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Closed-loop optimization of fast-charging 
protocols for batteries with machine 
learning

Peter M. Attia1,7, Aditya Grover2,7, Norman Jin1, Kristen A. Severson3, Todor M. Markov2,  

Yang-Hung Liao1, Michael H. Chen1, Bryan Cheong1,2, Nicholas Perkins1, Zi Yang1,  

Patrick K. Herring4, Muratahan Aykol4, Stephen J. Harris1,5, Richard D. Braatz3 ✉,  

Stefano Ermon2 ✉ & William C. Chueh1,6 ✉

Simultaneously optimizing many design parameters in time-consuming experiments 

causes bottlenecks in a broad range of scienti�c and engineering disciplines1,2. One 

such example is process and control optimization for lithium-ion batteries during 

materials selection, cell manufacturing and operation. A typical objective is to 

maximize battery lifetime; however, conducting even a single experiment to evaluate 

lifetime can take months to years3–5. Furthermore, both large parameter spaces and 

high sampling variability3,6,7 necessitate a large number of experiments. Hence, the 

key challenge is to reduce both the number and the duration of the experiments 

required. Here we develop and demonstrate a machine learning methodology  to 

e�ciently optimize a parameter space specifying the current and voltage pro�les of 

six-step, ten-minute fast-charging protocols for maximizing battery cycle life, 

which can alleviate range anxiety for electric-vehicle users8,9. We combine two key 

elements to reduce the optimization cost: an early-prediction model5, which reduces 

the time per experiment by predicting the �nal cycle life using data from the �rst few 

cycles, and a Bayesian optimization algorithm10,11, which reduces the number of 

experiments by balancing exploration and exploitation to e�ciently probe the 

parameter space of charging protocols. Using this methodology, we rapidly identify 

high-cycle-life charging protocols among 224 candidates in 16 days (compared with 

over 500 days using exhaustive search without early prediction), and subsequently 

validate the accuracy and e�ciency of our optimization approach. Our closed-loop 

methodology automatically incorporates feedback from past experiments to inform 

future decisions and can be generalized to other applications in battery design and, 

more broadly, other scienti�c domains that involve time-intensive experiments and 

multi-dimensional design spaces.

Optimal experimental design (OED) approaches are widely used to 

reduce the cost of experimental optimization. These approaches 

often involve a closed-loop pipeline where feedback from completed 

experiments informs subsequent experimental decisions, balancing 

the competing demands of exploration—that is, testing regions of the 

experimental parameter space with high uncertainty—and exploita-

tion—that is, testing promising regions based on the results of the com-

pleted experiments. Adaptive OED algorithms have been successfully 

applied to physical science domains, such as materials science1,2,12–14, 

chemistry15,16, biology17 and drug discovery18, as well as to computer 

science domains, such as hyperparameter optimization for machine 

learning19,20. However, while a closed-loop approach is designed to 

minimize the number of experiments required for optimizing across a 

multi-dimensional parameter space, the time (and cost) per experiment 

may remain high, as is the case for lithium-ion batteries. Therefore, an 

OED approach should account for both the number of experiments 

and the cost per experiment. Multi-fidelity optimization approaches 

have been developed to learn from both inexpensive, noisy signals and 

expensive, accurate signals. For example, in hyperparameter optimiza-

tion for machine learning algorithms, several low-fidelity signals for 

predicting the final performance of an algorithmic configuration (for 

example, extrapolated learning curves19,20, rapid testing on a subset 

of the full training dataset21) are used in tandem with more complete 

configuration evaluations22,23. For lithium-ion batteries, classical 

https://doi.org/10.1038/s41586-020-1994-5

Received: 6 August 2019

Accepted: 19 December 2019

Published online: 19 February 2020

 Check for updates

1Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA. 2Department of Computer Science, Stanford University, Stanford, CA, USA. 3Department of Chemical 

Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. 4Toyota Research Institute, Los Altos, CA, USA. 5Materials Science Division, Lawrence Berkeley National Laboratory, 

Berkeley, CA, USA. 6Applied Energy Division, SLAC National Accelerator Laboratory, Menlo Park, CA, USA. 7These authors contributed equally: Peter M. Attia, Aditya Grover. ✉e-mail: braatz@

mit.edu; ermon@cs.stanford.edu; wchueh@stanford.edu

https://doi.org/10.1038/s41586-020-1994-5
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-020-1994-5&domain=pdf
mailto:braatz@mit.edu
mailto:braatz@mit.edu
mailto:ermon@cs.stanford.edu
mailto:wchueh@stanford.edu
harri
Highlight



398 | Nature | Vol 578 | 20 February 2020

Article

methods such as factorial design that use predetermined heuristics 

to select experiments have been applied24–26, but the design and use 

of low-fidelity signals is challenging and unexplored. These previously 

considered approaches do not discover and exploit the patterns present 

in the parameter space for efficient optimization, nor do they address 

the issue of time per experiment.

In this work, we develop a closed-loop optimization (CLO) system 

with early outcome prediction for efficient optimization over large 

parameter spaces with expensive experiments and high sampling 

variability. We employ this system to experimentally optimize fast-

charging protocols for lithium-ion batteries; reducing charging times 

to approach gasoline refuelling time is critical to reduce range anxiety 

for electric vehicles8,9 but often comes at the expense of battery life-

time. Specifically, we optimize over a parameter space consisting of 

224 unique six-step, ten-minute fast-charging protocols (that is, how 

current and voltage are controlled during charging) to find charging 

protocols with high cycle life (defined as the battery capacity falling 

to 80% of its nominal value). Our system uses two key elements to 

reduce the optimization cost (Extended Data Fig. 1). First, we reduce 

the time per experiment by using machine learning to predict the out-

come of the experiment based on data from early cycles, well before 

the batteries reach the end of life5. Second, we reduce the number 

of experiments by using a Bayesian optimization (BO) algorithm to 

balance the exploration–exploitation tradeoff in choosing the next 

round of experiments10,11. Testing a single battery to failure under our 

fast-charging conditions requires approximately 40 days, meaning 

that when 48 experiments are performed in parallel, assessing all 224 

charging protocols with triplicate measurements takes approximately 

560 days. Here, using CLO with early outcome prediction, only 16 days 

were required to confidently identify protocols with high cycle lives  

(48 parallel experiments). In a subsequent validation study, we find that 

CLO ranks these protocols by lifetime accurately (Kendall rank correla-

tion coefficient, 0.83) and efficiently (15 times less time than a baseline 

‘brute-force’ approach that uses random search without early predic-

tion). Furthermore, we find that the charging protocols identified as 

optimal by CLO with early prediction outperform existing fast-charging 

protocols designed to avoid lithium plating (a common fast-charging 

degradation mode), the approach suggested by conventional battery 

wisdom4,8,9,26. This work highlights the utility of combining CLO with 

inexpensive early outcome predictors to accelerate scientific discovery.

CLO with early outcome prediction is depicted schematically in Fig. 1. 

The system consists of three components: parallel battery cycling, an 

early predictor for cycle life and a BO algorithm. At each sequential 

round, we iterate over these three components. The first component 

is a multi-channel battery cycler; the cycler used in this work tests 48 

batteries simultaneously. Before starting CLO, the charging proto-

cols for the first round of 48 batteries are chosen at random (without 

replacement) from the complete set of 224 unique multi-step protocols 

(Methods). Each battery undergoes repeated charging and discharging 

for 100 cycles (about 4 days; average predicted cycle life 905 cycles), 

beyond which the experiments are terminated.

These cycling data are then fed as input to the early outcome predic-

tor, which estimates the final cycle lives of the batteries given data from 

the first 100 cycles. The early predictor is a linear model trained via 

elastic net regression27 on features extracted from the charging data of 

the first 100 cycles (Supplementary Table 1), similar to that presented 

in Severson et al.5. Predictive features include transformations of both 

differences between voltage curves and discharge capacity fade trends. 

To train the early predictor, we require a training dataset of batteries 

cycled to failure. Here, we used a pre-existing dataset of 41 batteries 

cycled to failure (cross-validation root-mean-square error, 80.4 cycles; 

see Methods and Supplementary Discussion 1). Whereas obtaining 

this dataset itself requires running full cycling experiments for a small 

training set of batteries (the cost we are trying to offset), this one-time 

cost could be avoided if pretrained predictors or previously collected 

datasets are available. If unavailable, we pay an upfront cost in collecting 

this dataset; this dataset could also be used for warm-starting the BO 

algorithm. The size of the dataset collected should best tradeoff the 

upfront cost in acquiring the dataset to train an accurate model with 

the anticipated reduction in experimentation requirements for CLO.

Finally, these predicted cycle lives from early-cycle data are fed into 

the BO algorithm (Methods and Supplementary Discussion 2), which 

recommends the next round of 48 charging protocols that best balance 

the exploration–exploitation tradeoff. This algorithm (Methods and 

Supplementary Discussion 2) builds on the prior work of Hoffman 

et al.10 and Grover et al.11. The algorithm maintains an estimate of both 

the average cycle life and the uncertainty bounds for each protocol; 

these estimates are initially equal for all protocols and are refined as 

additional data are collected. Crucially, to reduce the total optimiza-

tion cost, our algorithm performs these updates using estimates from 
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Fig. 1 | Schematic of our CLO system. First, batteries are tested. The cycling 

data from the first 100 cycles (specifically, electrochemical measurements 

such as voltage and capacity) are used as input for an early outcome prediction 

of cycle life. These cycle life predictions from a machine learning (ML) model 

are subsequently sent to a BO algorithm, which recommends the next 

protocols to test by balancing the competing demands of exploration (testing 

protocols with high uncertainty in estimated cycle life) and exploitation 

(testing protocols with high estimated cycle life). This process iterates until the 

testing budget is exhausted. In this approach, early prediction reduces the 

number of cycles required per tested battery, while optimal experimental 

design reduces the number of experiments required. A small training dataset 

of batteries cycled to failure is used both to train the early outcome predictor 

and to set BO hyperparameters. In future work, design of battery materials and 

processes could also be integrated into this closed-loop system.
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the early outcome predictor instead of using the actual cycle lives. The 

mean and uncertainty estimates for the cycle lives are obtained via a 

Gaussian process (Methods), which has a smoothing effect and allows 

for updating the cycle life estimates of untested protocols with the 

predictions from related protocols. The closed-loop process repeats 

until the optimization budget, in our case 192 batteries tested (100 

cycles each), is exhausted.

Our objective is to find the charging protocol which maximizes the 

expected battery cycle life for a fixed charging time (ten minutes) and 

state-of-charge (SOC) range (0 to 80%). The design space of our 224 six-

step extreme fast-charging protocols is presented in Fig. 2a. Multi-step 

charging protocols, in which a series of different constant-current steps 

are applied within a single charge, are considered advantageous over 

single-step charging for maximizing cycle life during fast charging4,8, 

though the optimal combination remains unclear. As shown in Fig. 2b, 

each protocol is specified by three independent parameters (CC1, CC2 

and CC3); each parameter is a current applied over a fixed SOC range 

(0–20%, 20–40% and 40–60%, respectively). A fourth parameter, CC4, 

is dependent on CC1, CC2, CC3 and the charging time. Given constraints 

on the current values (Methods), a total of 224 charging protocols are 

permitted. We test commercial lithium iron phosphate (LFP)/graphite 

cylindrical batteries (A123 Systems) in a convective environmental 

chamber (30 °C ambient temperature). A maximum voltage of 3.6 

V is imposed. These batteries are designed to fast-charge in 17 min 

(rate testing data are presented in Extended Data Fig. 2). The cycle life 

decreases dramatically with faster charging time4,5, motivating this 

optimization. Since the LFP positive electrode is generally considered 

to be stable4,5, we select this battery chemistry to isolate the effects of 

extreme fast charging on graphite, which is universally employed in 

lithium-ion batteries.

In all, we ran four CLO rounds sequentially, consisting of 185 bat-

teries in total (excluding seven batteries; see Methods). Using early 

prediction, each CLO round requires four days to complete 100 cycles, 

resulting in a total testing time of sixteen days—a major reduction from 

the 560 days required to test each charging protocol to failure three 

times. Figure 3 presents the predictions and selected protocols (Fig. 3a), 

as well as the evolution of cycle life estimates over the parameter space 

as the optimization progresses (Fig. 3a). Initially, the estimated cycle 

lives for all protocols are equal. After two rounds, the overall structure 

of the parameter space (that is, the dependence of cycle life on charg-

ing protocol parameters CC1, CC2 and CC3) emerges, and a prominent 

region with high cycle life protocols has been identified. The confidence 

of CLO in this high-performing region is further improved from round 

2 to round 4, but overall the cycle life estimates do not change substan-

tially (Extended Data Fig. 3). By learning and exploiting the structure 

of the parameter space, we avoid evaluating charging protocols with 

low estimated cycle life and concentrate more resources on the high-

performing region (Extended Data Figs. 3–5). Specifically, 117 of 224 

protocols are never tested (Fig. 3c); we spend 67% of the batteries test-

ing 21% of the protocols (0.83 batteries per protocol on average). CLO 

repeatedly tests several protocols with high estimated cycle life to 

decrease uncertainties due to manufacturing variability and the error 

introduced by early outcome prediction. The uncertainty is expressed 

as the prediction intervals of the posterior predictive distribution over 

cycle life (Extended Data Figs. 3g, 4, 5).

To the best of our knowledge, this work presents the largest known 

map of cycle life as a function of charging conditions (Extended Data 

Fig. 5). This dataset can be used to validate physics-based models of 

battery degradation. Most fast-charging protocols proposed in the 

battery literature suggest that current steps decreasing monotonically 

as a function of SOC are optimal to avoid lithium plating on graphite, 

a well-accepted degradation mode during fast charging4,8,9,26. In con-

trast, the protocols identified as optimal by CLO (for example, Fig. 3d) 

are generally similar to single-step constant-current charging (that 

is, CC1 ≈ CC2 ≈ CC3 ≈ CC4). Specifically, of the 75 protocols with the 

highest estimated cycle lives, only ten are monotonically decreasing 

(that is, CCi ≥ CCi+1 for all i) and two are strictly decreasing (that is, CCi > 

CCi+1). We speculate that minimizing parasitic reactions caused by heat 

generation may be the operative optimization strategy for these cells, 

as opposed to minimizing the propensity for lithium plating (Supple-

mentary Discussion 3). While the optimal protocol for a new scenario 

would depend on the selected charge time, SOC window, temperature 

control conditions and battery chemistry, this unexpected result high-

lights the need for data-driven approaches for optimizing fast charging.
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Fig. 2 | Structure of our six-step, ten-minute fast-charging protocols. 

Currents are defined as dimensionless C rates; here, 1C is 1.1 A, or the current 

required to fully (dis)charge the nominal capacity (1.1 A h) in 1 h. a, Current 

versus SOC for an example charging protocol, 7.0C–4.8C–5.2C–3.45C (bold 

lines). Each charging protocol is defined by five constant current (CC) steps 

followed by one constant voltage (CV) step. The last two steps (CC5 and CV1) 

are identical for all charging protocols. We optimize over the first four 

constant-current steps, denoted CC1, CC2, CC3 and CC4. Each of these steps 

comprises a 20% SOC window, such that CC1 ranges from 0% to 20% SOC, CC2 

ranges from 20% to 40% SOC, and so on. CC4 is constrained by specifying that 

all protocols charge in the same total time (10 min) from 0% to 80% SOC. Thus, 

our parameter space consists of unique combinations of the three free 

parameters CC1, CC2 and CC3. For each step, we specify a range of acceptable 

values; the upper limit is monotonically decreasing with increasing SOC to 

avoid the upper cutoff potential (3.6 V for all steps). b, CC4 (colour scale) as a 

function of CC1, CC2 and CC3 (on the x, y and z axes, respectively). Each point 

represents a unique charging protocol.
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We validate the performance of CLO with early prediction on a subset 

of nine extreme fast-charging protocols. For each of these protocols, 

we cycle five batteries each to failure and use the sample average of the 

final cycle lives as an estimate of the true lifetimes. We use this valida-

tion study to (1) confirm that CLO is able to correctly rank protocols 

based on cycle life, (2) compare the cycle lives of protocols recom-

mended by CLO to protocols inspired by the battery literature and 

(3) compare the performance of CLO to baseline ablation approaches 

for experimental design. The charging protocols used in validation, 

some of which are inspired by existing battery fast-charging literature 

(see Methods), span the range of estimated cycle lives (Extended Data 

Fig. 6 and Extended Data Table 1). We adjust the voltage limits and 

charging times of these literature protocols to match our protocols, 

while maintaining similar current ratios as a function of SOC. Whereas 

the literature protocols used in these validation experiments are gener-

ally designed for batteries with high-voltage positive electrode chem-

istries, fast-charging optimization strategies generally focus on the 

graphitic negative electrode4,8. For these nine protocols, we validate 
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Fig. 3 | Results of closed-loop experiments. a, Early cycle life predictions per 

round. The tested charging protocols and the resulting predictions are plotted 

for rounds 1–4. Each point represents a charging protocol, defined by CC1, CC2 

and CC3 (the x, y and z axes, respectively). The colour scale represents cycle life 

predictions from the early outcome prediction model. The charging protocols 

in the first round of testing are randomly selected. As the BO algorithm shifts 

from exploration to exploitation, the charging protocols selected for testing 

by the closed loop in subsequent rounds fall primarily into the high-performing 

region. b, Evolution of the parameter space per round. The colour scale 

represents cycle life, as estimated by the BO algorithm. The initial cycle life 

estimates are equivalent for all protocols; as more predictions are generated, 

the BO algorithm updates its cycle life estimates. The CLO-estimated mean 

cycle lives after four rounds for all fast-charging protocols in the parameter 

space are also presented in Extended Data Fig. 5 and Supplementary Table 3.  

c, Distribution of the number of repetitions for each charging protocol 

(excluding failed batteries). Only 46 of 224 protocols (21%) are tested multiple 

times. d, Current versus SOC for the top three fast-charging protocols, as 

estimated by CLO. CC1–CC4 are displayed in the legend. All three protocols 

have relatively uniform charging (that is, CC1 ≈ CC2 ≈ CC3 ≈ CC4).
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the ‘CLO-estimated’ cycle lives against the sample average of the five 

final cycle lives.

The validation results are presented in Fig. 4. The discharge capacity 

fade curves (Fig. 4a) exhibit the nonlinear decay typical of fast charg-

ing5,7. If we apply our early-prediction model to the batteries in the 

validation experiment, these early predictions (averaged over each 

protocol) match the CLO-estimated mean cycle lives well (Pearson 

correlation coefficient r = 0.93; Fig. 4b). This result validates the per-

formance of the BO component of CLO in particular, since the CLO-

estimated cycle lives were inferred from early predictions. However, 

our early-prediction model exhibits some bias (Fig. 4c), probably owing 

to calendar ageing effects from different battery storage times28 (Sup-

plementary Table 2 and Supplementary Discussion 4). Despite this bias 

in our predictive model, we generally capture the ranking well (Kendall 

rank correlation coefficient, 0.83; Fig. 4d and Extended Data Fig. 7). 

At the same time, we note that the final cycle lives for the top-ranked 

protocols are similar. Furthermore, the optimal protocols identified 

by CLO outperform protocols inspired by previously published fast-

charging protocols (895 versus 728 cycles on average; Extended Data 

Fig. 6 and Extended Data Table 1). This result suggests that the efficiency 

of our approach does not come at the expense of accuracy.

Our method greatly reduces the optimization time required compared 

to baseline optimization approaches (Fig. 4e). For instance, a procedure 

that does not use early outcome prediction and simply selects protocols 

randomly to test begins to saturate at a competitive performance level 

after about 7,700 battery-hours of testing. To achieve a similar level of 

performance, CLO with both early outcome prediction and the BO algo-

rithm requires only 500 battery-hours of testing. For this small-scale vali-

dation experiment, we observe that the early-prediction component of 

CLO greatly reduces the time per experiment. Here, random selection is 

equivalent to a pure exploration strategy and can achieve a performance 

similar to the BO-based approaches for smaller experimental budgets. In 

later stages, random selection is eventually outperformed by BO-based 

approaches, which exploit the structure across the protocols and focus 

on reducing the uncertainty in the promising regions of the parameter 

space. Although these results are specific to this validation study, we 

observe similar or larger gains in simulations when fewer batteries or 

fewer parallel experiments (relative to the size of the parameter space) 

are available (Extended Data Fig. 8). The relative gains from BO over 

random selection are largest with minimal resources.

Finally, we compare our early predictor with other low-fidelity predic-

tors proposed in state-of-the-art multi-fidelity optimization algorithms 
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distribution of CLO-estimated cycle lives among the validation protocols 

(‘Other’). b, Comparison of early-predicted cycle lives from validation to 

closed-loop estimates, averaged on a protocol basis. Each ten-minute charging 

protocol is tested with five batteries. Error bars represent the 95% confidence 

intervals. c, Observed versus early-predicted cycle life for the validation 

experiment. Although our early predictor tends to overestimate cycle life, 

probably owing to calendar ageing effects (Supplementary Discussion 4), the 
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protocol. Error bars represent the 95% confidence intervals. e, Ablation study 

of various optimization approaches using the protocols and data in the 

validation set (Methods). Error bars represent the 95% confidence intervals 

(n = 2,000). With contributions from both early prediction and Bayesian 

optimization, CLO can rapidly identify high-performing charging protocols. 

The gains from Bayesian optimization are larger when resources are 

constrained (Extended Data Fig. 8).
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in the literature19,20, and find that our approach outperforms these algo-

rithms (Supplementary Discussion 2 and Supplementary Table 4). The 

generic early-prediction models in these previous works fit composites 

of parametric functions to the capacity fade curves, while our model 

uses additional features recorded at every cycle (for example, voltage). 

This result highlights the value of designing predictive models for the 

target application in multi-fidelity optimization.

In summary, we have successfully accelerated the optimization of 

extreme fast charging for lithium-ion batteries using CLO with early 

outcome prediction. This method could extend to other fast-charging 

design spaces, such as pulsed26,28 and constant-power8 charging, as well 

as to other objectives, such as slower charging and calendar ageing. 

Additionally, this work opens up new applications for battery optimiza-

tion, such as formation29, adaptive cycling30 and parameter estimation 

for battery management system models31. Furthermore, provided that 

a suitable early outcome predictor exists, this method could also be 

applied to optimize other aspects of battery development, such as 

electrode materials and electrolyte chemistries. Beyond batteries, our 

CLO approach combining black-box optimization with early outcome 

prediction can be extended to efficiently optimize other physical1,2,18  

and computational22,32 multi-dimensional parameter spaces that 

involve time-intensive experimentation, illustrating the power of 

data-driven methods to accelerate the pace of scientific discovery.
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Methods

Experimental

Commercial high-power lithium iron phosphate (LFP)/graphite A123 

APR18650M1A cylindrical cells were used in this work (packing date 

2015-09-26, lot number EL1508007-R). These cells have a nominal 

capacity of 1.1 A h and a nominal voltage of 3.3 V. All currents are defined 

in units of C rate; here, 1C is 1.1 A, or the current required to fully (dis)

charge the nominal capacity (1.1 A h) in 1 h. The manufacturer’s rec-

ommended fast-charging protocol is 3.6C (3.96 A) CC-CV. The rate 

capability of these cells is shown in Extended Data Fig. 2. The graphite 

and LFP electrodes are 40 µm thick and 80 µm thick, respectively, as 

quantified via X-ray tomography (Zeiss Xradia 520 Versa).

The cells were cycled with various charging protocols but identically 

discharged. Cells were charged with one of 224 candidate six-step, ten-

minute charging protocols from 0% to 80% SOC, as detailed below. After 

a five-second rest, all cells then charged from 80% to 100% SOC with 

a 1C CC-CV charging step to 3.6 V and a current cutoff of C/20. After 

another five-second rest, all cells subsequently discharged with a CC-CV 

discharge at 4C to 2.0 V and a current cutoff of C/20. The cells rested 

for another five seconds before the subsequent charging step started. 

The lower and upper cutoff voltages were 2.0 V and 3.6 V, respectively, 

as recommended by the manufacturer. In this work, cycle life is defined 

as the number of cycles until the discharge capacity falls below 80% of 

the nominal capacity.

All cells were tested in cylindrical fixtures with 4-point contacts on a 

48-channel Arbin Laboratory Battery Testing battery cycler placed in 

an environmental chamber (Amerex Instruments) at 30 °C. The cycler 

calibration was validated before the state of the experiment.

In the closed-loop experiment, four experiments did not reach 100 

cycles owing to contact issues either at the start or partially through 

the experiment. These experiments were run on channels 17 and 27 in 

round 1 (oed_0) and channels 4 and 5 in round 2 (oed_1). Additionally, 

in each round, one protocol per round that should have been selected 

(that is, with a top-48 upper bound) was not selected and replaced with 

the protocol with the 49th-highest upper bound owing to a process-

ing error (Extended Data Fig. 4), but this error is not expected to have 

a large effect. Additional experimental issues are documented in the 

notes of the data repository.

Charging protocol and parameter space design

Cells were charged with one of 224 different four-step charging proto-

cols. Each of the first four steps is a single constant-current step applied 

over a 20% SOC range; thus, the 224 charging protocols represent dif-

ferent combinations of current steps within the 0% to 80% SOC range. 

We can define the charging time from 0% to 80% SOC by:

t =
0.2

CC1
+

0.2

CC2
+

0.2

CC3
+

0.2

CC40−80%

In all protocols considered here, we constrain t0-80% to be 10 min. We 

now write CC4 as a function of the first three charging steps, as:

( )
CC4 =

0.2

− + +
10

60

0.2

CC1

0.2

CC2

0.2

CC3

Thus, each protocol can be uniquely defined by CC1, CC2 and CC3.

Each independent parameter can take on one of the following dis-

crete values: 3.6C, 4.0C, 4.4C, 4.8C, 5.2C and 5.6C. Furthermore, CC1 

can take on values of 6.0C, 7.0C and 8.0C, and CC2 can take on values 

of 6.0C and 7.0C. CC4 is not allowed to exceed 4.81C. The maximum 

allowable current for each parameter decreases with increasing SOC to 

avoid reaching the upper cutoff voltage of 3.6 V. With these constraints, 

a total of 224 charging protocols are permitted.

For a consistent protocol nomenclature, we define each fast-charging 

protocol as CC1-CC2-CC3-CC4. For example, the charging protocol 

with the highest CLO-estimated mean cycle life is written 4.8C-5.2C-

5.2C-4.160C.

Early outcome predictor

The early outcome predictor for cycle life is similar to that presented 

in Severson et al.5. This linear model predicts the final log10 cycle life 

(number of cycles to reach 80% of nominal capacity, or 0.88 A h) using 

features from the first 100 cycles. The training set is identical to the one 

used in Severson et al.5 and consists of 41 batteries. The linear model 

takes the form:

w x� �y =
i i

T

Here �y
i
 is the predicted cycle life for battery i, xi is a p-dimensional 

feature vector for battery i and w� is a p-dimensional model coefficient 

vector. Features are z-scored (mean-subtracted and normalized by the 

standard deviation) to the training set before model evaluation.

Regularization, or simultaneous feature selection and model fitting, 

was performed using the elastic net27. Regularization penalizes overly 

complex fits to improve both generalizability and interpretability. 

Specifically, the coefficient vector w� is found via the following expres-

sion:







�w y Xw λ

α
w α w= argmin � − � + (

1 −

2
� � + � � )

w 2
2

2
2

1

Here λ and α are hyperparameters; λ is a non-negative scalar and α is a 

scalar between 0 and 1. The first term minimizes the squared loss, and 

the second term performs both continuous shrinkage and automatic 

feature selection. During model development, we apply fourfold cross-

validation and Monte Carlo sampling with the training set to optimize 

the values of the hyperparameters λ and α.

As in Severson et al.5, the available features were based on the differ-

ence between discharge voltage curves of cycles 100 and 10, or trends 

in the discharge capacity. The five selected features, their correspond-

ing weights and the z-scored values are presented in Supplementary 

Table 1. The training (cross-validated) error was 80.4 cycles (10.2%); 

the test error on a test set from Severson et al.5 was 122 cycles (12.6%).

The early predictor automatically flags predictions as anomalous if 

the 95% prediction interval exceeds 2,000 cycles. The two-tailed 95% 

prediction interval is computed by:

t x X X x95%PI = 2 × RMSE 1 + ( )a n p i i( /2, − )
T T −1

where t is the Student’s t value, α is the significance level (0.05 for 

95% confidence), n is the number of samples, p is the number of fea-

tures, RMSE is the root-mean-square error of the training set (in units 

of cycles), xi is the vector of selected features for battery i and X is 

the matrix of selected features for all observations in the training  

set.

In the closed-loop experiment, three tests returned predictions  

with a prediction interval outside of the threshold; these anoma-

lous predictions were excluded. These tests were run on channel  

27 in round 1 (oed_0), channel 12 in round 3 (oed_2) and channel 6 in 

round 4 (oed_3). Furthermore, in the validation experiment, one test 

returned a prediction with a prediction interval outside of the thresh-

old (channel 12; 3.6C-6.0C-5.6C-4.755C), although the final cycle life 

was reasonable.

We note that the predictions from this model exhibited systematic 

bias for the cells in the validation experiments, which we attribute to 

the increased calendar ageing of these cells relative to the training set 

(Supplementary Table 2 and Supplementary Discussion 4).
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Bayesian optimization algorithm

To perform optimal experimental design, we consider the setting of 

best-arm identification using multi-armed bandits. Here each arm is 

a charging protocol and the goal is to identify the best arm, or equiva-

lently the charging protocol with the highest expected cycle life. Many 

variants of the problem have been studied in prior work33–35; our algo-

rithm builds on the approaches of Hoffman et al.10 and Grover et al.11. 

We consider further modifications in Supplementary Discussion 2.

In particular, we assume a Bayesian regression setting, where there 

exists an unknown set of parameters (θ ∈ Rd) that relate a charging 

protocol x to its cycle life (a scalar) via a Gaussian likelihood function. 

Here, x denotes the CC1, CC2, CC3 configurations of a charging pro-

tocol, which is projected onto a d-dimensional feature vector φ(x). We  

set d = 224, and the feature representations φ(x) are obtained by  

approximating a radial-basis function kernel, K(xi, xj) = exp(γ||xi−xj ||2
2),  

using Nystroem’s method. Here, xi and xj are the CC1, CC2 and CC3  

configurtions for two arbitrary charging protocols and the inverse of 

the kernel bandwidth, γ > 0 is treated as a hyperparameter.

The Gaussian likelihood function relates a charging protocol to its 

cycle life distribution. For a protocol x, the mean of this likelihood 

function is given as θTφ(x). The variance of this likelihood function 

is the sum of two uncertainty terms, both of which we assume to be 

homoskedastic (that is, uniform across all protocols). The first term is 

the empirical variance averaged across the repeated runs of individual 

protocols present in the training dataset (same as that used for training 

the early predictor). This accounts for variability due to exogenous 

factors such as manufacturing. Second, since we do not wait for an 

experiment to complete, the likelihood variance additionally needs 

to accommodate an additional uncertainty term due to the early out-

come prediction component of the pipeline. We do so by computing 

the residual variance of the early predictions on the held-out portion 

of the dataset and set the aforementioned uncertainty term to be the 

maximum of the residual variances. We assume that the two sources 

of uncertainty are independent, and hence the overall variance of the 

likelihood distribution is given by the sum of the squares of both vari-

ance terms described above.

To perform inference over the unknown parameters θ and subse-

quent predictions of cycle lives, we employ a Gaussian process. In a 

Gaussian process, the prior over θ is assumed to be isotropic Gauss-

ian; such a prior is conjugate to the Gaussian likelihood, and as a con-

sequence the Gaussian posterior can be obtained in closed-form via 

the Bayes rule. This posterior is used to define a Gaussian predictive 

distribution over the cycle life for any given charging protocol with 

mean μ and variance σ2.

Finally, to select a charging protocol, we optimize an acquisition 

function based on upper confidence bounds. The acquisition function 

selects protocols where the noisy predictive distribution over cycle 

life has high mean μ (to encourage exploitation) and high variance σ2  

(to encourage exploration). The mean and upper and lower confidence 

bounds for any arm i is given by μk,i ± βkσk,i at round k, such that the rela-

tive weighting of the two terms is controlled by the exploration tradeoff 

hyperparameter, β > 0. The exploration tradeoff hyperparameter at 

round k, βk, is decayed multiplicatively at every round of the closed 

loop by another hyperparameter, ε ∈(0,1], as given by βk = β0εk.

BO hyperparameter optimization

The BO algorithm relies on eight hyperparameters, each of which 

can be categorized as either a resource hyperparameter, a parameter 

space hyperparameter or an algorithm hyperparameter. We note that 

the BO algorithm runs in the fixed-budget setting; here, the budget 

refers to the number of iterations of the closed loop we run, exclud-

ing validation experiments. We describe each category of hyperpa-

rameters below; the values of each hyperparameter are tabulated in 

Supplementary Table 5.

Resource hyperparameters are specified by the available testing 

resources. The ‘batch size’ represents the number of parallel tests. We 

set a batch size of 48 given our 48-channel battery cycler. The ‘budget’ 

represents the number of batches tested during CLO. The budget 

excludes batches used to develop the early predictor and validation 

batches. The budget is typically constrained by either the available 

testing time or the number of cells. In this case, we set a budget of 4, 

yielding a cell budget of 192 cells and a time budget of 16 days (4 days 

per batch of 48 cells tested for 100 cycles).

Parameter space hyperparameters are specified by the optimization 

problem. Here, we use the same data available from the training set of 

the early predictor to estimate these parameters, despite a different 

charging protocol structure. The ‘standardization mean’ represents 

the estimated mean cycle life across all protocols. The ‘standardiza-

tion standard deviation’ represents the estimated standard deviation 

of cycle life across all protocols; in other words, this parameter repre-

sents the range of cycle lives in the parameter space. The ‘likelihood 

standard deviation’ represents the estimated standard deviation of a 

single protocol tested multiple times, which is a measure of the sam-

pling error; this sampling error includes both the intrinsic variability 

and the prediction error.

Algorithm hyperparameters control the performance of the Bayesian 

optimization algorithm. γ is the kernel bandwidth, which controls the 

interaction strength between neighbouring protocols in the parameter 

space. High γ favours under-smoothing of the parameter space, that is, 

the protocols have weak relationships with their neighbours. β0 repre-

sents the initial value of β, the exploration tradeoff hyperparameter; β 

controls the balance of exploration versus exploitation. High β0 favours 

exploration over exploitation. ε represents the decay constant of beta 

per round; as the experiment progresses, ε shifts towards stronger 

exploitation (given by βk = β0εk, where βk represents the exploration 

constant at round k, 0-indexed). High ε favours a rapid transition from 

exploration to exploitation.

The algorithm hyperparameters were estimated by creating a phys-

ics-based simulator based on the range of cycle lives obtained in the 

preliminary batch, testing all hyperparameter combinations on the 

simulator, and selecting the hyperparameter combination with the 

best performance (that is, that which most consistently obtains the 

true cycle life). These results are visualized in Extended Data Fig. 9; we 

note that the performance of BO is relatively insensitive to the selected 

combination of algorithm hyperparameters, meaning sufficiently 

high performance can be achieved even with suboptimal algorithm 

hyperparameters. Other approaches, such as using the early-predictor 

training dataset, are also possible for optimization of the algorithm 

hyperparameters (Supplementary Discussion 1).

Physics-based simulator

We used a physics-based simulator for hyperparameter optimization; 

this simulator allows us to estimate the shape and range of cycle lives 

in the parameter space, although the simulator is not designed to be 

an accurate representation of battery degradation during fast charg-

ing. This finite element simulator was originally designed to estimate 

the heat generation during charging in an 18650 cylindrical battery by 

approximating the battery as a long cylinder, which simplifies to a one-

dimensional radial heat transfer problem. The equations and thermal 

properties were sourced from Drake et al.36 and Çengel and Boles37. The 

output from these simulations is a matrix of temperature as a func-

tion of both radial position and time. We use total solid-electrolyte 

interphase (SEI) growth as a proxy for degradation. First, we estimate 

the temperature dependence of SEI growth from the C/10 series of 

figure 7 from Smith et al.38 (Supplementary Table 6). Simultaneously, 

we compute the expected temperature profiles in the battery as a func-

tion of charging protocol with respect to time and position. We then 

approximate the kinetics of SEI growth with an Arrhenius equation, 

such that SEI growth increases with increasing temperature. SEI growth 



(in arbitrary units) is calculated for each temperature element in the 

position-time array via:









D

E

k T
= ∑ ∑ exp −r t

a

B

where D is the degradation parameter, Ea is the effective activation 

energy for SEI growth (Supplementary Table 6) and kB is Boltzmann’s 

constant. The cycle life is then calculated from the degradation param-

eter using the range of expected cycle lives (as estimated from the 

early-predictor training dataset):

C DCycle life = 500 + /

where C is a constant (5 × 10−11) that scales D to reasonable values of 

cycle life.

Validation experiments

After the closed-loop experiment completed, we selected nine pro-

tocols to test to failure (five batteries per charging protocol). This 

experiment allowed us to (1) evaluate the performance of the closed 

loop by comparing the CLO-estimated mean cycle lives to the mean 

cycle life of multiple batteries tested to failure for multiple protocols, 

(2) compare the protocols with the highest CLO-estimated mean cycle 

lives to conventional fast-charging protocol design principles from 

the battery literature, and (3) generate a small dataset with which we 

can evaluate the performance of the closed loop relative to baseline 

optimization approaches.

The selected protocols are displayed in Extended Data Fig. 6 and 

Extended Data Table 1. Of our nine fast-charging protocols, three were 

the top three CLO-estimated protocols; four were based on approxima-

tions of multi-step fast-charging protocols in the battery literature (see 

Extended Data Table 1); and two were selected to obtain a representa-

tive sampling from the distribution of CLO-estimated cycle lives. The 

four protocols based on approximations of multi-step fast-charging 

protocols in the battery literature were obtained by determining the 

current ratios between various steps and translating those ratios to 

our ten-minute fast-charging space. The voltage limits were consistent 

with our charging protocols, that is, 2.0 V and 3.6 V.

Five batteries per charging protocol were tested to obtain a rea-

sonable estimate of the true cycle lives. In this experiment, one test 

returned a prediction with a prediction interval outside of the threshold 

(channel 12; 3.6C-6.0C-5.6C-4.755C) and was excluded. A comparison 

of the three different methods for cycle life results (CLO, early predic-

tions from validation, and final measurements from validation) are 

presented in Extended Data Fig. 7.

Validation ablation study

For the ablation study using the charging protocols and data from the 

validation experiments, we systematically compared the full closed-

loop system against three other ablation baselines which use (1) only 

early prediction (no BO exploration–exploitation, purely random 

exploration), (2) only BO exploration–exploitation (no early predic-

tion), (3) purely random exploration without any early prediction. As 

highlighted earlier, since the final cycle lives for the protocols in the 

validation study have a noticeable bias that can be explained by calen-

dar ageing (Supplementary Discussion 4), we perform a simple additive 

bias correction for each of the final cycle lives beforehand to suppress 

any undesirable influence of this bias in interpreting the results.

We run the four ablation baselines for a varying number of sequential 

rounds. Since our validation space is relatively small (nine charging 

protocols, five batteries tested per protocol in our validation dataset), 

we run only one battery per round (that is, we assume a one-channel 

battery cycler). The baselines that use BO exploration–exploitation 

additionally require hyperparameters to be specified before beginning 

the experiment, as described in the Methods section ‘BO hyperparam-

eter optimization’. The best hyperparameters are chosen separately for 

each round based on the performance obtained on the physics-based 

simulator, averaged over 100 random seeds.

When an ablation baseline queries for the cycle life of a given charging 

protocol, the returned value corresponds to one of the five runs in our 

validation dataset, chosen via random sampling with replacement (that 

is, bootstrapped). The experimental time cost of this query is equal to 

100 cycles for ablation baselines that use early prediction and equals 

the full cycle life otherwise. Finally, to account for the randomness at 

the beginning of the experiment (that is, round 0 when every ablation 

baseline randomly selects a protocol), we report the performance of 

each ablation baseline averaged over a sequence of 2,000 randomly 

initialized experiments. To specify the y-axis of Fig. 4e, we assume that 

each full cycle (charging, discharging, resting) requires one hour of 

experimental testing.

Overpotential analysis

To determine the dependence of overpotential on current and SOC 

during charging (Extended Data Fig. 2e–f), we perform a pseudo-galva-

nostatic intermittent titration technique experiment on two minimally 

cycled batteries and two degraded batteries (80% of nominal capacity 

remaining). We probe currents ranging from 3.6C to 8C at 20%, 40%, 

60% and 80% SOC, mirroring the current and SOC values used in charg-

ing protocol design. In this experiment, we start at an initial SOC 20% 

lower than the target, for example, we start at 0% SOC to probe 20% 

SOC. We then charge at a given current rate, for example, 3.6C, until 

we reach 20% SOC. The cell rests for 1 h, and then the cell discharges at 

1C back to 0% SOC. We repeat this sequence for all current values, after 

which we charge the cell at 1C to the next initial SOC, for example, 20% 

SOC to probe 40% SOC, and repeat for each SOC of interest.

To compute the overpotential, we compare the voltage at the start 

and end of the 1-h rest periods. Nearly all of the potential drop occurs 

immediately (<100 ms) after the start of the rest period. Given the 

linear trends observed (implying ohmic-limited rate capability), we 

then perform a linear fit on each overpotential-current series. In these 

fits, the slope represents the ohmic resistance.
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Extended Data Fig. 1 | Illustrations of early outcome predictor and BO 

components of CLO. a, Illustration of early outcome prediction for two cells  

(A and B) using data from only the first 100 cycles. Two discharge capacity 

features are generated: the second-cycle discharge capacity, Qd,2, and the 

difference between the maximum and second-cycle discharge 

capacities, max(Qd) − Qd,2. Three voltage features are generated: the logarithm 

of the minimum, variance and the skewness of the difference in voltage curves 

between cycles 100 and 10. These five features are combined in a linear model 

to predict the final cycle life, or the number of cycles until the capacity falls 

below 0.88 A h. The weights and scalings of each feature are determined by 

training the model on a training set using the elastic net; the weights and 

scaling values are presented in Supplementary Table 1. See Severson et al.7 and 

Methods for additional details. b, Illustration of the BO principle. The desired 

output, cycle life, has a true functional dependence on charging protocol 

parameters (such as CC1). Here, we show a one-dimensional model (that is, just 

dependent on one parameter, CC1) for simplicity. By performing Gaussian 

process regression on the available data, we develop a probabilistic estimate of 

the true function; our goal is for the estimate to match the true function. The 

next data point selected is that which maximizes the upper confidence bound 

(UCB), which is selected by either high uncertainty (exploration) or high 

predicted value (exploitation). Once this point is selected (right panel), the 

next point selected is, again, that which maximizes the upper confidence 

bound.
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Extended Data Fig. 2 | Cell characterization. a, b, Voltage versus capacity 

during rate testing of A123 18650M1A cylindrical cells under charge (a) and 

discharge (b). The (dis)charge step not under investigation is cycled at 1C to 

isolate the rate of each step; for example, the charge rate test is performed with 

1-C discharge steps. We note that the discharge rate capability is much higher 

than that of charge. c, d, Battery surface temperature (‘can temperature’) 

versus capacity during rate testing under charge (c) and discharge (d). The can 

temperature is measured via a type T thermocouple secured with thermal 

epoxy. e, f, Overpotential as a function of SOC and C rate (see Methods 

section ‘Overpotential analysis’ for details of the measurement) for a minimally 

cycled cell (e) and an aged cell at 80% of nominal capacity (f). The trend lines are 

linear fits of the overpotential as a function of current at fixed SOC (excluding 

outliers). We note that both of the relationships are linear (indicating that the 

rate capability is ohmically limited) and that the SOC dependence is weak, 

particularly for the minimally cycled cell. The initial internal resistance, 

averaged over two cells and all four SOCs, is 33 mΩ.



Extended Data Fig. 3 | Additional optimization results. a, b, Mean of the 

absolute difference in CLO-estimated cycle lives with increasing rounds, 

expressed as both percentage change (a) and absolute change (b). These 

changes are relatively small beyond round 2, suggesting that the closed loop 

can perform well with even smaller time or battery budgets. c, Change in 

Kendall rank correlation coefficient with increasing rounds. From round 3 to 

round 4, the ranking of the top protocols shifts, but the cycle lives of these top 

protocols are similar. d, Distribution of CLO-estimated mean cycle lives after 

round 4. The mean and standard deviation are 943 cycles and 126 cycles, 

respectively. e, Correlation between CLO-estimated mean cycle lives and the 

sum of squared currents, a simplified measure of heat generation (P = I2R). This 

relationship suggests that minimizing heat generation, as opposed to avoiding 

lithium plating, may be the operative optimization strategy for these cells 

under these conditions. f, Standard deviation (σ4,i) versus mean (μ4,i) of the BO 

predictive distribution over cycle life after round 4. The standard deviation 

quantifies the uncertainty in the cycle life estimates and is generally low for 

protocols estimated to have high mean cycle life, since these protocols are 

probed more frequently. We start with a relatively wide, flat prior (standard 

deviation 164) and therefore the uncertainty intervals after four rounds are also 

wide. g, Mean ± standard deviation of the predictive distribution over cycle life 

after round 4 (μ4,i ± σ4,i) for all charging protocols, sorted by their rank after 

round 4. The legend indicates the number of repetitions for each protocol 

(excluding failed batteries).
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Means and upper/lower confidence bounds 

(µk,i ± βkσk,i) on cycle life per round k. Protocol indices on the x-axis are sorted 

by rank after round 4. The weighted interval around the estimated mean, 

βkσk,i = (β0εk)σk,i, weights the protocol-specific standard deviation at round k, 

σk,i (estimated by the Gaussian process model) with the exploration tradeoff 

hyperparameter at round k, βk. The upper and lower confidence bounds are 

plotted for all charging protocols before round 1 (a) and after rounds 1 (b), 2 (c), 

3 (d) and 4 (e). The predictive distributions for all charging protocols have 

identical means and standard deviations before the first round of testing. 

Because the standard deviations are weighted by βk = β0εk and ε = 0.5, the 

weighted confidence bounds rapidly decrease with increasing round number, 

favouring exploitation (examination of protocols with high means). The BO 

algorithm recommends the 48 protocols with the highest upper bounds (red 

points); the upper bounds are high either due to high uncertainty (exploration) 

or high means (exploitation). The algorithm rapidly shifts from exploration to 

exploitation as εk rapidly shrinks the upper bounds with increasing round 

index. We note that one protocol per round that should have been selected 

(that is, with a top-48 upper bound) was not selected owing to a processing 

error; instead, the protocol with the 49th-highest upper bound was selected.
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Extended Data Fig. 5 | Mean and standard deviation of the CLO-estimated 

predicted distribution over cycle lives after round 4. In this two-dimensional 

representation, mean estimated cycle life (colour scale) and standard deviation 

of cycle life (marker size) after round 4 are presented as a function of CC1, CC2 

and CC3 (the x axis, y axis and panels a–f, respectively). Panels a–f represent 

CC3 = 3.6C, 4.0C, 4.4C, 4.8C, 5.2C, 5.6C and 6.0C, respectively. CC4 is 

represented by the contour lines. Note that the protocols with the highest cycle 

lives generally have the smallest standard deviations, since these protocols 

have been tested repeatedly.



Extended Data Fig. 6 | Selected protocols for validation. The three protocols 

with the highest CLO-estimated mean cycle lives are shown in panels b, c and d. 

The protocols shown in panels a, f, g and h are approximations of previously 

proposed battery fast-charging protocols (Extended Data Table 1). The 

remaining two protocols, shown in panels e and i, were selected to obtain a 

representative sampling from the entire distribution of CLO-estimated cycle 

lives. The annotations on each panel represent the cycle lives of each protocol 

as estimated by CLO (‘CLO’), early outcome prediction from validation (‘Early 

prediction’), and the final cycle lives from validation (‘Final’). In the 

annotations, the errors represent the CLO-estimated standard deviation after 

round 4 (σk,4) for the CLO-estimated cycle lives and the 95% confidence intervals 

for the early-predicted and final cycle lives from validation (n = 5; n = 4 for the 

early predictions of 3.6C-6.0C-5.6C-4.755C) (a).
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Extended Data Fig. 7 | Validation ablation analysis. We perform pairwise 

comparisons of the cycle lives of the nine validation protocols, as estimated 

from three sources: closed-loop estimates after four rounds, early predictions 

from the validation experiment and final cycle lives from the validation 

experiment. Panels a–c compare closed-loop estimates to early predictions 

from validation, panels d–f compare final cycle lives from validation to early 

predictions from validation, and panels g–i compare final cycle lives from 

validation to closed-loop estimates. The first column (a, d and g) compares 

cycle lives averaged on a protocol basis; the second column (b, e and h) 

compares cycle lives on a battery (cell) basis; and the third column (c, f and i) 

compares the predicted ranking by cycle life via each method. Orange points 

represent the top three CLO-estimated protocols, blue points represent 

protocols inspired by the battery literature (Methods), and green points 

represent protocols selected to sample the distribution of estimated cycle 

lives. The error bars represent the 95% confidence intervals (n = 5; n = 4 for the 

early predictions of 3.6C-6.0C-5.6C-4.755C). The Pearson correlation 

coefficient and Kendall rank correlation coefficients are displayed for all 

relevant cycle life and ranking plots, respectively.



Extended Data Fig. 8 | Closed-loop performance under resource constraints. 

Comparison of the closed loop with and without the Bayesian optimization 

algorithm (that is, with and without the explore/exploit component) as a 

function of number of channels and number of rounds in the 224-protocol 

space, using the first-principles simulator as the ground-truth source for cycle 

lives. Early prediction is not included. Each point represents the mean of 100 

simulations; error bars represent the 95% confidence intervals (n = 100). Early 

prediction is not incorporated into these simulations. The complete closed 

loop (that is, with Bayesian optimization) consistently outperforms the closed 

loop without Bayesian optimization. Bayesian optimization offers the largest 

advantage when the number of channels is low relative to the number of 

protocols.
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Extended Data Fig. 9 | Hyperparameter sensitivity analysis on a cycle life 

simulator. The true cycle life of the best charging protocol as estimated by 

CLO, averaged over ten random seeds, is plotted as a function of the initial 

exploration constant (β0), the exploration decay factor (ε) and the kernel 

bandwidth (γ). The values of all other hyperparameters are consistent with the 

values indicated in the ‘BO hyperparameter optimization’ Methods section and 

in Supplementary Table 5. Overall, CLO achieves acceptable performance over 

a range of hyperparameter combinations; the highest-cycle-life protocols as 

estimated by the best and worst hyperparameter combinations differ by only 

60 cycles. In our real-world CLO experiment, the selected hyperparameters are 

β0 = 5.0, ε = 0.5 and γ = 1; this combination performed well on a variety of 

simulated parameter spaces and budgets.



Extended Data Table 1 | Selected charging protocols for validation

The columns represent the CLO-estimated mean cycle lives of each protocol, early predictions in the validation experiment and the final tested cycle lives. For the CLO-estimated cycle lives, 

the errors represent the CLO-estimated standard deviation after round 4 (σk,4). For the early-predicted and final cycle lives from validation, the errors represent 95% confidence intervals (n = 5; 

but n = 4 for the early predictions of 3.6C-6.0C-5.6C-4.755C). The two protocols without a source were selected to obtain a representative sampling from the distribution of CLO-estimated cycle 

lives. Literature fast-charging protocols are from refs. 39–44.
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