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Abstract—Closed-loop control of skeletal muscle is complicated
by the nonlinear muscle force to length and velocity relationships
and the inherent unstructured and time-varying uncertainties in
available models. Some pure feedback methods have been devel-
oped with some success, but the most promising and popular con-
trol methods for neuromuscular electrical stimulation (NMES) are
neural network (NN)-based methods. Efforts in this paper focus
on the use of a NN feedforward controller that is augmented with
a continuous robust feedback term to yield an asymptotic result (in
lieu of typical uniformly ultimately bounded stability). Specifically,
an NN-based controller and Lyapunov-based stability analysis are
provided to enable semi-global asymptotic tracking of a desired
limb time-varying trajectory (i.e., non-isometric contractions). The
developed controller is applied as an amplitude modulated voltage
to external electrodes attached to the distal-medial and proximal-
lateral portion of the quadriceps femoris muscle group in non-im-
paired volunteers. The added value of incorporating a NN feed-
forward term is illustrated through experiments that compare the
developed controller with and without the NN feedforward com-
ponent.

Index Terms—Asymptotic stability, closed-loop control of func-
tional electrical stimulation (FES), neural networks (NNs), neuro-
muscular electrical stimulation (NMES), non-isometric contrac-
tions, nonlinear control, robust integral of the sign of the error
(RISE)-based feedback.

I. INTRODUCTION

N
EUROMUSCULAR ELECTRICAL STIMULATION

(NMES) is a technique employed to generate desired

muscle contractions via electrical stimulus [for functional

tasks, NMES is described as functional electrical stimulation

(FES)]. Efforts in NMES facilitate improved limb control and

functionality for patients with stroke, spinal cord injuries, and

other neurological impairments [1], [2]. Although most NMES

procedures in physical therapy clinics consist of tabulated

open-loop application of electrical stimulation, a market exists

for the development of noninvasive closed-loop methods.

NMES control development is hampered by several challenges
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that affect the ability of a muscle to produce a desired force:

muscle fatigue, hyperactive somatosensory reflexes, electrode

placement, inter- and intra-subject variability in muscle prop-

erties, changing muscle geometry under the electrodes in

non-isometric conditions, etc.

Some promising closed-loop experimental results have been

reported that use high-gain linear feedback methods to com-

pensate for uncertain muscle response (cf. [3]–[7] and the ref-

erences therein). However, the development of analytical sta-

bility guarantees for linear feedback methods has been lacking

due to the fact that the governing equations for muscle con-

tractions are nonlinear with unstructured time-varying uncer-

tainties. Feedback techniques such as linear quadratic Gaussian

(LQG) methods, gain scheduling methods, and pole placement

methods were developed and analyzed under a linear muscle

model assumption [8]–[10]. Recently, nonlinear robust tech-

niques such as sliding mode control (SMC) (cf. [11], [12]) and

robust integral of the sign of the error (RISE) [13] methods have

been developed and analyzed for uncertain nonlinear muscle

models. Although stability results can be achieved for represen-

tative nonlinear muscle models, these results, as well as pre-

vious linear feedback methods, inherently rely on high gains or

high frequency to dominate the model uncertainty, potentially

resulting in overstimulation.

Seminal work in [14]–[19] continue to inspire new inves-

tigations (cf. [20]–[25] and the references within) in neural

network (NN)-based NMES control development. One motiva-

tion for NN-based controllers is the desire to augment feedback

methods with an adaptive element that can adjust to the un-

certain muscle model, rather than only relying on feedback

to dominate the uncertainty based on worse case scenarios.

NN-based control methods have attracted more attention in

NMES than other adaptive feedforward methods because of

the nature of the unstructured uncertainty and the universal

approximation property of NNs. However, since NNs can only

approximate a function within some residual approximation

error, all previous NN-based controllers yield uniformly ulti-

mately bounded stability (i.e., the errors converge to a region

of bounded steady-state error).

Our previous result in [13] focuses on the development of a

RISE-based NMES controller and the associated analytical sta-

bility analysis that yields asymptotic tracking in the presence of

a nonlinear uncertain muscle model with nonvanishing additive

disturbances. The result in [13] uses feedback and an implicit

learning mechanism to dominate uncertainty and disturbances.

Recent results from general control systems literature [26] indi-

cate that the RISE-based feedback structure can be augmented
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with a NN feedforward term to yield asymptotic tracking for

some classes of systems. Based on these general results (and

our preliminary work in [27]), the RISE-based method in [13] is

modified with an NN to develop a new NMES controller for the

uncertain muscle model. The developed controller is applied as

an amplitude modulated voltage to external electrodes attached

to the distal-medial and proximal-lateral portion of the quadri-

ceps femoris muscle group in non-impaired volunteers. The ex-

perimental results indicate that the addition of the NN to the

RISE controller reduces the root mean squared (RMS) tracking

error for similar RMS voltage when compared to the method in

[13] without the NN feedforward component (RISE controller

alone).

II. MUSCLE ACTIVATION AND LIMB MODEL

The musculoskeletal dynamics with one-degree of rotational

freedom about the knee joint is given as [6]

(1)

In (1), denotes the inertia of the shank-foot com-

plex about the knee-joint, denotes elastic effects

due to joint stiffness, denotes the gravitational com-

ponent, denotes viscous effects due to damping

in the musculotendon complex [28], represents un-

known unmodeled bounded disturbances (e.g., fatigue, signal,

and response delays, spasms, changing muscle geometry), and

denotes the torque produced at the knee joint by the

electric potential.

The inertia and gravitational effects in (1) can be modelled as

where denote the angular position, velocity,

and acceleration of the lower shank about the knee-joint, re-

spectively, denotes the unknown inertia of the combined

shank and foot, denotes the unknown combined mass of

the shank and foot, is the unknown distance between the

knee-joint and the lumped center of mass of the shank and foot,

and denotes the gravitational acceleration. The elastic

effects are modelled on the empirical findings by Ferrarin and

Pedotti in [28] as

(2)

where are unknown positive coefficients. As

shown in [6], the viscous moment can be modelled as

(3)

where , and are unknown positive constants.

The torque produced about the knee is controlled through

muscle forces that are elicited by NMES. For simplicity and

without loss of generality, the subsequent development focuses

on producing knee torque through muscle tendon forces gener-

ated by electrical stimulation of the quadriceps (i.e., antagonistic

muscle forces are not considered). The knee torque is related to

the muscle tendon force as

(4)

where denotes a positive moment arm that changes

with the extension and flexion of the leg as shown in studies by

[29] and [30]. The total muscle force is a sum of active force

generated by contractile element (often denoted as , the

tension generated by passive elastic elements (often denoted as

and the forces generated by viscous fluids (often denoted

as . The muscle force generated at the tendon is the projec-

tion of net sum of these elements along the line parallel to the

tendon. The total muscle force generated at the tendon is consid-

ered a function of the unknown nonlinear function

and voltage applied to the quadriceps muscle by electrical

stimulation defined as

(5)

The introduction of the unknown nonlinear function en-

ables the muscle contraction to be considered under general dy-

namic conditions in the subsequent control development. The

uncertain and unknown function captures the dynamic

characteristics of muscle recruitment (approximated by a con-

tinuously differentiable function), and active and passive muscle

characteristics. The active and passive characteristics include

increase in elastic element with increasing muscle length and

muscle stiffness changes of potentially more than two orders of

magnitude [31] under dynamic contractions.

The model developed in (1)–(5) is used to examine the sta-

bility of the subsequently developed controller, but the con-

troller does not explicitly depend on these models. Specifically,

an NN is used to approximate the muscle dynamics along with

the implicit learning of the RISE feedback structure. The fol-

lowing assumptions are used to facilitate the subsequent control

development and stability analysis.

Assumption 1: The moment arm is assumed to be a

non-zero, positive, bounded function [29], [30] whose first two

time derivatives exist. Based on the empirical data in [32] and

[33], the function is assumed to be a non-zero, posi-

tive, and bounded function with bounded first and second time

derivatives.

Assumption 2: The auxiliary non-zero unknown scalar func-

tion is defined as

(6)

where the first and second time derivatives of are as-

sumed to exist and be bounded (see Assumption 1).

Assumption 3: The unknown disturbance is bounded

and its first and second derivatives with respect to time exist

and are bounded. Based on Assumptions 1 and 2, the ratio

is also assumed to be bounded and its first and

second derivatives with respect to time exist and are bounded.

III. CONTROL DEVELOPMENT AND STABILITY ANALYSIS

The objective is to develop an NMES controller to produce

a desired torque at the knee to enable the knee angle to track a

desired trajectory, denoted by . The desired trajectory

can be any continuous signal (or a simple constant setpoint). In

the subsequent experimental results the desired signal is a sinu-

soidal trajectory. The sinusoidal trajectory is arbitrary and may



714 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 20, NO. 3, MAY 2012

not correspond to functional trajectory, but the period of the si-

nusoid is motivated by the speed of typical walking gaits. Al-

though such trajectories may not correspond to functional tra-

jectories, the ability to track arbitrary trajectories is necessary

for the performance of many functional tasks elicited through

external electrical stimulation. To quantify the objective, a limb

position tracking error, denoted by , is defined as

(7)

where is an a priori trajectory which is designed such that

and are bounded and within the knee range of mo-

tion, where denotes the th derivative for . To

facilitate the subsequent analysis, filtered tracking errors, de-

noted by and , are defined as

(8)

where denote positive constants. The filtered

tracking error is introduced to facilitate the closed-loop

error system development and stability analysis but is not

used in the controller because of a dependence on acceleration

measurements.

A. Open-Loop Error System Development

The open-loop tracking error system can be developed by

multiplying (8) by and by utilizing the expressions

in (1) and (4)–(8) as

(9)

where , and are

defined as

(10)

To facilitate the subsequent analysis, auxiliary signals

and are defined as in

(10) where the functional dependencies on and are

replaced with and . By adding and subtracting

, defined as

(11)

the dynamics in (9) can be rewritten as

(12)

where the auxiliary function is defined as

B. Feedforward NN Estimation

NN-based estimation methods are well suited for NMES be-

cause the muscle model contains unstructured nonlinear dis-

turbances as given in (1) (i.e., uncertainties that do not satisfy

the linear-in-the-parameters assumption). Let be a compact

simply connected set of . Let be defined as the space

where is continuous. The universal approx-

imation property states that there exist weights and thresholds

such that the function can be represented by a

three-layer NN as [34]

(13)

where is defined as .

In (13), and are bounded constant

ideal weight matrices for the first-to-second and second-to-third

layers, respectively, where is the number of neurons in the

hidden layer. The sigmoid activation function in (13) is denoted

by , and is the func-

tional reconstruction error. The additional term “1” in the input

vector and activation term allows for thresholds to

be included as the first columns of the weight matrices [34].

Thus, any estimation of and then includes estimation of

the thresholds. Based on (13), the typical three layer NN ap-

proximation for is given as [34]

(14)

where and are subsequently de-

signed estimates of the ideal weight matrices. The estimate mis-

match for the ideal weight matrices, denoted by

and , are defined as

(15)

and the mismatch for the hidden-layer output error, denoted by

, is defined as

(16)

Assumption 4 (Boundedness of the Ideal Weights): The ideal

weights are assumed to exist and are bounded by known positive

values so that

(17)

(18)

where is the Frobenius norm of a matrix, and is the

trace of a matrix. The ideal weights in an NN are bounded, but

knowledge of this bound is a non-standard assumption in typ-

ical NN literature (although this assumption is also used in text-

books such as [34]). If the ideal weights are constrained to stay

within some predefined threshold, then the function reconstruc-

tion error will be larger. Typically, this would yield a larger ulti-

mate steady-state bound. Yet, in the current result, the mismatch

resulting from limiting the magnitude of the weights is compen-

sated through the RISE feedback structure (i.e., the RISE struc-

ture eliminates the disturbance due to the function reconstruc-

tion error). Based on the assumption that the desired trajectory

is bounded, the following inequalities hold:

(19)

where and are known positive constants.



SHARMA et al.: CLOSED-LOOP NN-BASED NMES CONTROL FOR HUMAN LIMB TRACKING 715

Remark 1: One motivation to add and subtract the auxiliary

function to yield (12) is to develop the input vector

in terms of the desired trajectory, thus avoiding higher

order state derivatives in the NN input vector and ensuring that

is defined on .

C. Closed-Loop Error System Development

The control development in this section is motivated by sev-

eral technical challenges associated with blending the NN feed-

forward term with the RISE feedback method. One of the chal-

lenges to use the RISE control structure is that an extra time

derivative of the dynamics, which generates acceleration de-

pendent terms, is used in the stability analysis. If the NN is a

function of the actual system states, the NN update laws will

require acceleration measurements. To avoid the use of accel-

eration measurements, the NN structure in (14) is developed

in terms of the desired trajectories. Another challenge is that,

while the NN estimate are upper bounded by constant, the time

derivatives of these terms are state dependent, and hence vio-

late the traditional RISE assumptions. To address this issue, the

closed-loop error system development requires a strategic sep-

aration and regrouping of terms. In this section, the control is

designed and the closed-loop error system is presented.

Based on the open-loop error system in (12) and the subse-

quent stability analysis (see the development in Appendix A),

the control torque input is designed as [26]

(20)

where is the three-layer NN feedforward estimate de-

fined in (14), and is the RISE feedback term designed

as [35]–[37]

(21)

In (21), denotes positive constant adjustable control

gain, and is the generalized solution to

(22)

where denotes positive constant adjustable control gain,

and denotes the signum function. The estimates for the

NN weights in (14) are generated online using a projection al-

gorithm as

(23)

where and are constant,

positive definite, symmetric gain matrices. The NN-based feed-

forward component is used to approximate the desired

musculoskeletal dynamics given in (11). The NN

component approximates the desired function through adaptive

weight estimates that are adjusted online via the adaptive law

given in (23). The RISE feedback controller has implicit

learning characteristics [37] which maintains the robustness of

the system in the presence of additive disturbances and residual

function approximation error. Also during the transient response

of the trial, the role of the RISE feedback controller is to keep the

system stable while the NN approximates the system dynamics.

The closed-loop tracking error system can be developed by

substituting (20) into (12) as

(24)

where

(25)

To facilitate subsequent closed-loop stability analysis, the time

derivative of (24) can be determined as

(26)

Although the voltage control input is present in the open-

loop error system in (12), an additional derivative is taken to fa-

cilitate the design of the RISE-based feedback controller. After

substituting the time derivative of (25) into (26) by using (13)

and (14), the closed-loop system can be expressed as

(27)

where . After

adding and subtracting the terms

to (27), the following expression can be obtained:

(28)

where the notation is introduced in (16). Using the NN

weight tuning laws described in (23), the expression in (28) can

be rewritten as

(29)

where the unmeasurable auxiliary terms and

given in (29) are defined as

(30)

(31)

In (31), is defined as

(32)

while is defined as

(33)
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where and are

defined as

(34)

and

(35)

Motivation for the definitions in (30)–(32) are based on the need

to segregate terms that are bounded by state-dependent bounds

and terms that are upper bounded by constants for the develop-

ment of the NN weight update laws and the subsequent stability

analysis. The auxiliary term in (33) is further segregated to de-

velop gain conditions in the stability analysis. Based on the seg-

regation of terms in (30), the mean value theorem can be applied

to upper bound as

(36)

where is defined as

(37)

and the bounding function is a positive globally

invertible nondecreasing function. Based on Assumption 3,

(17)–(19), and (33)–(35), the following inequalities can be

developed [26]:

(38)

where are known positive constants.

Theorem 1: The composite NN and RISE controller given

in (20)–(22) ensures that all system signals are bounded under

closed-loop operation and that the position tracking error is reg-

ulated in the sense that

as (39)

provided the control gains in (8), (21), and (22) are selected

according to the following sufficient conditions:

and control gain defined in (21) is chosen sufficiently large

based on the initial conditions of the error system, where

are known positive constants defined in

(38), and is a subsequently defined positive constant.

Proof: See Appendix A.

IV. EXPERIMENTAL RESULTS

Experimental results obtained with volunteer subjects are

provided in this section to examine the performance of the

developed controller given in (20)–(22). These results were

compared with the previous results in [13] that used the RISE

feedback structure without the NN feedforward term. The

NMES controller was implemented as an amplitude modulated

voltage composed of a positive rectangular pulse with a fixed

width of 400 sec and fixed frequency of 30 Hz. The a priori

chosen stimulation parameters are within the ranges typically

reported during NMES studies [13]. Without loss of generality,

the developed controller is applicable to different stimulation

protocols (i.e., voltage, frequency, or pulse width modulation).

The following results indicate that the developed controller

(henceforth denoted as NN RISE) was able to minimize the

knee angle error while dynamically tracking a desired trajec-

tory.

A. Testbed and Protocol

Three sets of experiments were conducted including tracking

experiments, regulation experiments, and a sit-to-stand tracking

experiment. The objective in tracking experiments (including

the sit-to-stand tracking case) was to enable the knee and lower

leg to follow an angular trajectory, whereas, the objective of

regulation experiments was to regulate the knee and lower

leg to a constant desired setpoint. For tracking and regulation

experiments, the testbed consists of a custom computer con-

trolled stimulation circuit and a modified leg extension machine

(LEM). The LEM was modified to include optical encoders.

The LEM allows seating adjustments to ensure the rotation

of the knee is about the encoder axis. A 4.5 kg (10 lb) load

was attached to the weight bar of the LEM and a mechanical

stop was used to prevent hyperextension. The sit-to-stand

tracking experiment was performed to illustrate the controller

performance in a more functional weight bearing task where the

person was not sitting in the LEM. For this experiment, a person

was seated in a chair while leaning forward (so the center of

gravity would be positioned to enable the person to stand via

leg extension). The person’s knee angle was measured using a

goniometer (manufactured by Biometrics Ltd.) attached to both

sides of the knee joint. The goniometer was interfaced with the

custom computer controlled stimulation circuit via an angle

display unit (ADU301). For all experiments, bipolar self-ad-

hesive neuromuscular stimulation electrodes were placed over

the distal-medial and proximal-lateral portion of the quadriceps

femoris muscle group of volunteers and connected to custom

stimulation circuitry. For each experiment, the computed

voltage input was modulated by a fixed pulse width of 400 s

and fixed frequency of 30 Hz. The stimulation frequency was

selected based on subject comfort and to minimize fatigue.

The experiments were conducted on nine non-impaired sub-

jects including eight males and one female (as in our previous

study in [13]) with age ranges of 20 to 35 years, with written in-

formed consent as approved by the Institutional Review Board

at the University of Florida. The electrical stimulation responses

of non-impaired subjects have been reported as similar to para-

plegic subjects’ responses [11], [17], [21]. Volunteers were in-

structed to relax as much as possible and to allow the stimulation

to control the limb motion (i.e., the subject was not supposed

to influence the leg motion voluntarily and was not allowed to

see the desired trajectory). In the first set of experiments, the
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Fig. 1. Top plot shows the actual limb trajectories obtained from the NN�RISE controller (dashed line) and the RISE controller (solid line) versus the desired
1.5 period trajectory (dotted line). The middle plot shows the tracking error (desired angle minus actual angle) obtained from NN�RISE (dashed line) and RISE
(solid line) controllers. The maximum steady state errors obtained are 4.24 (at 28.6 s) and 5.95 (at 20.7 s) for NN�RISE and RISE controller, respectively. The
bottom plot shows the computed NN�RISE voltage (dashed line) and RISE voltage (solid line). The maximum steady state voltage obtained are 26.95 (at 29.1 s)
and 28.1 V (at 21.47 s) for NN�RISE and RISE controller, respectively.

study was conducted for different types of desired trajectories

including: a 1.5 s periodic trajectory and a dual periodic tra-

jectory (combined 4 and 6 s periods). Controllers were imple-

mented on both legs of four subjects using the trajectory with a

1.5 s period, while the rest of the tests were performed on only

one leg of the other three subjects since they were not available

for further testing. Three subjects [one male, one female (both

legs); one male (one leg)] were asked to volunteer for the dual

periodic desired trajectory tests. The regulation tests were per-

formed on one of the legs of two subjects, while the sit-to-stand

experiment was performed on one healthy normal individual.

Each subject participated in one trial per criteria (e.g., one result

was obtained in a session for a given desired trajectory). A pre-

trial test was performed on each volunteer in each experimental

session to find the appropriate initial voltage for the controller

to reduce the initial transient error. After the pretrial test, the

RISE controller was implemented on each subject for a thirty

second duration and its performance was recorded. A rest period

of five minutes was provided before the NN RISE controller

was implemented for an additional thirty second duration. The

NN RISE controller was implemented with three input layer

neurons, 25 hidden layer neurons, and one output layer neuron.

The neural network weights were estimated online according to

the adaptive algorithm in (23).

B. Results and Discussion

The knee/lower limb tracking results for a representative sub-

ject with stimulation from the RISE and the NN RISE con-

trollers are shown in Fig. 1 and are summarized in Table I. In

Table I, the maximum steady-state voltage (SSV) and maximum

steady-state error (SSE) are defined as the computed voltage

and absolute value of error respectively, that occur after 1.5 s

of the trial. Paired one tailed t-tests (across the subject group)

were performed with a level of significance set at .

The results indicate that the developed controller demonstrates

the ability of the knee angle to track a desired trajectory with a

mean (for eleven tests) RMS error of 2.92 degrees with a mean

maximum steady state error of 7.01 degrees. Combining the NN

with the RISE feedback structure in [13] yields (statistically sig-

nificant) reduced mean RMS error for approximately the same

input stimulus. The maximum steady state voltages for the RISE

and NN RISE controllers revealed no statistical differences.

To illustrate that the performance of the NN RISE controller

(in comparison to the RISE controller alone) can be more sig-

nificant for different desired trajectories, both controllers were

implemented on three subjects (two male, one female) with the

control objective to track a dual periodic (4–6 s) desired trajec-

tory with a higher range of motion. The stimulation results from

the RISE and the NN RISE controllers are shown in Fig. 2 and

are summarized in Table II. In Table II, the maximum SSV and

SSE were observed after 4 s of the trial. The results illustrate

that the NN RISE controller yields reduced mean RMS error

(across the group) and reduced mean maximum SSE (across the

group) for approximately the same input stimulus. Paired one

tailed t-tests (across the subject group) were performed with a

level of significance set at . The results show that the

difference in mean RMS error and mean maximum SSE were

statistically significant. The P value for the mean RMS error
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TABLE I
SUMMARIZED EXPERIMENTAL RESULTS AND P VALUES OF ONE TAILED PAIRED T-TEST FOR A 1.5 s PERIOD DESIRED TRAJECTORY.

* INDICATES STATISTICAL DIFFERENCE

Fig. 2. Top plot shows the actual limb trajectories obtained from the NN�RISE controller (dashed line) and the RISE controller (solid line) versus the dual
periodic desired trajectory (dotted line). The middle plot shows the tracking error (desired angle minus actual angle) obtained from NN�RISE (dashed line) and
RISE (solid line) controllers. The maximum steady state errors obtained are 4.57 (at 10.5 s) and 6.56 (at 21 s) for NN�RISE and RISE controller, respectively.
The bottom plot shows the computed NN�RISE voltage (dotted line) and RISE voltage (solid line). The maximum SSV obtained are 29.68 (at 26.9 s) and 29.67
V (at 26.7 s) for NN�RISE and RISE controller, respectively.

(0.00043) and mean maximum SSE (0.0033) t-test obtained in

the case of dual periodic trajectory is smaller when compared

to the P values (0.02 and 0.08, respectively) obtained for the 1.5

s trajectory. This difference indicates the increased role of the

NN for slower trajectories (where the adaptation gains can be

increased).

As in [13], additional experiments were also conducted to ex-

amine the performance of the NN RISE controller in response

to step changes and changing loads. Specifically, a desired tra-

jectory of a step input was commanded with a 10 lb load at-

tached to the LEM. An additional 10 lb load was added once

the limb stabilized at 15 degrees. The limb was again com-

manded to perform a step response to raise the limb back up

an additional 15 degrees with the total load of 20 lb. The results

using the NN RISE controller are shown in Fig. 3. The experi-

mental results for the step response and load addition are given

in Table III. The results give some indication of the controller’s

ability to adapt to changes in load and step inputs and motivate

possible future case studies.

Experiments were also performed to test the NN RISE con-

troller for a sit-to-stand task. These tests were conducted on a

non-impaired individual initially seated on a chair. The objec-
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TABLE II
SUMMARIZED EXPERIMENTAL RESULTS AND P VALUES OF ONE TAILED PAIRED T-TEST FOR DUAL PERIODIC (4–6 s) DESIRED TRAJECTORY.

* INDICATES STATISTICAL DIFFERENCE

Fig. 3. Experimental plots (subject A—dashed-dotted line; subject B—solid line) for step change and load addition obtained from the NN�RISE controller. The
top plot shows actual limb trajectory versus the desired step trajectory (dotted line). The load was added once the limb stabilizes (between 13–15 s interval). After
the load addition the limb was tested for the step input. The middle plot shows the limb tracking error obtained during the experiment. The bottom plot shows
computed voltage for the experiment.

TABLE III
EXPERIMENTAL RESULTS FOR STEP RESPONSE AND CHANGING LOADS

tive was to control the angular knee trajectory that resulted in

the volunteer rising from a seated position, with a final desired

angle of 90 (standing position) and the initial knee angle of 0

(sitting position). The error, voltage, and desired versus actual

knee angle plots are shown in Fig. 4. The final SSE is within

, the maximum transient error was observed as 8.23 (at

1.64 s), and the maximum voltage was obtained as 35.1 V (at

1.59 s). The RMS error and the mean voltage were obtained as

2.92 and 26.88 V, respectively.

The NN RISE structure is motivated by the desire to blend

a NN-based feedforward method with a continuous feedback

RISE structure to obtain asymptotic limb tracking despite an

uncertain nonlinear muscle response. The ability of the neural

networks to learn uncertain and unknown muscle dynamics

is complemented by the ability of RISE to compensate for

additive system disturbances (hyperactive somatosensory re-

flexes that may be present in impaired individuals) and NN

approximation error. Although the NN RISE controller was

successfully implemented and compared to RISE controller

in the present work, the performance of the controller may

be further improved in efforts to reduce the effects of muscle

fatigue in future studies. Fatigue can be reduced for short
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Fig. 4. Top plot shows the actual leg angle trajectory (solid line) versus desired trajectory (dashed line) obtained during the standing experiment. The middle plot
shows the error obtained during the experiment. The bottom plot shows the voltage produced during the experiment.

durations by selecting optimal stimulation parameters, but

FES/NMES may require a controller that adapts with fatigue to

yield performance gains for longer time durations. Therefore,

future development includes the use of a fatigue model in the

muscle dynamics as a means to provide desired results for

longer durations.

C. Limitations

The results illustrate the added value of including a NN feed-

forward component in comparison to only using the RISE feed-

back structure in [13]. However, several limitations exist in the

experimental study. The contribution from the NN component

in the case of 1.5 s periodic desired trajectory was observed to

increase but the RISE contribution did not decline proportion-

ally. On the other hand, respective contributions from the RISE

and NN component in the dual periodic desired trajectory case

were relatively stationary, and the NN component’s contribu-

tion was found to be relatively larger in this case. As a represen-

tative example, Fig. 5 shows the results obtained from a same

subject for two cases: 1.5 s desired trajectory and dual periodic

desired trajectory, where it depicts the individual contributions

of NN and RISE components in the applied voltages. The ra-

tios of NN and RISE contributions in the Fig. 5 for 1.5 s pe-

riod desired trajectory and dual periodic desired trajectory were

obtained as 0.088 and 0.165, respectively, which were calcu-

lated as RMS NN voltage over mean RISE voltage. A possible

reason for this observation is that the 1.5 s period desired tra-

jectory has a large desired acceleration , which is an input

to the NN that can lead to large voltage swings during the tran-

sient stage. To reduce large voltage variants during the transient

due to , the update law gains are reduced in comparison to

gains that could be employed during less aggressive trajectories.

Also, the experimental results with slower trajectories (dual pe-

riodic—4–6 s period) illustrate that the NN component can play

a larger role depending on the trajectory. Specifically, the dual

periodic trajectory results indicate that the RMS error obtained

with the NN RISE controller is lower than the RMS error ob-

tained with the RISE controller with a lower P value (0.00043)

compared to the P value (0.02) obtained with the 1.5 s period

trajectory.

Since a trajectory for a specific functional task was not pro-

vided, the desired trajectory used in the first set of experiments

was simply selected as a continuous sinusoid with a constant 1.5

s period. The desired trajectory was arbitrarily selected, but the

period of the sinusoid is inspired by a typical walking gait tra-

jectory. As the work transitions to applications where a specific

functional trajectory is generated, the control results should di-

rectly translate. Furthermore, some clinical goals may be better

expressed as a desired force profile rather than a desired limb tra-

jectory. The results from this work could be directly applied to

these cases by altering the control objective and open-loop error

system, but the form of the control method (i.e., NN RISE)

would remain intact.

For all experiments, the subjects were not aware of the order

of the control implementation, and the RISE controller was im-

plemented first so that proper gains could be determined. The

NN RISE controller was implemented by simply adding the

NN component to the tuned RISE controller. This approach al-

lows a direct comparison that highlights the contribution of the

NN for the same set of control gains. However, the subjects

could have been more comfortable or experienced more fatigue

when the second set of experiments were performed. Ideally the

controllers would have been implemented in a random manner.

The Lyapunov-based analysis provides conservative suffi-

cient gain conditions. The control gains for the experiments

were obtained by choosing gains and then adjusting them based

on the transient and steady-state performance. If the response

exhibited a prolonged transient response (compared with the
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Fig. 5. As a representative example, the figure shows respective contributions from NN and RISE components in the voltages applied to a subject for two cases:
1.5 s desired trajectory (dashed line) and dual periodic desired trajectory (solid line). The top plot shows the NN contributions while the bottom plot shows the RISE
contributions in the respective applied voltages. The NN contribution in the case of 1.5 periodic trajectory increases but the RISE component does not decrease
proportionally. However, the respective contributions from the RISE and NN component in the dual periodic desired trajectory case are relatively stationary and
also, the NN component’s contribution is relatively greater in this case.

TABLE IV
TABLE SHOWS THE RMS ERRORS DURING EXTENSION AND FLEXION PHASE OF THE LEG MOVEMENT ACROSS DIFFERENT SUBJECTS, TRAJECTORIES

(1.5 s AND DUAL PERIODIC), AND CONTROLLERS (RISE/NN�RISE). THE RESULTS SHOW THAT THE MEAN RMS ERROR IS

MORE DURING THE EXTENSION PHASE THAN DURING THE FLEXION PHASE

response obtained with other gains), the proportional gains

were adjusted. If the response exhibited overshoot, derivative

gains were adjusted. The control gains for the experiments

were tuned based on this trial and error basis. In contrast to

this trial and error approach, the control gains could have been

adjusted using more methodical approaches as described in

various survey papers on the topic [38], [39].

An analysis across different subjects and trajectories (1.5 s

and dual periodic) indicate that the mean RMS error is more

during leg extension and flexion. A t-test analysis shows that the

results are statistically significant with p values of 0.00013 and

0.0014 obtained from the RISE and NN RISE controllers, re-

spectively. The mean RMS errors during the extension phase for

the RISE and NN RISE controllers were 3.49 and 2.68 , re-

spectively, while the mean RMS errors during the flexion phase

was 2.96 and 2.42 , respectively. Summarized RMS errors for

both phases are shown in Table IV. An increased error during ex-

tension phase can be attributed to higher control effort required

during extension. The performance during the extension phase

can also be aggravated by increased time delay and muscle fa-

tigue due to the requirement for higher muscle force compared

to the flexion phase. This analysis indicates a possible need for

separate control strategies during extension and flexion phase of

the leg movement. Particularly, future efforts will investigate a

hybrid control approach for each phase of motion.

Currently the experiments were performed on non-impaired

persons. In future studies with impaired individuals, our

untested hypothesis is that the added value of the NN feed-
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forward component will be even more pronounced (and that

the controller will remain stable) as disturbances due to more

rapid fatigue and more sensitive somatosensory reflexes may be

present in impaired individuals. To delay the onset of fatigue,

different researchers have proposed different stimulation strate-

gies [40]–[42] such as choosing different stimulation patterns

and parameters. The NMES controller in this study was imple-

mented using constant pulse width amplitude modulation of

the voltage. However, the controller can be implemented using

other modulation schemes such as pulse width and frequency

modulation without any implications on the stability analysis,

but the effects of using frequency modulation or varying pulse

trains (e.g., a pulse train containing doublets) remain to be

investigated clinically.

V. CONCLUSION

A Lyapunov-based stability analysis indicates that the de-

veloped closed-loop nonlinear NMES control method yields

asymptotic tracking for a unknown nonlinear muscle activa-

tion and limb dynamics, even in the presence of uncertain

additive disturbances. Experiments using external electrodes

on non-impaired volunteers demonstrated the ability of the

NN RISE controller to enable the knee and lower leg to track

a desired trajectory composed of sinusoids, step changes, and

changes in the load. Statistical analysis of the experimental

results indicates that the NN RISE algorithm yields reduced

RMS tracking error when compared to the RISE controller for

statistically insignificant differences in voltage input. Future

efforts will explore non-quadratic Lyapunov functions and

methods based on convex optimization in [43] to improve the

current stability analysis.

APPENDIX A

STABILITY ANALYSIS

Proof for Theorem 1: Let be a domain containing

, where is defined as

(40)

where the auxiliary function is defined as

(41)

and is the generalized solution to the differential equa-

tion

(42)

Since and in (41) are constant, symmetric, and positive

definite matrices, and , it is straightforward that

. The auxiliary function in (42) is defined as

(43)

where introduced in (22) and (43) respectively, are

positive constants chosen according to the following sufficient

conditions:

(44)

where are known positive constants

introduced in (38). Provided the sufficient conditions in (44) are

satisfied, then .

Let denote a Lipschitz continuous

regular positive definite functional defined as

(45)

which satisfies the inequalities

(46)

provided the sufficient conditions in (44) are satisfied, where

are continuous, positive definite functions

defined as

where are known positive functions or constants.

After taking the time derivative of (45), can be ex-

pressed as

From (8), (29), (42), (43), and after taking the time derivative of

(41), some of the differential equations describing the closed-

loop system for which the stability analysis is being performed

have discontinuous right-hand sides as

(47a)

(47b)

(47c)

(47d)

(47e)

Let denote the right-hand side of (47). Since

the subsequent analysis requires that a solution exists for

, it is important to show the existence of the solution to

(47). As described in [44], the existence of Filippov’s general-

ized solution can be established for (47). First, note that

is continuous except in the set . From [44], [45],

an absolute continuous Filippov solution exists almost ev-

erywhere (a.e.) so that

a.e.
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Except the points on the discontinuous surface

, the Filippov set-valued map includes unique solution. Under

Filippov’s framework, a generalized Lyapunov stability theory

can be used (see [45] and [46] for further details) to establish

strong stability of the closed-loop system. The generalized time

derivative of (45) exists a.e., and , where

(48)

After utilizing (8), (29), (42), (43)

(49)

where [47]

such that

Using (23), (31), (33), and (35), canceling common terms, and

based on the fact that

(49) can be written as

(50)

As shown in (49) and (50), the unique integral signum

term in the RISE controller is used to compensate for

the disturbance terms included in

and , provided the control gain

and are selected according to (44). Further the term

is partially rejected by the unique inte-

gral signum term and partially canceled by adaptive update law.

Using (36), the term , can be upper bounded

by following inequality:

to obtain

(51)

Completing the squares for the bracketed terms in (51) yields

(52)

The following expression can be obtained from (52):

(53)

where , for some positive constant , is a

continuous positive semi-definite function that is defined on the

following domain:

where . Let denote

a set defined as follows:

(54)

where is introduced in Theorem 1. The region of attrac-

tion in (54) can be made arbitrarily large to include any initial

conditions by increasing the control gain (i.e., a semi-global

type of stability result), and hence

as (55)

Based on the definition of in (37), (55) can be used to show

that

as (56)
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