
Closed-Loop Endoatmospheric Ascent Guidance

Ping Lu*

Hongsheng Sun t

Iowa State University

Ames, IA 50011-2271

Extended Abstract

This paper will present a complete formulation of the optimal control problem for at-

mospheric ascent of rocket powered launch vehicles subject to usual load constraints and
final condition constraints. We shall demonstrate that the classical finite difference method

for two-point-boundaxy-value-problems (TPBVP) is suited for solving the ascent trajectory

optimization problem in real time, therefore closed-loop optimal endoatmospheric ascent

guidance becomes feasible. Numerical simulations with a the vehicle data of a reusable

launch vehicle will be provided.

1. Ascent Guidance Problem Formulation

The equations of motion of the RLV in an inertial coordinate system can be expressed as

i" = V (1)

---- gCr) + A/taCt) + rlbl,_(O + NImCt) (2)

where r and V are inertial position and velocity vectors; g the gravitational acceleration;

T the thrust magnitude; A and N are aerodynamic axial and normal forces, respectively;

lb the unit vector defining the RLV body longitudinal axis; m is the mass of the RLV. The

magnitudes of the aerodynamic forces and thrust are modeled by

A = lpv_SrelCA(Mach, a) (3)

N = 2PV2Sr_fCg(Mach, a) (4)

T = T_c+AT(r) (5)

where p is the atmospheric density, and Vr is the magnitude of the Earth-relative velocity

V, = V - _E X r with _s being the Earth angular rotation rate vector. The axial and
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normal aerodynamic coefficients CA and CN are flmctions of angle of attack a and Mach

number. They are usually expressed in analytical forms by curve-fitting tabulated data. The

reference area S,_] is a constant. The vacuum thrust T_ may he time varying when the

thrust needs to be throttled down to meet axial acceleration constraint. The thrust loss

inside the atmosphere AT < 0 is a function of altitude through the dependence of AT on

ambient pressure. Mass re(t) is an explicit function of time. The mass flow rate will be

reduced by the same percentage as the thrust when the thrust is throttled down.

If the RLV symmetric plane is assumed to be always the plane formed by the body-axis

lb and the Earth-relative velocity vector V,, we can fllrther have

A=-Alb, N=NI_ (6)

with the unit vector of the body normal axis 1,, defined by

× lye) (7)in = lb X
Illb x 1,,11

where lv. = V,/Y_. The angle of attack is then

cos a = 1Tlv. (8)

The following expression for 1,, is valid for both a > 0 and a < 0

(lb X lV.) (9)1,_ = lb X
sin a

Note that in this formulation the sideslip angle/3 - 0 when there is no wind.

The lmmch conditions for r0 and V0 are specified. The ascent guidance problem is to find

the desired body-axis orientation lb(t) at each instant which determines the thrust direction

and aerodynamic forces during atmospheric portion of the ascent. The final conditions will

be the engine-cutoff conditions which ensure insertion into the required orbit. These orbital

insertion conditions can in general be written as k, 0 < k _< 6, algebraic end conditions

_(r(tf),V(tl) ) =0, g2 E R k (10)

In addition, there will be path constraints which limit the aerodynamic load and thrust
acceleration of the RLV. These are expressed in terms of inequality constraints

S(r, V, t) _< 0 (11)

The mathematical tool used to solve this problem is the optimal control theory. In this

setting a performance index is desired to be minimized, usually (but not necessarily ) the

burn time of the rocket engine because it is directly related to the propellant usage. Denote

the performance index by
J --- ¢(rf, V/, tl)
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The necessaryconditionsfor theoptimal control1_aregivenby definingthe Hamiltonian

H = pTv + pT[g + (T- A)lb/m + N1,/m] + ATS(r, V, t) + It(l_rlb - 1)

where It is a scalar multiplier and A a vector multiplier of appropriate dimension. Then, the
so-called costate equations and optimality condition for the optimal 1; are 1

OH (12)
p_ = -_-

OH (13)
lbv - OV

H(p_,pv,r,V, 1;,t) = maxH(pr, pv, r,V, lb, t) (14)
lb

And the optimal solution satisfies the terminal constraints (10) and the transversality con-

p_(tI) =

py(tf) =

ditions

O¢(rs'Vs' ts) + v
Or I \_r/]

0¢(rs,Vs,ts) + { 0*
0Vj ]

o¢
H(p*' pv' r*' V*' I;' t)I*' = _II

(15)

(16)

(17)

where v E R k is a constant multiplier vector. The first two conditions can be rearranged

to yield 6 - k independent conditions involving only PI = (Pr_ PTs)T and x I --- (r_" V_/) T.

The general approach will be first finding the 6 - k linear independent solutions of the

homogeneous system

0
Let _(xf) e R 6, i = 1, ..., 6 - k be such sohltions. Note that _'s are functions of x I.

Transversality conditions (15) and (16) are then equivalent to

0¢ )r_, a (18)
(ps + b-_xs = r,(ps,xs) = 0, i= 1,...,6- k.

For a given problem, these conditions in above equation can often times be obtained more

conveniently by using the terminal constraints (10) and taking dot products of Eqs. (15)

and (16) with appropriate vectors related to the final state xf.

When none of the inequality constraints in (11) are active, the multiplier vector )_ in the

expression of H is zero. In such a case the condition (14) is equivalent to

OH

Olb

After much differentiation and algebraic operation, this condition can be shown to lead to

1; = elpv + c_.V_ (19)
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whereci's are scalar flmctions of the state and costate. Therefore we conclude that the opti-

mal body-axis lies in the plane formed by the primer vector Pv and relative velocity vector

Vr. Note that as the atmospheric density decreases (approaching vacuum flight), c2 --* 0

and cx > 0. The optimal thrust vector becomes aligned solely with the primer vector pv. 2

The condition (19) suggests that the search for the optimal body-axis orientation can

be reduced to a one-dimensional search in the plane of Pv and V,. Let • be the angle

between the vectors pv and V_. Then it is straightforward to see that l_lpv = cos(_) - a)

and l_lpv = sin(_ - a). Using these two relations in the expression of H, it is clear that

maximizing H with respect to lb as in Eq. (14) is equivalent to a/-//aa = 0, which in turn

results in
tan(¢ - a)(T - A + N_,) - (A,, + N) = 0 (20)

with N,_ = ON/cOa and A_, = cOA/cOa. The above equation needs to be solved mlmerically

for a (note that A, N, An and N_ are still functions of a). Once a is found, we have 3

ib = k,sin_] lpv + sin2¢

with lpv = pv/Pv-

It should be stressed that for on-board guidance applications, it is imperative that great

care be taken to determine the sign of • in Eqs. (20) and (21). Not only the value and sign

of a depend on the sign of _, but more importantly is the physical implication of the sign

change of ¢. Since the body y-axis can be defined by

lv_ x lpv (22)
1_ - sin gP

When the vector Iv. × lpv changes direction by 180 degrees, the sign of ¢ should change.

If the correct sign of ¢ is identified when it becomes negative, the y-body axis will have an

instantaneous change of direction by 180 degrees. This would require an undesirable (may

be even unfeasible) 180-degree roll of the vehicle.

The typical path constraints (11) in an ascent guidance problem inchlde aft, a, _, and

acceleration limits. It can be shown that the condition (19) with different Cl and c2 still

holds true when these constraints become active. In these cases a is determined by the

constraints rather than Eq. (20). The corresponding body axis lb is still found according to

Eq. (21). Hence the necessary conditions for the optimal control problem constitute a two-

point-boundary-value problem (TPBVP) involving the state and costate equations (1-2)and

(12-13), given initial launch conditions r0 and V0, and the final conditions (10) and (18).

2. Finite Difference Approach for Atmospheric Ascent Guidance

2.1 Methodology

Finite difference is one of the several techniques commonly used for TPBVPs. It tends

to be more robust and less sensitive with respect to initial guesses as compared to shooting



methods.Supposethat the TPBVP at handfrom the necessaryconditionsof the optimal
controlproblemin the precedingsectionisput in theform of

:_ = f(t,y) (23)

B0(Y0) =0, Bf(yf) =0 (24)

where y = (x T pT)T e R 2n with n = 6. Let tf be the specified final time. The 2n

bolmdary conditions in Eq. (24) are from the given launch conditions, terminal constraints
and transversality conditions. Note that the control lb has been expressed as a fimction of

the y in the system equations through the optimality condition (21). To find the solution

to the TPBVP, divide the time interval ti - to in to N subinterval of the same length

h = (t I - to)/M. Let Yk = y(t0 + kh) be the value of the solution at the node t_ = to + kh,

k = 0,..., M. At the middle point between tk-1 and tk, denoted by tk-1/2 = tk - h/2, the

differential equations (23) are approximated by central finite difference:

h(Yk - Yk-1) = f(tk-1/2, Yk -- Yk-1) (25)2

Or equivalently,

E_(yk, Yk-1) = Yk -- Yk-1 -- hf(tk-1/2, 2

In addition, the boundary conditions are denoted by

E0(Y0) = B0(Y0) = 0

EM(YM) = Bf(yf) = 0

Yk - Yk-1 ) = 0, k = 1,..., M - 1. (26)

(27)

(28)

Treat Y = (yT yT... yT)T E -R2"(M+I) as the unknowns. The equal number of conditions

are

E(Y) = 0 (29)

where E = (E0 El... EM). Now the problem becomes a root-findingproblem for a sys-

tem of nonlinear algebraic equations. It has been rigorously established that under certain
conditions on smoothness and the boundary conditions, the following holds true 4

1. The original TPBVP and the finite difference problem have unique solution;

2. The solution of the above finite difference problem yk is a second-order approximation

to the solution of the TPBVP y*(t) at each tk, i.e.,

Ily*(tk) - y ll = O(h2)

where limn-_0 O(h2)/h z < oo.

For ascent guidance applications, since the time-to-go tf - to is decreasing, the accuracy
of the finite difference solution will be higher and higher as h becomes smaller even for

moderate number of nodes.

2.2 Algorithm



ThemodifiedNewtonmethodis probablythe bestsuitedalgorithmfor solvingthe prob-
lem (29). Starting from an initial guessY0, the searchdirectiond1 in the j-th iteration is

determined by solving the linear algebraic equations

[aE(0_-x) ] dj =-E(Yj-x), j= 1,...
(3o)

Then the update is given by

Y._ = Yj-x + a._d./, 0 < a.i < 1, (31)

The step size parameter aj is determined by the following criterion

1 ET(yj_x)E(yj_x) } (32)

In other words, starting from aj = 1, aj is halved repeatedly if necessary till the above con-

dition is satisfied. 5 Convergence is achieved when IIE(Yj)II _< e for some preselected small

E > 0. The possible additional function evaluations required in checking the above step

size condition pose negligible computational burden because function evaluations are not

expensive in this setting. The result on the other hand is a much more robust algorithm,

especially when the initial guesses are not close to the final solution.

At the first glance, solving the linear system (30) may seem to be a formidable task

because the dimension of the problem (2n(M + 1)) which can easily be over 1000. However,

a close inspection reveals that the Jacobian matrix in (30) has a special sparse pattern due

to the dependence of Ek on only Yk and Yk-1 (cf. Eq. (26)). Therefore a very efficient

algorithm, both in speed and storage, based on Ganss elimination and back substitution can
be devised to solve the system (30). More details in implementation of such an algorithm

are well documented in. °

The evaluation of the Jacobian 0E/0Y can certainly be done analytically. But we believe

that simple forward finite differencing is more advantageous in this case. This is because

unlike in a case where integrations of the differential equations are involved for each function

evaluation, the function evaluation is fast. Using analytical Jacobian offers no computational

speed benefits. On the other hand, analytical Jacobian will make the computer code signif-

icantly more complicated becmlse second-order partial derivatives of the right hand sides of

the state eqnations axe needed. Also, when some of the path constraints in Eq. (11) become

active, the multiplier/k will become functions of state and costate, adding more complexity

to the analytical Jacobian.

When using the finite difference algorithm, initial guess for the state as well as the

costate are required at tk, k -- 0, 1, ...M. The initial gamss for x(t) can be obtained by

linearly interpolate the given x0 and an estimated x(tf) which is relatively easy to make

because of the physical meaning of x(tf). For the costate p(t), a reasonable initial gamss can

be obtained from the costate history obtained by solving the problem with zero atmospheric

density (vacuum flight). For vacuum flight, the finite difference algorithm converges in many



caseswith even constant guess for p(_). Another possibility is to use the costate and state

solutions from the analytical vacuum guidance algorithm which is described in the next

section. The atmospheric solution is then obtained by applying homotopic continuation on

the atmospheric density with
_ = r/p, 0_<vl<_ 1 (33)

For each rl, _ is used in place of atmospheric density in the aerodynamic forces terms. The

homotopic parameter rl starts at 0 (vac_mm solution), and gradually increase to unity for

full atmospheric sohltion.

3. Analytical Vacuum Ascent Guidance

While the finite difference approach in the preceding sections applies equally well to

vacmun ascent guidance, a simpler and even better analytical approach exists. This approach

combines a number of elegant results in optimal vacuum trajectory studies over the past three

decades, and is summarized in Ref. 7 The key ingredients are the linear gravity simplification
and the closed-form solution of the costate equation and nearly closed-form solution of the

sate equation. At the beginning of each guidance update cycle, let r0 be the position vector.

The gravity acceleration g is then approximated by

_ #__£E (34)
g -- r°3 r = -w2r

where #E is the gravitational parameter of the Earth. In an ascent g_fidance problem, the

correct direction of the gravity is more important than the accuracy of its magnitude. This

approximation preserves the change of direction of the gravitational acceleration with r. The

magnitude of g will be slightly different from that of a Newtonian central gravity field. But

when r0 is continuously updated by the radius at beginning of each guidance cycle, the effect

of this difference will be negligible.

Let go = #E/r_ be the magnitude of the gravity acceleration at r0. We normalize the

equations of motion (1) and (2) with unit distance r0, unit time r0x/_'_0, and unit velocity

rvf_. The dimensionless equations of motion, with A -- N = 0 for vacuum flight, become

/-= V (35)

= -r +T(_-)lb (36)

where the Schuler frequency w has become unity in the normalized time, and T(t) =

T_ac/m(T)go with _" as the normalized time. Note that this normalization is done in each

g_fidance cycle with the r0 being the radius at the beginning of that cycle. The Hamiltonian

now is
H = pTv + pT[--r + T(_-)lb] +/_(1Tlb- 1) (37)

The optimality condition from OH/Olb = 0 yields

1_, - T__) Pv (38)

The sufficient condition for the optimality condition (14) in this case is O:H/OI_ = 2#Ia < 0

with/3 being an 3 x 3 identity matrix. We have _ < 0, hence the well-known result that the
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optimal thrust directionmust be alignedwith that of pv. The costate equations (12) and

(13) now become

15r = pv (39)

pv = -p, (40)

The costate equations have closed-form solution of

-pr('r) = -sinrh cos'rI3 -Pro -Pro

where Pvo and Pro are the (unknown) initial conditions for the costate. Define

(41)

/0 /oI_(T) = lpv(()cos(T(()d( _ io(()d¢ C42)

I" /o= 1,v(¢) sin(T(()dg (()d¢ (43)

It can be easily verified that the state equations have the solution of

r('r) ro
(44)

where

F(') = [ sin_'/acos_'I3 - cos _-13]sin _'13 (45)

The integrals Ic and Is can be evaluated by a mzmerical quadrature scheme. Cali_ et al

use the Simpson's rule in Ref. 7 We decide to use the Milne's nile because it only increa._es

computation by a small margin yet offers a combined four-orders of magnitude higher accu-

racy for a 200-second burn. Let 5 = rtogo/4 where _'togo is the dimensionless time-to-go till

MECO, yet to be determined. With Milne's rule, we have

Ii(Tw_o) = _',0909___0_[Tii-(0) + 32i,(5) + 12_(25) + 32_-(35) + 7i,(4_)] , i = c,s (46)

Note that we have left T_a_ inside the integrals (as a part of T(_-)) because T,_ will be

time-varying (throttled down) when a thrust acceleration limit is imposed and becomes
active. With the thn_st integrals given in (46) and the costate given in (41) as fimction

of its initial conditions, the state is found in closed-form from Eq. (45). Therefore the

final state and costate are explicitly functions of pv., Pro and _'ago. Consequently, the total 6

terminal conditions (10) and (18) are fimctions of the 7 unknowns pv., pr. and _'_,90. The 7th

condition is from condition (17). For minimum-time problem, the costate can be scaled by

arbitrary positive constant without changing any necessary conditions for the optimal control

problem. And it will be shown that for Keplerian orbit insertion as the terminal conditions

in (10), the condition (17) is automatically satisfied. Therefore the problem can actually be
reduced to a six-unknown problem by requiring, for instance, that liP011 = H(P_'o PT)II = 1.

One of the six components of P0 is determined by the other five. But this still leaves us the



ambiguity of determining the sign of that component of P0. We opt to avoid this problem

by still treating the problem as a seven-unknown problem, and adding a trivial condition

[Ip(_-f)[I = 1 (47)

From the costate equations (39) and (40), it can be shown by simple differentiation that

d[[p(r)[[ _ 0 (48)
dr

Therefore lip(r)[] =constant. The condition (47) thus will always be trivially satisfied if we

scale P0 to have [[P0[[ --- 1 (and we must, in order for the condition (47) to be met).

For minimum-time problem where J = ¢ = ti, the condition (17) be comes H]t I = 1.

This condition is equivalent to Hit I > 0 becmlse the costate p can always be scaled by

a positive constant to achieve Hit I -- 1 if Hit I > 0 before scaling. But this condition is

automatically satisfied for Keplerian orbit insertion if other necessary conditions are satisfied.

For Keplerian orbit insertion, the terminal conditions (10) represent the conditions on orbital

elements which are constant if the engine is cut off at this point. Therefore

dg/(x,) Og2(xl) ( Vf )=0 (49)d_- 0xf -rf

where -r! = g(r/) by the linear gravity approximation. Premultiply the above equation
with the constant multiplier vector v in Eqs. (15-16) and use these transversaiity conditions:

T0_I/(xf) ( Vf ) T V pT/r f 0 (50)_xf -r I ---- prl f -- =

Use the expression of the Hamiltonian (37), lb = lpv, and the above relationship, we arrive

at

S[t¢= T('r/)[[pvil[ > 0

In summary, the optimal vacuum ascent guidance problem becomes a root-finding prob-

lem with seven unknowns (P0 and 7togo), six constraints (10) and (18) plus one "easy"

constraint (47). Through the use of quadrature (46), all the final state xl and costate Pl are

explicit functions of the seven unknowns. The modified Newton method again works very

well and the convergence occurs rapidly with almost any initial guesses that do not result in

totally wrong initial thrust direction.
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