eqns 15

and 16 .The amplitudes and frequency were first measured

in open loop setup with the lock in Amplifier (MFLI, Zurich

Instruments) and then in closed-loop with Digital Multime-

ters (34470A, Keysight) and Frequency Counters (53230A

Keysight) respectively. Each measurement was averaged over

a period of 1 minute. The results are plotted in Fig. 6.

kc = −ǫ0Ae

d3
(VDC1 − VDC2)

2 (15)

∆k = −ǫ0Ae

d3
(Vp − VDC2)

2 (16)

Fig. 6 shows the sensitivity of various output variables

in both open loop and closed loop configurations. Since the

operation point of this sensor is away from the veering zone,

the amplitude of resonator 1 stays relatively constant while that

of resonator 2 increases with increased stiffness perturbations.

Additionally, the observed change in amplitude ratio over

stiffness perturbations is linear while the frequency shift for

this mode is almost negligible due to the operating regime.

The difference in the values of the open loop and closed loop

measurements can be attributed to different loading conditions

observed over the measuring devices. Furthermore, due to the
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Fig. 6. Sensitivity of amplitude of resonator 1 (a) and resonator 2 (b), amplitude ratio (c), and frequency (d) in open loop (Red) and closed-loop (Black)
configuration. (e) Open loop sensitivity of the resonant frequency of in-phase mode with respect to normalized stiffness perturbations.

low resolution of the open loop measurements, the frequency

trend is not consistent with closed loop measurements.

The sensitivity of the amplitude ratio in terms of normalized

stiffness perturbation, δK = ∆K/K, is calculated as:

SAR =
∂AR

∂(δK)
= −5250 (17)

The frequency shift in this operating region is very insen-

sitive and thus does not represent the maximum sensitivity

achieved with frequency shift sensing in this device. The

operating region of the oscillator is limited to the mode where

the amplitude of resonator 1 is insensitive to stiffness perturba-

tions. A byproduct of this condition with electrically coupled

devices is that the frequency of the anti-phase mode (the

mode being measured) remains approximately constant. This

is seen in Fig. 6(d) where the closed-loop frequency changes

by only 2 Hz over the range of the stiffness perturbations. In

this operating region, the sensitivity of the in-phase mode is

maximum. Due to the symmetry of the system, the in-phase

mode stability can be assumed to be similar to the anti-phase

mode stability (shown in Fig. 7). To achieve the best input-

referred bias stability, the sensitivity of the in-phase mode

(shown in Fig. 6e) is used for calculations of input-referred

stability.

Fig. 6(e) shows the measured open loop sensitivity of the

frequency shift of mode 2 in the same operation region.

The slope describes the sensitivity with respect to normalized
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stiffness perturbation, δK, and it is calculated as:

Sf =
∂f

∂(δK)
= −73715 (18)

These sensitivity results will be further used in the calcu-

lation of the input referred stability in the stability analysis

section.

B. Stability Analysis

To investigate the long term stability of the system, the

sensor was placed in the closed-loop configuration with the

DC perturbation voltage set to -10V while amplitude and fre-

quency data was collected for 12 hours. The Allan deviation of

the amplitude ratio and the frequency data was then calculated

to indicate the stability of the two output metrics. 7a shows the

absolute stability of the amplitude ratio measurements, σAR.

The trend of the curve shows that the amplitude ratio output

metric is more stable at higher integration times with the best

stability (σAR) of 4.32 × 10−4 achieved at 500s. After 500s,

the stability of amplitude ratio deteriorates with increasing

integration time. One possible explanation for this can be the

charge/discharge at the bias-T at the TIA. Other effects such as

the stability of the voltage sources cannot be excluded. Further

study is required in this aspect. In comparison, 7b shows

the absolute stability of the frequency data, σf . In this case,

the trend of the curve shows that the stability decreases with

larger integration times signifying a poor long term stability.

Nonetheless, a best stability (σf ) of 0.6mHz is achieved at

0.2s integration time.

Although output stability is an important metric, the input

referred stability governs the resolution of the sensor. The

input referred stability in terms of normalized stiffness pertur-

bation, σδK , signifies the minimum normalized perturbation

that can be sensed by the mode localized system. This can be

calculated for amplitude ratio and frequency as follows:

σδK,AR =
σAR

SAR

(19)

σδK,f =
σf

Sf

(20)

Using the above relation, the input referred stability of both

the amplitude ratio and the frequency shift are compared in 8.

The trend seen in the output stability is retained in the input

stability as well. Normalized perturbations δK can be resolved

very well by frequency as an output metrics for shorter

integration times. However, for long term measurements (in

this case τ > 100s), amplitude ratio measurements provide

better and more stable resolution than resonant frequency

measurements.

C. Noise Floor

The noise in the amplitude measurements is estimated to be

from four different sources: the thermal noise of the resonators,

the noise voltage from the electrical sources for the coupling

and the bias voltages, the phase and amplitude noise in the

oscillator, and the noise in the recording instruments (in this

case, the multimeter).

The theoretical thermal noise at the resonant frequency can

be calculated using Eqs. 9a, 9b and 10 and the electrical noise

using Eq. 12. The two noises are shown in Table II after

converting them to equivalent noise current.

TABLE II
NOISE COMPARISON

Noise Source Noise amplitude 〈in〉
Thermal Noise 70fA/

√
Hz

Electrical Noise 110fA/
√
Hz

Total Noise (at resonance) 156fA/
√
Hz

To experimentally achieve the thermal noise and the noise in

the voltage sources in the system, the drive signal was turned

off and the noise in each of the readout channels was measured

with the help of the Zurich Instruments MFLI noise analyser

system. The noise in each channel is plotted in Fig. 9 in the

frequency of interest. This noise includes the noise added to

the measurement from voltage sources for VDC , Vc and Vp.

The figure confirms the results of the theoretical calculations

presented in the Theory section and Table II that the system is

dominated by electrical noise from the amplifier circuit and the

sources for coupling and bias voltage. The open loop response

of the resonators at the operating point is also shown to

confirm that there is no component of the thermo-mechanical

noise in the noise response. The averaged values for noise

in the two readout pathways are shown in Fig. 9 as well.

There is a slight discrepancy between the two readout paths but

that can be attributed such factors as non-identical cables and

other experimental setup issues. The experimental calculated

electrical noise can be summarized to be 140fA/
√
Hz. The

discrepancy between the theoretically estimated and measured

input-referred current noise can be explained by the underes-

timation of the TIA feedback capacitance. In addition to the

0.1pF capacitor, parasitic capacitance in parallel would result

in higher feedback capacitance, thus worsen the input-referred

noise current.

The white noise floor and the corner frequency of the

experimental data is estimated by extracting the noise spectral

density of the long term measurement of the amplitude ratio.

The NSD is plotted in Fig. 10 below along with the threshold

of the electrical and thermal noise sources calculated by using

the noise values shown in Fig. 9 and plugging them into Eq.

14 to calculate the amplitude ratio noise.

The amplitude ratio noise floor is seen to be at 4.4 ×
10−3/

√
Hz but the amplitude ratio noise floor calculated using

only the thermal and electrical noise sources is seen to be

at 2.2 × 10−3/
√
Hz. This means that the other two sources

of noise - oscillator noise and measurement device noise,

contribute to the other half of the noise that is seen in the NSD

of the measurement. The corner frequency of the amplitude

ratio measurements is observed at 1.7mHz which is concurrent

with the long term stability observed in the Allan Deviation

plot in Fig. 8.

To understand the benefits of amplitude ratio as an output

metric, the input-referred NSD of both the amplitude ratio and

frequency outputs are plotted in Fig. 11.
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Fig. 7. Figure showing the measured a) amplitude ratio and b) frequency stability. The best amplitude ratio stability of 4.32 × 10
−4 occurs at τ = 500s.

The best frequency stability of 0.6mHz occurs at τ = 0.2s. However, due to the long term drift in resonant frequency, the frequency stability worsens as the
integration time increases.
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Fig. 8. Estimated input-referred stability utilizing the sensitivity values. It can
be observed that the amplitude ratio achieves better stability for integration
time τ ≥ 100s, showing the suitability of mode-localized resonant sensors
employing amplitude readout for long term measurements.

It can be observed that the amplitude ratio has worse noise

floor, 0.61ppm/
√
Hz as compared to 6ppb/

√
Hz for frequency

noise floor. However, amplitude ratio has improved noise spec-

tral density in the 1/f dependent region, for frequencies below

1mHz. This improvement can be associated to the common

mode rejection to first order temperature and pressure changes

compared to the conventional frequency shift measurements.

Further experiments were done by extracting the NSD

of the long term amplitude ratio measurements at different

perturbation voltages. Essentially, by changing the perturbation

voltages, the amplitudes of vibration of the two resonators

were changed and in turn, the amplitude ratio was changed.

Fig. 12 shows the trend of variation of the noise floor of

the amplitude ratio measurements with the change in the

amplitude ratios.

This result is consistent with the theoretical noise estimation

with the assumption that the electrical noise is dominant in

the measurement setup. By decreasing the amplitude ratio, the

amplitude of resonator 2 (which was limiting the noise floor)

increases. Assuming that the electrical noise remains constant

regardless of the amplitude of vibration of the resonators,

decreasing the amplitude ratio reduces the noise in amplitude

ratio as per Eq. 14. This experimental result is the first step

towards optimizing the operating region for the mode localized

sensors. It has been shown extensively that operating these

sensors away from the veering zone (at high amplitude ratios)

is beneficial towards its linear sensitivity and increasing the

dynamic range [26] [27]. However, for the first time, these

results show that it is advantageous (for reducing the noise

floor) to operate at lower amplitude ratios, near the veering

zone, if the system is dominated by electrical noise.

D. Bandwidth Characterization

The bandwidth of the mode-localized sensor in the closed-

loop setup has been characterized by applying alternating

perturbations. A square wave with maximum and minimum

amplitudes of -5V and -10V was applied to the perturbation

electrode at various frequencies. The frequency was swept

from 0.1Hz to 10Hz with appropriate steps in between them.

Similar to the sensitivity test, the amplitudes and the frequency

were measured and recorded.

The real time response of the amplitude ratio to such

perturbation is shown in Fig. 13. The two examples show the

switching between the perturbation stages of -5V and -10V at

0.1Hz and 1Hz. The amplitude ratio at both these frequencies

track the DC values of -5V and -10V thus showing that these

frequencies are well within the bandwidth of the sensor.

Upon further increasing the frequency of perturbations, it

is seen that the amplitude ratio values decrease with respect
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Fig. 9. Measured noise floor with the open loop response superimposed for (a) Resonator 1 and (b) Resonator 2 to show an electrical noise dominated system.
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Fig. 10. Amplitude ratio noise spectral density extracted from 18-hour
measurement data. It can be observed that the amplitude ratio noise spectral
density is 4.4× 10

−3. The corner frequency occurs at fc = 1.7mHz.

to the DC values seen above. To calculate the bandwidth of

the sensor, the RMS value of the amplitude ratio is taken

for different perturbation frequencies. This gain is normalized

to the DC gain and plotted in decibels in Fig. 14. The 3dB

bandwidth of the system under test as shown in the figure

is 3.5Hz which is representative of the maximum frequency

of perturbation that can be sensed by this system without

losing information about the perturbations. Since the stiffness

is modulated parametrically with time rather than a simple AM

modulation of an input signal through a resonant filter, the the-

oretical analysis of the bandwidth is complex. This oscillator

has been designed for near DC perturbation frequency and is

not optimized for higher frequency perturbations but future

work on oscillators for mode localized systems can result in

the system working at higher frequency perturbations.
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Fig. 11. Estimated input-referred noise spectral density utilizing the sensitivity
values.

V. CONCLUSION AND FUTURE WORK

This paper extends the work in [1] by presenting a modeling

framework to study noise and resolution in a (mode localized)

2-DOF resonator system. Further results on characterizing

the bandwidth of the sensor as well as observations on

minimizing the noise in the amplitude ratio measurements are

provided. The paper also introduces a self-sustaining oscillator

topology for mode localized sensors. The advantages of using

the amplitude ratio as an output metric over conventional

frequency shift sensing are discussed, especially for long term

measurements. A noise floor of 4.4 × 10−3/
√
Hz achieved

is in broad agreement with the theoretical calculations. An

important observation is made that the noise floor can be

reduced by tuning the amplitude ratio since the measurements

were dominated by noise from electrical sources.

A more detailed study of how to optimize the noise floor as

well as increase the stability of the mode localized resonators
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Fig. 13. Real-time monitoring of the amplitude ratio for different input perturbation frequencies, f : (a) f = 0.1Hz and (b) f = 1Hz. The input perturbation
voltage was switched between −5V and −10V. The DC values of amplitude ratio for those particular perturbation voltages are shown in red.

is being studied. This work initializes the optimization that

can be done by tuning the operating region with respect to the

coupling voltage, amplitude ratio and non-linear vibrations.

Future work on this will entail deriving the theory for opti-

mizing the noise in mode localized resonators with dominating

thermo-mechanical noise and validating it using experiments

and simulations.

APPENDIX A

DERIVATION OF TRANSFER FUNCTIONS

The equations of motion of the two resonator system can

be expressed as follows:

M1Ẍ1 + c1Ẋ1 +K1X1 +Kc(X1 −X2) = F1 (21a)

M2Ẍ2 + c2Ẋ2 +K2X2 +Kc(X2 −X1) = F2 (21b)

In the laplace domain, these equations are expressed as:

M1s
2X1(s) + c1sX1(s)+(K1 +Kc)X1(s)

= F1 +KcX2(s)
(22a)

M2s
2X2(s) + c2sX2(s)+(K2 +Kc)X2(s)

= F2 +KcX1(s)
(22b)

This can be simplified to

H1(s)X1(s) = F1(s) +KcX2(s) (23a)

H2(s)X2(s) = F2(s) +KcX1(s) (23b)

where

H1(s) = M1s
2 + c1s+ (K1 +Kc) (24a)

H2(s) = M2s
2 + c2s+ (K2 +Kc) (24b)
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Using Cramer’s rule, the displacement of each resonator in

response to each one of the forces can be derived as follows:

[

H1(s) −Kc

−Kc H2(s)

] [

X1

X2

]

=

[

F1

F2

]

(25)

X1 =

∣

∣

∣

∣

F1 −Kc

F2 H2(s)

∣

∣

∣

∣

∣

∣

∣

∣

H1(s) −Kc

−Kc H2(s)

∣

∣

∣

∣

;X2 =

∣

∣

∣

∣

H1(s) F1
−Kc F2

∣

∣

∣

∣

∣

∣

∣

∣

H1(s) −Kc

−Kc H2(s)

∣

∣

∣

∣

; (26)

X1 =
F1H2(s) +KcF2

H1(s)H2(s)−K2
c

;X2 =
F2H1(s) +KcF1

H1(s)H2(s)−K2
c

; (27)

Using Eq. 27, the transfer function of the displacement of

resonator i due to force on the jth resonator can be described

as

Xi =

2
∑

j=1

HijFj (28)

where transfer functions (Hij) for various inputs and out-

puts can be described as follows:

H11 =
H2(s)

H1(s)H2(s)−K2
c

;H12 =
Kc

H1(s)H2(s)−K2
c

;

H21 =
Kc

H1(s)H2(s)−K2
c

;H22 =
H1(s)

H1(s)H2(s)−K2
c

;

(29)
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