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ABSTRACT Keeping cognitive stress at a healthy range can improve the overall quality of life: helping

subjects to decrease their high levels of arousal, which will make them relaxed, and elevate their low

levels of arousal, which could increase their engagement. With recent advances in wearable technologies,

collected skin conductance data provides us with valuable information regarding ones’ cognitive stress-

related state. In this research, we aim to create a simulation environment to control a cognitive stress-related

state in a closed-loop manner. Toward this goal, by analyzing the collected skin conductance data from

different subjects, we model skin conductance response events as a function of simulated environmental

stimuli associated with cognitive stress and relaxation. Then, we estimate the hidden stress-related state by

employing Bayesian filtering. Finally, we design a fuzzy control structure to close the loop in the simulation

environment. Particularly, we design two classes of controllers: (1) an inhibitory controller for reducing

cognitive stress and (2) an excitatory controller for increasing cognitive stress. We extend our previous

work by implementing the proposed approach on multiple subjects’ profiles. Final results confirm that

our simulated skin conductance responses are in agreement with experimental data. In a simulation study

based on experimental data, we illustrate the feasibility of designing both excitatory and inhibitory closed-

loop wearable-machine interface architectures to regulate the estimated cognitive stress state. Due to the

increased ubiquity of wearable devices capable of measuring cognitive stress-related variables, the proposed

architecture is an initial step to treating cognitive disorders using non-invasive brain state decoding.

INDEX TERMS Bayesian filter, closed-loop systems, cognitive stress, fuzzy control, skin conductance.

I. INTRODUCTION

Stress-related health issues attract massive attention in the

modern world [1], [2]. Despite recent advances in technology,

handling cognitive stress-related disorders is still a major

problem around the globe and impacts quality of life in

general [3]. Additionally, low levels of eustress, or positive

cognitive stress, could negatively affects work productiv-

ity [4]. Experiencing high levels of cognitive stress while

performing routines, or low cognitive engagement with the

environment, may seriously affect an individual’s life [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Haibin Sun .

Over 60% of Americans feel that stress negatively affects

their work performance [6]. Considering the fact that the

brain performs better when internal cognitive stress state is

within a moderate range [7], stress regulation has recently

received a lot of attention. Fig. 1 depicts the relationship

between performance and the amount of stress that a person

encounters. As depicted in Fig. 1, the performance is at its

peak when the stress level is within a normal range [4].

While there exist methods for managing stress, there is still

a lack of reliable systems that continuously track the stress

levels in individuals and automatically regulate stress levels

by suggesting appropriate non-invasive solutions during daily

activities [8], [9].
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FIGURE 1. Arousal-performance curve. While high amount of
arousal (stress) may cause nervousness, too little amount of
arousal (stress) may negatively affects productivity and bring the person
about feeling bored and inactive. Eustress or good type of stress will
cause the person to be focused, more productive, and better engaged
with the environment [4].

The human brain detects and mediates the physio-

logic response to environmental stimuli including cogni-

tive stress tasks [10]. Traditional approaches that try to

directly monitor brain activity (e.g., using electroencephalo-

gram (EEG) signal [11]) are neither comfortable nor prac-

tical in daily life [12]. Thanks to the recent advances in

wrist-worn wearable device technologies, we now have the

opportunity to easily monitor various physiological sig-

nals and understand brain activity [13]–[16]. To infer inter-

nal stress state, rather than monitoring the brain activity

directly, one might be able to collect measurements that

correspond to the hidden stress state using the wearable

devices [17]–[23].

Among the data that can be collected via wearable devices,

skin conductance data carries important information about

the brain’s cognitive stress [24]–[28]. Cognitive stress can

be inferred from the tone of the sympathetic nervous sys-

tem (or ‘‘fight or flight’’ response system). The sympathetic

nervous system is a branch of the automatic nervous sys-

tem (ANS) [29]. Since Electrodermal activity (EDA) does

not include any representation of the parasympathetic ner-

vous system (i.e., another branch of ANS), it is a suit-

able representative for cognitive stress analysis [30], [31].

While heart rate also provides insight about the internal

arousal state, it carries information associated with cardiac

activity [29], [32]. As skin conductance signal provides infor-

mation about sympathetic nervous system, we focus on this

physiological signal for further analysis [33]. In the presence

of external (e.g., environmental) or internal (e.g., mental)

stimulus, there are small variations in the activity of the sweat

glands [34]. Consequently, electrical characteristics of the

skin will change. Such fluctuations are indicated in the skin

conductance response (SCR), which can be measured using

wearable devices [18], [21], [28].

That the SCR rate encodes stress-related information (i.e.,

more stress is associated with the increased SCR and vice

versa) has been validated in experimental studies [21], [26],

[35]. In addition to the studies related to inferring brain

activity using skin conductance signal [28], [34], [36], there

exist research that employ this biomarker as a reference

signal [37]–[39]. For instance, Lee et al. use motion sensors

to classify the stress level and employ skin conductance as

a reference for stress detection [40]. Perry et al. designed

a wearable device that can determine stress levels by mon-

itoring the amount of cortisol that is present in human’s

sweat [41]. In this research, we relate the internal cognitive

stress state to the changes in skin conductance signal.

Compared to available methods that try to detect stress and

send an alert to the person [42], [43], our goal here is to track

stress levels in a continuous manner and design a control

strategy to regulate the cognitive stress by a non-invasive

approach in a simulation environment. Rachakonda et al.

used physiological data such as respiration, heart rate and

skin conductance, and then, by incorporating machine learn-

ing algorithms, they performed a classification method on

the stress levels [44]. The results demonstrate classifica-

tions for particular stress ranges. Similarly, Sano et al. have

employed machine learning tools on the collected physi-

ological signals (i.e., accelerometer and skin conductance

data), mobile data such as text and call, and the surveys

completed by the subjects to perform stress range classi-

fication [16]. Compared to the majority of research being

done in this area, which employ machine learning approaches

to classify the stress levels [45]–[47], the proposed state-

space method would lead us to track stress severity as a

continuous value in real-time. This will further provide the

chance to better design the actuation policy for closing the

loop and keeping the stress state within a desired range.

Moreover, continuously tracking of cognitive stress might

help the person to increase eustress [48]. Hence, following

the proposed architecture, we would be able to track sub-

ject’s cognitive stress as a continuous state and design the

control mechanism to keep this hidden state within a desired

range.

In recent years, there have been several studies dealing

with closed-loop approaches [49]–[54]. Walter et al. clas-

sified workload in an adaptive learning environment [54].

They proposed to track mental workload using the EEG

signal and design the course material to close the loop and

increase the efficiency. Utilizing our proposed approach, one

would be able to track the internal stress state continuously

and design the required actuation accordingly. This actua-

tion could be any changes in the workload, changing light

colors and frequencies in workplaces, listening to music,

drinking excitatory or relaxing beverages, or designing the

break time based on internal stress levels to keep them

within desired range. In this research, we propose to use

wearable-machine interface (WMI) architectures to control

the cognitive stress-related state in a simulation environment.

As presented in Fig. 2, the architecture includes collecting

physiological signals using a wearable device, inferring neu-

ral stimuli underlying pulsatile SCR events, estimating an

unobserved stress-related state from underlying neural stim-

uli, designing the control, and closing the loop to regulate

subject’s cognitive stress state and keep it within a desired

range in a real-time manner [1].
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FIGURE 2. Wearable machine interface architecture. A wrist-worn
wearable device is employed to monitor and measure corresponding
physiological data from the human in the loop. Then, by analyzing the
data and inferring the body’s internal activity, a decoder estimates the
stress state. Finally, the controller provides the required control input to
maintain aforementioned state within a desired range. The ultimate goal
of this WMI architecture is to employ different non-invasive actuation
such as music, drink, and changing the lights, to close the loop in
real-world.

Taking advantage of the real-time simulation model,

we present our approach in designing the control algo-

rithm and closing the loop in a systematic way. We employ

fuzzy logic, as a knowledge-based control approach, to con-

trol cognitive stress state in a simulation environment [55],

[56]. The knowledge-based control approaches make infer-

ence and design the control action using the insight

achieved from system dynamics. The fuzzy logic controller

employs insights about the system, performs inference, and

derives the actuation policy [57], [58]. Researchers in [55]

assume that all the states are available while designing

the control system. Zhang et al. employ a fuzzy adap-

tive state observer to estimate the hidden state and design

a fuzzy controller to close the loop [58]. Their proposed

approach is effective when dealing with unknown control

directions [58].

In this in silico study, we present a simulation setting to

show how an automated control action will result in regula-

tion of both modeled SCR events and the estimated cognitive

stress-related state. Toward this aim, we relate the internal

stress state to the changes in SCR events. By estimating the

hidden stress-related state and designing the control action,

we close the loop in real-time. More specifically, we consider

one open-loop, one closed-loop inhibitory, and one closed-

loop excitatory examples to demonstrate the performance of

our proposed WMI architecture in different simulation sce-

narios. The final results verify that the proposed architecture

not only can successfully track one’s cognitive stress state, but

also that the control mechanism is effective in both excitation

and inhibition applications in real-time. The present in silico

study based on experimental data is one of the very first

attempts to build a real-time environment to further investi-

gate the effects of modern control techniques in regulating

internal arousal state. The main contributions of this research

are summarized as follows.

• Building a simulation environment based on experimen-

tal data from wearable devices to relate the changes in

skin conductance signal to one’s internal arousal state.

• Simulating the required environmental stimuli functions

for both high and low arousal sessions.

• Real-time and continuous tracking of the internal

arousal state in response to the changes in the environ-

mental stimuli via state-space methods and Bayesian

estimation in the simulation framework.

• Estimating an internal arousal state based on periph-

eral physiological data that are collected using wearable

devices, rather than directly monitoring of brain activity.

• Presenting a novel framework suitable to investigate the

effects of various noninvasive strategies to regulate the

internal stress-related state.

• Implementing a straightforward fuzzy controller to take

advantage of the open-loop simulation results and regu-

lating the estimated arousal state in both inhibitory and

excitatory class of closed-loop systems.

II. METHODS

Fig. 3 illustrates an overview of the present research

paradigm. The proposed procedure consists of two main

parts: the offline process and the real-time closed-loop sim-

ulation system. In the offline process prior to the real-time

implementation, we aim to build a simulation environment

based on the experimental measurements [12] (red box in

panel (A) of Fig. 3). To this end, we focus on the collected

skin conductance data from subjects during a cognitive stress

task followed by a relaxation period. Performing deconvo-

lution on skin conductance data, we take the information

regarding the number, timings, and amplitudes of underly-

ing neural stimuli associated with SCR [21], [26]. A brief

description of the employed deconvolution algorithm is pre-

sented inAppendixA [21]. By binarizing the neural impulses,

and employing a state-space approach, we follow themethods

presented in [26], [27], [59] and relate the internal cogni-

tive stress-related state to the underlying neural impulses.

Incorporating Bayesian filtering with an Expectation Maxi-

mization (EM) algorithm, we estimate the hidden cognitive

stress-related state in an offline manner.

To design the real-time simulation environment, we take

the estimated cognitive stress state as the output of the offline

process andmodel the required environmental stimuli respon-

sible for the changes in estimated state trajectory. Then,

we generate two different sets of stimuli: one for causing

low arousal (relaxation), and one for inducing high arousal

(cognitive stress). Next, in a real-time simulation environ-

ment, we relate a cognitive stress-related state to the simu-

lated SCR events using a state-space approach. We assume

that the probability of receiving the SCR events follows a

Bernoulli distribution. We estimate the hidden stress-related

state using Bayesian filtering. To close the loop and regulate

the estimated cognitive stress-related state in the simula-

tion environment, we design a fuzzy control algorithm to

derive essential control signals in real-time. In this research,
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FIGURE 3. Real-time closed-loop system. The dashed box implies the offline process (A) and the solid box depicts the real-time closed-loop system (B).
In the offline process, based on the recorded data, while the subjects experience cognitive stress task, a wearable device has measured their skin
conductance data. First, we perform the deconvolution, extract the neural impulses and binarize them. Then, by employing Bayesian filtering and
Expectation Maximization (EM), a decoder estimates the cognitive stress-related state. To close the loop in real-time, by analyzing different subjects’
estimated stress state, we model the corresponding environmental stimuli for each subject. In a state-space representation, human model simulates the
skin conductance response (SCR) events by a Bernoulli distribution. Then, using Bayesian filtering approach, the cognitive stress-related state is
estimated in real-time. Fuzzy controller takes the estimated stress state and regulates it with the derived control action in a closed-loop manner.

we extend our primary results presented in [1] and implement

the proposed WMI architecture on multiple subjects’ simu-

lated profiles [26], [27].

A. EXPERIMENTAL COLLECTED DATA DESCRIPTION

In this study, we focus on the Non-EEG Dataset for Assess-

ment of Neurological Status [12] which is publicly available

in the PhysioNet database [60]. In this experiment, twenty

college students were subjected to different tasks: physi-

cal stress, cognitive stress, emotional stress followed by a

relaxation period [12]. With the goal of investigating human

responses to different types of stress, they have collected

skin conductance, body temperature, and 3D accelerometer

signals using the Affectiva Q Curve wearable device [12].

In addition, they have collected heart rate and blood oxygena-

tion by the Nonin Wireless WristOx2 oximeter [12]. Among

all of the collected physiological signals, it has been shown

that SCR, which reflects changes in the sweat gland activities,

carry important information regarding sympathetic nervous

system arousal [17], [21], [26], [28], [38], [61]. Toward the

goal of creating a closed-loop simulation environment for

cognitive stress regulation, we extract skin conductance data

that corresponds to the cognitive stress task and the relaxation

periods [12], [26], [27].

The cognitive stress task in this experiment consists of an

arithmetic task (i.e., counting backward by sevens, starting

with 2485) for three minutes and the Stroop test (i.e., reading

words including a color’s name written in a different color

ink and indicating the color ink) for two minutes. This arith-

metic stress task is a good representative for the cognitive

stressor [62]. In the relaxation task, subjects are asked to sit

and listen to relaxing music. In the relaxation period, subjects

have listened to a portion of Binaural, (i.e, a soothing music

used in meditation [63], [64]). As the arithmetic task and the

relaxation period are considered as the most representative

cases, we select on these two parts to show the feasibility on

the most extreme arousal scenarios (i.e., high arousal vs low

arousal [1]). In other words, we investigate these two parts of

data to get insight about how the brain will respond during

extreme cases. Skin conductance signal can be contaminated

by measurement noise sources such as motion artifacts, range

saturation and amplification factor changes [65]. Since the

present work builds on a previously published dataset [21],

[26]–[28], highly noisy data was discarded prior to further

processing. In our previous work [1], we utilized the proposed

architecture on only one subject and now we extend it to all

selected participants [1], [26]. Selected subjects’ information

is presented in Table 1.

B. HUMAN BRAIN STIMULUS-RESPONSE MODEL

To model human brain responses, we use the state-space

approach and assume that the hidden cognitive stress-related
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TABLE 1. Selected subjects’ information.

state is affected by the environmental stimuli [26]:

xk+1 = xk + uk + ηk (1)

where xk is the hidden cognitive stress-related state, uk is

the control signal, ηk = sk + νk is the environmental input,

sk is the environmental stimuli with the process noise νk ∼

N (0, σ 2
ν ) at kth time step. [27], [61]. Similar to [26], [27],

we assume the probability of receiving SCR events follows a

Bernoulli distribution:

P(nk |xk ) = q
nk
k (1 − qk )

1−nk (2)

To relate probability qk of observing a SCR event nk (i.e.,

a binary value in (2)) to the stress state xk , we employ the

following Sigmoid function:

qk =
1

1 + e−(β+xk )
(3)

where β is the person-specific baseline parameter. To derive

β, we define the baseline state of the subject as zero (x0 = 0)

and look at changes from this baseline state. Then, we calcu-

late β based on the average probability of an SCR occurring

in the whole data
(

β = log(
q0

1−q0
) − x0

)

[26].

C. COGNITIVE STRESS STATE ESTIMATION

To estimate the hidden cognitive stress-related state, we fol-

low the state estimation framework presented in [26], [27].

For the sake of completeness, we briefly review the method-

ology and employ it for further analysis. Given the simu-

lated SCR events nk , we estimate hidden state xk and its

corresponding variance term σ 2
k . At this stage of the offline

process, we ignore environmental stimuli term, ηk , in (1):

x̂k = x̂k−1 + (σ̂ 2
k−1 + σ 2

ν )
(

nk −
1

1 + e−(β+x̂k )

)

(4)

σ̂ 2
k =

( 1

σ̂ 2
k−1 + σ 2

ν

+
e(β+x̂k )

(1 + e(β+x̂k ))2

)−1
(5)

where x̂k and σ̂ 2
k are the estimated hidden cognitive stress-

related state and its variance, respectively. We use the EM

algorithm presented in [26], [27] to find the σ 2
ν in (1) and

initial values (i.e., x0 and σ 2
0 ). The details of EM algorithm

can be found in [59], [66]. It should be noted that x̂k observed

on both sides of (4) results in a nonlinear equation. Hence,

Newton’s method is employed to solve update equations.

While for control design we only focus on cognitive stress

(as the high arousal representative) and relaxation (as the

low arousal representative) periods, we present the results of

FIGURE 4. Offline arousal state estimation and the corresponding SCR
events for multiple tasks. The top panel and the bottom panel show the
SCR events and the estimated arousal state, respectively. The shaded
backgrounds correspond in turn to the instruction for cognitive stress
task (white), arithmetic task (red), Stroop test (yellow), relaxation (green),
and emotional stress (grey). Both arithmetic task and Stroop test are
associated with the cognitive stress period [26], [27].

implementing the same modeling and estimation algorithms

on the whole experiment in [12] to show the accuracy and

the adequacy of proposed approach (see Fig. 4). To this end,

we follow the results provided in [26], [27].

D. ENVIRONMENTAL STIMULI MODEL

As presented in Fig. 3, to design the real-time simulation

environment, we model the environmental stimuli which is

responsible for the fluctuations in estimated stress state. It is

worth mentioning that in case of real-world settings, SCR

events are obtained via deconvolving measured skin conduc-

tance signal [18], [21], [28] in a real-time manner. Analyzing

the estimated stress-related state in both cognitive stress and

relaxation tasks in the offline process, we aim to find the

required environmental stimuli for both sessions. Examining

the open-loop system and considering there is no control

in (1) (i.e., uk = 0), we derive ηk = sk + νk = xk − xk−1.

Where xk is the estimated cognitive stress-related state in

the offline stage. By ignoring the process noise in this stage,

we find time series for the target environmental stimuli sk :







s1
s2
...

sT








=








x1 − x0
x2 − x1

...

xT − xT−1








(6)

Investigating the offline open-loop results on all selected

subjects, we analyze the general trend in sk . To simulate a

general environmental stimuli function sk responsible for the

changes in cognitive stress session, we consider the summa-

tion of sinusoidal harmonic functions. We also assume the

behaviour of sk in the relaxation period follows an expo-

nential decay [1]. These assumptions are made to simplify

solving the optimization problems and generating the envi-

ronmental stimuli. Hence, we consider two environmental

stimuli models: one for the cognitive stress task sck , and one

for the relaxation period srk . We assume sck =
∑N

n=1 αn
cos(ωnk + γn), where N is the number of the harmonics,

and αn, ωn, and γn for n = 1, . . . ,N are the amplitude, fre-

quency, and phase shift of each of the harmonics, respectively.

Performing spectral analysis on each participant, we find the
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optimal number of harmonics N needed for estimating the

high arousal stimuli. The regression parameters are estimated

using a least square approach [67]. Similarly, for relaxation

period, we assume an exponential decay as the environmental

forcing function. More specifically, we let srk = aebk where

the regression parameters a and b are being derived using

least square regression method.

It should also pointed out that any changes to these

assumptions (i.e., sinusoidal harmonics for high arousal,

and exponential decay for low arousal) would change

the resulted environmental stimuli functions. However, in

real-world implementation of the proposed approach,

by monitoring the skin conductance signal and performing

the deconvolution algorithm on the captured signal, there is

no need to apply these simulated environment functions.

By extracting the environmental stimuli associated with

both high and low arousal, and including the process noise,

νk , we incorporate them in the state-space model (1) and

build the simulation model. Consequently, we run the whole

simulation system in both open-loop (i.e., uk = 0) and closed-

loop (i.e., uk 6= 0) scenarios.

E. CONTROL DESIGN

Analyzing the system’s open-loop behaviour in the simu-

lation environment leads us to design the fuzzy structure

including the membership functions, defuzzification, and

inference engine [68]. We use the simulated environmental

stimuli for both high and low arousal sessions and obtain

the required knowledge about the system behavior in an

open-loop manner. In the simulation environment, the human

brain model generates SCR events in response to the various

environmental stimuli. As a result, we see how the estimated

stress state will fluctuate in response the changes in external

environmental stimuli. This feature of incorporating insights

about the system while designing the control structure is the

main reason for choosing the fuzzy control.

In the proposed architecture, the real-time estimated cog-

nitive stress-related state xk is the input and the control signal

uk in (1) is the output of the fuzzy system. The heart of any

fuzzy system, is its rule base. These rules are based on the

constraints and insight about the system dynamics. To build a

rule base applicable for multiple subjects, we form the rules

as follows:

• If the estimated cognitive state is low arousal, then control

is excitatory.

• If the estimated cognitive state is neutral, then control is

neutral.

• If the estimated cognitive state is high arousal, then control

is inhibitory.

To convert the linguistic variables presented in the rule base

to the crisp values, we impose the membership functions.

These membership functions for both input and output values

are depicted in Fig. 5. As presented in top-panel of Fig. 5,

the input membership functions of the fuzzy system, which

are related to the stress state, include three sets of functions;

FIGURE 5. Input and output membership functions. The top-panel shows
the membership functions for the input (i.e., estimated cognitive
stress-related state xk ). The bottom-panel shows the membership
functions for the output (i.e., control signal uk ).

TABLE 2. Input and output membership functions (Fig. 5).

low arousal, neutral, and high arousal. The output of the fuzzy

system, which is the control signal, consists of three sets;

inhibitory, neutral, and excitatory (bottom-panel of Fig. 5).

The membership functions presented in Fig. 5 are described

in Table 2.

According to the rule base, once the system detects the high

arousal, we need to have inhibitory control to decrease the

number of SCR events and lower the stress state. On the other

hand, when we deal with the low levels of cognitive stress

state, we need excitation control to increase the number of

SCR events and elevate the stress-related state. Similar to [1],

we use Mamdani engine and centroid method for inference

and defuzzification, respectively [56], [58].

F. STABILITY ANALYSIS

According to the state-spacemodel (1) and nonlinear stochas-

tic observation (2), similar to any control technique, global

stability could not be guaranteed within the proposed control

approach [69]. However, by following the recent approaches

that handle the stability analysis for control of probabilistic

models [70], we aim to calculate a stability region. It will

ensure that the state trajectory will be converged to the target

levels in a finite time horizon [71]. In this approach, taking

advantage of the simulation environment, as well as the real-

time estimate of state mean, x̂k , we analyze the performance

of the closed-loop system in response to multiple initial start-

ing point, x0, and derive the stability region [70].

According to Lyapunov’s stability theory, the target point

xd is stable, if for any ǫ > 0, there exists δ > 0, such that

||xk − xd || < ǫ and ||x0 − xd || < δ. A stability region, X s,

denotes to a subset in which ||xk−xd || → 0 for all x0 ∈ X s as

k → ∞. Here, we aim to obtain such a region which would
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guarantee that the difference between the current state and the

target levels would be decreased as time evolves:

||xk − xd || < ζ ||xk−1 − xd || (7)

for a fixed ζ < 1. According to the positively invariant

sets [70], [72], once the state transition starts within the

calculated region (i.e., x0 ∈ X s) and (7) holds, it will never

leave it.

G. ALGORITHM

To summarize all the steps required for establishing the sim-

ulation environment and regulating the cognitive stress state

in a closed-loop manner (Fig. 3), we present the following

algorithm:

Algorithm 1 Offline Process and Real-Time Closed-Loop

System Design (Fig. 3)

Offline Stage

(a) Analyze the experimental skin conductance data and

extract the sessions associated with the cognitive stress

and relaxation (i.e., ySC (t) in (8)).

(b) Employ cvxEDA toolbox [73] to extract the phasic part

from the skin conductance signal (i.e., yP(t) in (8)).

(c) Sample the phasic part signal and perform deconvolution

algorithm to infer the brain neural impulses and estimate

model parameters (i.e., θ and u in (15)).

(d) Utilize a state-space approach to model the internal

hidden cognitive stress-related state, xk in (1), to the

changes in binarized neural impulses (9)-(12).

(e) Use the EM algorithm (4)-(5) to find the initial values

(presented in Table 3) and estimate the cognitive stress-

related state (i.e., x̂k , and its variance σ̂k ).

(f) Analyze the estimated cognitive stress state and generat-

ing the environmental stimuli functions required for the

real-time simulation system (i.e., sk in (6)).

Real-time Closed-Loop System

(g) Incorporate the simulated environmental input, ηk ,

in (1), simulate the SCR events by assuming that they

follow a Bernoulli distribution (i.e., nk in (2)), and run

the real-time system.

(h) Employ the Bayesian filtering approach (4)-(5) to track

the internal cognitive stress state in real-time.

(i) Design the fuzzy control structure, including the rule

base, membership functions, and inference engine for

both inhibition and excitation purposes (i.e., Fig. 5 and

Table 2).

(j) Implement the designed fuzzy controller and close the

loop to regulate the estimated cognitive stress state.

III. RESULTS

Implementing the proposed WMI architecture on selected

subjects’ simulated profiles (Table 1), we present the results

in this section. Particularly, we illustrate the results in three

different cases: (A) open-loop cognitive stress tracking,

(B) closed-loop inhibitory, and (C) closed-loop excitatory.

For each case, we consider two environmental stimuli models

in the simulation: (1) cognitive stress stimuli, and (2) relaxing

stimuli. Following the offline process presented in Fig. 3,

we simulate the environmental stimuli and run the simu-

lation system in real-time. The final results are presented

in Fig. 6-8. In each case, we consider the environmental

stimuli associated with the high arousal (cognitive stress) and

low arousal (relaxation period) in the first and second half of

the simulation, respectively.

A. OPEN-LOOP

The main objective of presenting the open-loop case is to

show how we could track the cognitive stress-related state

without any control implemented (i.e., uk = 0) in the devel-

oped simulation environment. As observed in the top sub-

panels of Fig. 6, the number of SCR events significantly

decreased in the second half of the simulation (i.e., relaxation

period) because of the decreased sympathetic firing rate com-

pared to the first half of the simulation (i.e., cognitive stress

task). This variation in the number of SCR events results in

a lower level of the estimated cognitive stress-related state

(bottom sub-panels) in the relaxation period compared to the

high arousal (cognitive stress) period. This open-loop case

shows that our proposed algorithm is successful in track-

ing internal cognitive stress state in the real-time simulation

environment.

B. CLOSED-LOOP INHIBITORY

In this case, we examine the performance of the proposed

WMI architecture in lowering high levels of cognitive stress-

related state caused by an high arousal environmental stimuli.

By detecting high levels of cognitive stress state, the control

systems attempts to regulate it in real-time. As presented in

Fig. 7, the high number of SCR events and the higher levels

of estimated cognitive stress-related state (top and middle

sub-panels) are detected by the system and control becomes

active (bottom sub-panel). Then, employing the derived con-

trol actions results in fewer number of SCR events and a

lower levels of estimated stress state in the first half of the

simulation (i.e., cognitive stress period). This closed-loop

inhibitory case validates the performance of proposed WMI

architecture in lowering the estimated cognitive stress-related

state levels in a real-time manner.

C. CLOSED-LOOP EXCITATORY

As discussed earlier, it is important to keep one’s cognitive

stress levels within a desired range. Meaning, the cognitive

stress state is sometimes considered as the cognitive engage-

ment which is a positive stress (or eustress). Our goal in this

case is to prevent cognitive disengagement.More particularly,

as observed in Fig. 8, the small number of SCR events and the

lower levels of estimated cognitive stress-related state (top

and middle sub-panels) in the second half of the simulation

(i.e., low cognitive engagement period) are detected by the
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FIGURE 6. Open-loop results in WMI architecture. For each participant,
the top sub-panel shows the SCR events from the human model,
the bottom sub-panel displays the estimated cognitive stress-related
state. The grey background belongs to the high arousal environmental
stimuli (i.e., the cognitive stress task), while the white background
implies the low arousal environmental stimuli (i.e., the relaxation task).

system. Then, employing the control signals (bottom sub-

panel) results in more SCR events and a higher estimated

cognitive-related state levels in this period of low cognitive

FIGURE 7. Closed-loop inhibition results in WMI architecture. For each
participant, the top sub-panel shows the SCR events from the human
model, the middle sub-panel displays the estimated cognitive
stress-related state, and the bottom sub-panel depicts the control signal.
The grey background belongs to the high arousal environmental stimuli
(i.e., the cognitive stress task), while the white background implies the
low arousal environmental stimuli (i.e., the relaxation task).
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FIGURE 8. Closed-loop excitation results in WMI architecture. For each
participant, the top sub-panel shows the SCR events from the human
model, the middle sub-panel displays the estimated cognitive
stress-related state, and the bottom sub-panel depicts the control signal.
The grey background belongs to the high arousal environmental stimuli
(i.e., the cognitive stress task), while the white background implies the
low arousal environmental stimuli (i.e., the relaxation task).

engagement. This closed-loop excitatory case illustrates how

the proposed WMI approach is effective in elevating the

cognitive stress-related state in a real-time manner.

IV. DISCUSSION AND CONCLUSION

To design a simulation system for tracking and control inter-

nal cognitive stress state based on SCR events, we analyzed

recorded data from multiple subjects in an offline process

(Fig. 3). Next, we presented two different models for environ-

mental stimuli: one for cognitive stress (high arousal) and one

for relaxation (low arousal). Taking advantage of simulated

environmental stimuli, we designed the real-time system for

further analysis. By modeling SCR events, we employed the

state-space approach to relate the internal cognitive stress

state to the changes in SCR events. Using Bayesian filtering,

we estimated the hidden cognitive stress-related state in real-

time. To close the loop and regulate the estimated stress state,

we designed a fuzzy control system in the proposed WMI

architecture.

To the best of our knowledge, this research is one of the

very first to relate the cognitive stress state to the changes

in SCR events and designing the control mechanism to close

the loop in a real-time simulation system. In particular,

we accomplished the task of closed-loop cognitive stress

regulation in a simulation study based on experimental data.

The final results verify that the proposed architecture has

great potential to be implemented in a wrist-worn wearable

device and used in daily life. To illustrate this idea, we pre-

sented three cases. In the first case (Fig. 6), open-loop results

demonstrated how the proposed architecture is successful in

tracking internal stress state in both high and low arousal

periods.

In the second case (Fig. 7), we investigated the perfor-

mance of the proposed approach in cognitive stress inhibition.

Here, we assumed that the first half of the simulation (first

5 min in Fig. 7) is associated with the undesired cognitive

stress, which is due to an unpleasant stressful environment.

The goal of lowering the estimated cognitive stress state is

achieved by detecting the high arousal levels and applying

the appropriate control action in the real-time system. Hence,

the number of SCR events and the estimated cognitive stress

levels have significantly dropped in the first half of the simu-

lation compared to the same period of time in the open-loop

case (Fig. 6). Furthermore, since the main goal in this case

was to inhibit cognitive stress-related state, and as the second

half of the simulation is associated with the low arousal

session, the control input goes to zero during this time span.

The simulated human brain responses in the second half of

the simulation, which is related to low arousal (relaxation)

environment, is affected by the inhibitory control applied in

the first half of the simulation. For example, in an exper-

iment with a cognitive task followed by a relaxation task,

if a subject listens to relaxing music during the cognitive

stress task to decrease his/her stress levels, he/she will be
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even more calmed during the relaxation period compared to

a subject who did not listen to relaxing music during the

cognitive stress task. So, the more calmed response in the sec-

ond half of the simulation is due to the applied inhibitory

control in the first half of the simulation. In other words,

for the closed-loop inhibition case, while we do not observe

any control action during the second half of the simulation,

the number of SCR events and estimated stress levels are

lower in this period of simulation compared to the open-loop

case.

The final case is related to the condition in which we

assume the simulated subject is not cognitively engaged with

the environment. Here, we aimed to increase the arousal state

which is useful for concentration and productivity [4]. Imple-

menting the proposed excitatory WMI architecture, the num-

ber of SCR events and the estimated cognitive stress-related

state have been elevated remarkably in the second half of

the simulation compared to the same period of time in the

open-loop case (Fig. 6). As a result, the proposed approach

could be used to detect this low arousal state and increase it

in real-time. It should be pointed out that, since the objective

in this case was to excite cognitive stress-related state, and

as the first half of the simulation is associated with the high

arousal environmental stimuli, the control input will remain

zero during this time period. Frommedical perspective, mod-

ulating the levels of cognitive stress and increasing eustress

are potentially beneficial in individuals with anxiety and

depression. In particular, patients with traumatic brain injury

who suffer from both disorders could benefit from increased

eustress to enhance their engagement during rehabilitation

treatments [74].

To illustrate the performance of our proposed closed-loop

architecture, we perform the t-test analysis on all six par-

ticipants’ results. To this end, we analyze the performance

of the proposed closed-loop system for both inhibitory and

excitatory controllers (See Fig. 13). Hence, we investigate the

results of implemented control system on both simulated SCR

events and estimates stress levels. We compute the number

of observed SCR events per minute in both open-loop and

closed-loop sessions for both high and low arousal periods

(i.e., five minutes in each case). Moreover, to examine the

effect of proposed architecture on the estimated stress state,

we averaged the values associated with the estimated stress

state in both open-loop and closed-loop sessions. The results

of performing the t-test analysis on all simulated profiles are

depicted in Fig. 9.

The decrease in the number of SCR events and average

levels of estimated stress state presented in left sub-panels of

Fig. 9 are due to the implemented inhibitory control system.

Conversely, the increase in the number of SCR events and

average levels of estimated stress state observed in right sub-

panels of Fig. 9 are because of applying excitatory control

system. In each t-test analysis, the resultant p-values pre-

sented on top of the arrows confirm the efficiency of the

proposed closed-loop architecture in both inhibitory and exci-

tatory classes.

FIGURE 9. T-test performance analysis on all six participants. The left
panels show the performance of the inhibitory closed-loop system. The
right panels are associated with the results of the excitatory closed-loop
system. The top panels depict the performance of the closed-loop system
in regulating the number of SCR events per minute. The bottom panels
show the performance of the closed-loop system in regulating the
estimated stress levels. The numbers on top of the arrows stand for the
corresponding p-values.

It should also be highlighted that different experimental

environments would influence the results. In fact, this in

silico study is based on the experiment in [12], in which

the high and low arousal sessions are designed accordingly.

In [12], the cognitive stress session is designed to ask the

subjects to perform the Stroop and arithmetic tests, while the

low arousal is derived by asking them to listen to relaxing

music. While the performance of the proposed algorithm is

validated by implementing it on multiple subjects’ profiles,

any changes in the reference experiment would further affect

the subjects’ skin conductance response and estimated stress

state, accordingly.

In comparison to other available efforts that attempt to infer

brain activity by directly monitoring it [11], [54], [75], [76],

our proposed approach aims to detect the cognitive stress

indirectly by collecting physiological signals from wearable

devices and inferring the arousal state. Compared to the

existing approaches, which classify the stress levels based

on the physiological data and provide different classes of

stress levels, the proposed approach tracks the stress state

in a systematic way and in a continuous manner. The state-

space model and Bayesian filter are in good agreement with

the physiology underlying the sympathetic arousal activi-

ties [77], [78]. An increase in sympathetic arousal, which is

a natural response to certain external stimuli, causes rise to

measurable bio-signal such as skin conductance. The applied

filter in this research takes the information presented in

SCR changes and relates it to the hidden cognitive stress

state.

Although scientists and engineers have performed research

in the field of emotion regulation [49]–[51], [79]–[81],

the present work is one of the first to present a simulation

environment for designing closed-loop control algorithms

based on the inferred arousal state. In the proposed architec-

ture, the arousal decoder only requires a skin conductance sig-

nal that can be collected using wrist-worn wearable devices.

Indeed, instead of using the raw skin conductance signal,

we infer the underlying neural responses (i.e., the increase
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or decrease in sympathetic tone termed the skin conductance

events rate) and use that information to decode the hidden

arousal state. Then, we design the controller to close the loop.

In this research, we demonstrated how the fuzzy control is

successful in closing the loop and managing internal stress

state. One of the main advantages of a fuzzy control structure

is its expandability. This knowledge-based approach can be

modified to cover different types of stress. The results on all

simulated subjects’ profiles verify the performance of the pro-

posed architecture and show its feasibility to be implemented

in the real world. Although the steps presented in section II-F

provide the local stability condition in the proposed fuzzy

controller in a finite time horizon window, it should be noted

that finding the stability region in a closed form, and for an

infinite time horizon, is not yet a tractable problem and needs

further investigation [82]. Applying uncertainty-based con-

trol techniques is an alternative approach to establish a stable

control system. While the proposed approach in this study

employs point process analysis for state-space modeling and

Bayesian filtering for the state estimation process, Li et al.

proposed a novel adaptive fuzzy tracking and control system

to handle the system nonlinearities both in the filter design

and tracking procedures [83]. Another possible approach for

closing the loop is to consider themodel nonlinearities, which

are present in the observations, while tracking the state and

designing the control system [83].

In this in silico study, we made use of a publicly available

dataset to create a virtual environment for real-time track-

ing and regulation of internal cognitive stress state. In what

follows, we present some of the main challenges we faced

in the design process. We used the skin conductance sig-

nal as a biomarker that carries valuable information about

the autonomic nervous system and could be collected using

wearable devices. Selecting clean profiles with fewer artifacts

was one of the very first challenges addressed. Performing

a deconvolution algorithm and Bayesian filtering to estimate

the hidden cognitive stress-related state are the next important

steps. To design the virtual environment, we successfully sim-

ulated environmental stimuli functions. This challenging step

led us to evaluate the efficiency of the proposed architectures

in stress tracking and closing the loop in real-time. The next

challenging task is to design an appropriate control strategy

for closing the loop and regulating the stress state. To this

end, we employed fuzzy control as a powerful knowledge-

based approach to enhance the closed-loop system with

some expertise inference. Developing a unified fuzzy struc-

ture to efficiently regulate stress state in all simulated pro-

files is the next important step. By analyzing the open-loop

results, we designed appropriate rule base, membership func-

tions, and defuzzification method to ensure handling inter-

subject variability in the proposed architecture and closed the

loop.

The present research is the first attempt to design a virtual

environment based on the experimental data and relate the

internal cognitive stress state to the changes in skin conduc-

tance. Taking advantage of the developed system, we track

cognitive stress state in real-time. By designing the control

algorithm, we demonstrated the feasibility of the proposed

closed-loop architectures to inhibit and excite the estimated

stress state in real world.

V. CONCLUSION

The brain can be considered as a control system with a strong

impact on all human functions, including health and perfor-

mance. Inspired by recent advances in wearable technologies,

we proposed a WMI architecture for controlling an inter-

nal cognitive stress state in a simulation environment. The

WMI architecture encompasses collecting physiological data

using wearable devices, inferring neural stimuli underlying

pulsatile signals, estimating an unobserved state based on the

underlying stimuli, designing the controller, and closing the

loop in real-time. In this simulation work based on the exper-

imental data, we followed the goal of designing a simulation

environment by monitoring subjects’ skin conductance varia-

tions (as a validated stress indicator). In the developed simu-

lation system, we designed a fuzzy control system to close the

loop and regulate the estimated cognitive stress-related state

in real-time. The final results validate the performance of our

proposed WMI architectures in accomplishing the tasks of

(1) tracking the cognitive stress state, (2) lowering the levels

of cognitive stress-related state by applying inhibitory control

in high cognitive stress environments, and (3) elevating the

cognitive stress-related state levels by applying excitatory

control in low cognitive stress environments. All of these

tasks are accomplished in an automatic closed-loop manner.

The present work is an important first step which will ulti-

mately lead to help patients suffering from stress and anxiety

disorders.

VI. FUTURE DIRECTIONS

One future application of the proposed architecture could

be incorporating potential non-invasive actuation effective

in regulating arousal state in the real-life human-in-the-loop

scenarios. The examples of these actuation are listening to

music [84]–[87], adjusting the light in workplaces [88]–[90],

smelling fragrances [91]–[93], and drinking beverages such

as coffee, tea, and water [94]. Using different actuators and

wearable devices, one may perform system identification

and model the actuation dynamics [95]–[99]. Considering

subject-specific reactions and possible latency in skin con-

ductance responses to any actuation [100], one may model

the actuation dynamics and include them in the experi-

mental WMI architectures. In such practical WMI architec-

tures, a wearable device measures related bio-signal skin

conductance signal (instead of environmental stimuli func-

tion presented in Fig. 3 (B) that is required for the real-time

simulation analysis), a decoder estimates the cognitive stress

state, and a controller brings the cognitive stress to the desired

range by incorporating modeled non-invasive actuation in a

closed-loop manner.

Since the skin conductance can also be varied in response

to other types of stimuli, analyzing valence variation could be
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another future direction of this research. By analyzing more

physiological measurements, we might be able to differenti-

ate between excitement and nervousness as well. Moreover,

as SCR events are assumed to follow a Bernoulli distri-

bution, we did not include measurement noise in the filter

design. In the future experimental WMI architecture, mea-

surement noise should be incorporated for inferring SCR

events. While the current fuzzy control system is designed

in a simple single-input single-output structure, it has the

capability to be further expanded and incorporates multi-

ple physiological measurements from wearable device(s).

Accordingly, the expanded multi-input multi-output system

would be designed in a way to take data from multiple

sources, performs appropriate analysis, and governs the con-

trol action to regulate corresponding internal states. Further-

more, investigating more advanced control approaches such

as genetic algorithm on top of fuzzy structure [101] might

enable us to optimize the actuation design and achieve the

ultimate goal of practically employing theWMI architectures

to manage individuals’ internal states.

APPENDIX A

DECONVOLUTION

In the offline process, as it is described in themethods section,

we need to perform a deconvolution algorithm to infer under-

lying neural stimuli. While we have followed the approaches

presented in [21], [26], in what follows we present a brief

description of the deconvolution method.

Skin conductance signal ySC (t) contains two parts; tonic

and phasic parts [21], [26]. The tonic which is slow varying in

nature is highly related to thermoregulation and is a function

of ambient temperature and humidity. The phasic part which

includes faster changes is generated by sympathetic nerve

fibers stimulating the sweat glands:

ySC (t) = yP(t) + yT (t), (8)

where yP(t) and yT (t) stand for the phasic and tonic com-

ponents, respectively. The phasic part yP(t) is extracted

from the skin conductance signal by an algorithm such as

cvxEDA [73]. The physiology behind the formation of the

phasic component could be found in detail in [21], [26],

[65], [102], [103] and will result in the following state-space

model:

ż1(t) = −
1

θr
z1(t) +

1

θr
u(t) (diffusion), (9)

ż2(t) =
1

θd
z1(t) −

1

θd
z2(t) (evaporation). (10)

where z1(t) and z2(t) are internal state and the phasic com-

ponent, respectively. u(t) represents the neural stimuli to the

sweat glands to cause skin conductance responses (SCR). θr
and θd are the rise and decay times of a single SCR. As the

number of underlying neural impulses, which causing the

SCRs, is also small, it leads us to employ a sparsity constraint

when solving for u(t). We model u(t) as a finite summation

FIGURE 10. Experimental skin conductance signals along with
deconvolution results [26]. Upper panel shows the results associated with
the high arousal (cognitive stress), and the bottom panel displays the
results corresponding to the low arousal (relaxation). In each panel,
the top sub-panel shows the raw skin conductance data (green curve)
and its extracted tonic component using cvxEDA (orange curve); the
bottom sub-panel depicts the extracted phasic component (green stars),
the estimated reconstructed signal (dashed black curve), the estimated
SCR events (blue vertical lines).

of weighted, shifted delta functions:

u(t) =

N
∑

i=1

uiδ(t − 1i), (11)

where ui represents the SCR’s amplitude at time 1i, and N

is the total number of samples in the neural stimuli signal

and is proportional to the recording duration Td and the input

sampling frequency fu (N = Td · fu). We consider the phasic

part z2(t) as the output in the state-space model:

yP(t) = z2(t) + µ(t). (12)

where µ(t) is Gaussian measurement noise. If the signal is

periodically sampled at Ty intervals to yield a total of M

measurements, we can define the equivalent discrete-time

observation yk as:

yk = x2(kTy) + µk . (13)

Given all the discrete measurements yk = yP(k) for k =

1, 2, . . . ,M , we aim to find u(t) and estimate θr and θd .

We take z1(0) = 0 as an initial condition assuming that the

sweat duct is empty at the beginning. The state-space solution

for z2(kTy) leads us to [24]:

yk = aky0 + bku + µk , (14)

where ak = e
−
kTy
θd , bk =

[
1

(θr−θd )
(e

−
kTy
θr − e

−
kTy
θd )

1
(θr−θd )

(e
−
kTy−Tu

θr − e
−
kTy−Tu

θd ) 1
(θr−τd )

(e
−
kTy−2Tu

θr − e
−
kTy−2Tu

θd )
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FIGURE 11. Adequacy of SCR events. The top sub-panel shows the
modeled SCR events from the human model, and the bottom sub-panel
displays the estimated SCR events. The grey background belongs to the
high arousal environmental stimuli (i.e., the cognitive stress task) and the
white background implies the low arousal environmental stimuli (i.e.,
the relaxation task).

TABLE 3. EM algorithm initialization.

· · · 1
(θr−θd )

(e
− Tu

θr − e
− Tu

θd ) 0 · · · 0
︸ ︷︷ ︸

N−
kTy
Tu

]

, and u = [u1

u2 · · · uN ]
⊤ represents a sparse vector containing all the

neural stimuli over the entire signal duration (i.e., very few of

the ui’s are non-zero). Concatenating all the measurements

into a single vector y = [y1 y2 · · · yM ]⊤ we derive,

y = Aθy0 + Bθu + µ, (15)

where Aθ = [a1 a2 · · · aM ]⊤, Bθ = [b⊤
1 b⊤

2 · · ·

b⊤
M ]⊤, µ = [µ1 µ2 · · · µM ]⊤, and y0 is the initial

condition of the phasic skin conductance signal. Here, Ty is

an integer multiple of Tu. Letting θ = [θr θd ]
⊤, to derive

the SCR events u, we aim to solve the following optimization

problem:

argmin
θ , u

Cθ≤b, u≥0

J (θ ,u) =
1

2
||y − Aθy0 − Bθu||22 + λ||u||pp,

(16)

FIGURE 12. Open-loop results based on different EM initialization. The
top panel shows the results while the filter is initialized based on the
high arousal session. The middle panel shows the results while the filter
is initialized based on the low arousal session. The bottom panel shows
the results while the filter is initialized using both high and low arousal
sessions. In each panel, the top sub-panel displays the SCR events, while
the bottom sub-panel displays the estimated cognitive stress-related
state. The grey background belongs to the high arousal environmental
stimuli (i.e., the cognitive stress task), while the white background
implies the low arousal environmental stimuli (i.e., the relaxation task).

where C =

[

−1 1 0 0

0 0 −1 1

]⊤

, b = [−0.1 1.4 −1.5 6]⊤

and λ is the lp-norm regularization parameter determining

the sparsity level on u. Due to the unavoidable challenges in

solving this optimization problem, we follow the approaches

presented in [24], [27], [36], [104] and break it into two

sub-problems. A desired coordinate descent approach can be

formulated as:

1) u(l+1) = argmin
u

s.t. u≥0

Jλ(θ
(l),u)

2) θ (l+1) = argmin
θ

s.t. Cθ≤b

J (θ ,u(l+1))

To derive the final answer, we iteratively solve the above

sub-problems (for l = 0, 1, 2, · · · ) until convergence.

We present the results of performing the explained decon-

volution algorithm in Fig. 10 [26]. Fig. 10 includes results

associated with the skin conductance signals along with

the deconvolution results for the participant 1 during both

the cognitive stress and the relaxation sessions in original

experiment [12].
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FIGURE 13. Closed-loop performance evaluation for all participants. Each row of sub-plots belongs to one participant. In each row, left green and right
red panels show the performance of inhibitory and excitatory class of closed-loop systems, respectively. In each panel, while the left one is associated
with the total number of SCR events, the right one is related to the average levels of estimated cognitive stress state. Red bars are related to the first half
of the experiment (i.e., high arousal session) and green bars are related to the second half of the simulation (i.e., low arousal session). In order to better
present the results, the subject’s baseline has been deducted from the averaged estimated stress state levels.
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Wickramasuriya et al. analyzed the accuracy of proposed

deconvolution algorithm by implementing it on a second set

of synthetic data [26]. In [26], they added a 25 dB SNR

Gaussian noise to corrupt the simulated phasic skin con-

ductance signal. The results presented in [26] demonstrate

that the proposed deconvolution algorithm could successfully

recover the underlying neural impulses in the presence of

measurement noises (Figure 3 and Table 2 in [26]).

APPENDIX B

SCR MODELING

To show the adequacy of SCR events modeled in the real-time

system, we present both modeled and estimated SCR events

for participant 1 in Fig. 11. We presented the results in open-

loop case without applying control input (uk = 0). In Fig. 11,

the top sub-panel and the bottom sub-panel show the modeled

SCR events and estimated SCR events, respectively.

APPENDIX C

EM ALGORITHM INITIALIZATION

As presented in Fig. 3, and discussed in part II-C, we per-

form EM algorithm to estimate the initial values (i.e., x0 and

σ 2
0 ) [26], [59], [66]. This step is important in designing the

real-time filter to estimate the state. Hence, we estimate these

initial values in three different scenarios and compare the

outcome. We derive the initial values using EM algorithm

employing: (1) high arousal session, (2) low arousal session,

and (3) combined sessions. The resulted initial values are

presented in Table 3. To analyze the system performance

in response to these different initializations, we present the

open-loop results for participant 1 in Fig. 12.

As presented in Fig. 12, different initial values, which

are derived based on different sessions, do not significantly

affect the state estimation performance. The open-loop results

presented in Fig. 12 verify that the implemented Bayesian

filter is sufficiently robust to the offline EM initialization

process.

APPENDIX D

CLOSED-LOOP ANALYSIS

To further analyze the performance of the closed-loop system,

we present the following Fig. 13 on achieved results. Ana-

lyzing the final results on all simulated subjects, we present

the effect of the real-time closed-loop system in decreas-

ing (increasing) the number of SCR events and lower-

ing (elevating) the levels of estimated stress state in Fig. 13.

As depicted in Fig. 13, each row belongs to one subject.

In each row, left panel (big green box) and right panel (big

red box) are related to the inhibitory and excitatory closed-

loop cases, respectively. In each colored box, the left sub-

panel is related to the total number of observed SCR events

in each high/low arousal session, while the right sub-panel

depicts the difference in the average levels of stress state in

each session. Red bars are associated with the first half of the

simulation (i.e., high arousal or cognitive stress period), while

the green bars are related to the second half of the simulation

(i.e., low arousal or relaxation period). In what follows,

we explain the results presented in Fig. 13.

By running the closed-loop system and observing the

results, we analyze the performance of the proposed closed-

loop system for both inhibitory (big green box in each row)

and excitatory (big red box in each row) controllers. To better

show the performance, we present the results of the imple-

mented control system on both simulated SCR events (left

sub-panels) and estimated stress levels (right sub-panels).

In both closed-loop cases, we summed the number of SCR

events in both high arousal (red bars) and low arousal (green

bars) periods of the simulations. To analyze the performance

of the closed-loop system on the estimated stress levels,

we averaged the levels of estimated stress state over both high

arousal (red bars) and low arousal (green bars) sessions (right

sub-panels).

The decline in the total number of SCR events and the

average levels of estimated stress state in the first half of

the simulation (red bars) is due to the applied inhibitory

controller in the high arousal session. Similarly, the increase

in the total number of SCR events and the average levels

of estimated stress state in the second half of the simulation

(green bars) is due to the applied excitatory controller in the

low arousal session.
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