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1. Introduction and Motivatiom

This paper presents pﬂlin:!.nry results which, in our opinion, repre-
sent a first necessary step in the systematic comouter aided design of
reliable control systems for future aircraft. It is widely recognized that
advances in active control aircraft and control configured vehicles will
require the autocmatic control of several actuators so as to be able to fly
future aircraft characterized by reduced stability margins and additional
flexure modes.

As a starting point for our motivation we must postulate that the
design of future st hility augmentation systems will have tc be a multi-
variable design problem. As such, traditional single~input-single-output
system design tools based on classical control theory caraot be effectively
used, especially in a computer aided design context. Since modern control
theory provides a conceptual theore:ical and algorithmic tool for design,
especially in the Linear-Quadratic-Gaussian (LQG) context (see Athans (1]
for example), it deserves a special look as a starting point in the investi-
gation.

In spite of the tremendous explosion of reported results in LQG

multivariable design, the robustness properties have been neglected.

Experience has shown that LQG designs "work" very well if the mathematical

[ Lo "1 o A
models upon which the design is based are somewhat accurate. There are i /

several sensitivity studies involving "small parameter perturbations” it

Y Sl

Jusitiibatien

associated with the LOG problem. We submit, however, that the general
problem of sensitivity and even stability of muliivariable LQG designs "... s

under large parametric and structural changes is an open research area. 95

It is useful to reflect upon the basic methodology in classical ﬂ ;
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servomechanism theory which dealt with such large parameter chamges. The
mn-dthlty-dmntymm“wu&o
dafinition of gain and phase margins. If a closed-loocp system was charac-
'mummdmm.&-

(a) reascnable changes in the parameters of the open loop transfer

functions

(b) changes in the loop gains dus, for example, to saturation and

other nonlinearities
ocould be accomodated with guaramteed stability and at the price of somewhat
degraded performance.

Although LOG designs are time-domain oriented nonetheless their
frequency-domain interpretations are important, although not universally
appreciated. For example, for the case of single imput single output
WQtu(W)MMMMﬂMHIMM
that ILQ-optimal designs are characterized by

(1) an infinite gain margin property

(i1) a phase margin of at least 60 degrees.

Such results are valusble because it can be readily appreciated that at least
in the single-input-single-output case, modern comntrol theory designs tend
mm-mmdm.umwmcmummmu
of gain and phase margin,

. Advances in the multi-input-msulti-output case however have been
mmnﬂan&outdnlyhmwturiwlatﬂhouﬂnokhuwm.

Multivariable system design is extremely cosplex®. To a certain extent

* Bven the notion of what constitutes a “zero” of a wwitivariable transfer
'-tdxvunotfuumhulutix racently.

e B L ml ke s i i ““mj.-_.....-. - . R T R R R S P T e i T
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the numerical solution of L0-optima) is very easy. However, fundamantal

wdsrstanding of the structural interdependencies and its nwteractioms with
the weighting matrices is mot a trivial matter. We believe that such funde-
santal understanding is crucial for robust designs as well as for reliable
designs that involwve a certain Jdegree of redundancy in comtrols and semsors.

The recent S.M. thesis by Wong (3] represents a preliminary yet posi- j
tive comtribution in this area. In fact the technical portion of the paper
represents a slight modification of some of the results reported in [3]. In
particular we focus our aitemtion on the stability properties of closed loop
systems designed on the basis of LO-optimal techniques when the system
matrices and loop qains undergo large variations.

The main contributions reported in this paper are the eventual results
of generalizing the concepts of gain sargin and of performing large-pertur-
bation sensitivity analysis for multivariable linear systems dosigned via
the LQ approach.

¥We warn the reader that much additional theoretical and applied
research is needed before the implications of these theoretical results
can (a) be fullr understood and (b) translated into systematic “cookbook"
procedures that have the same value as the conventional results in classical .
servosech@aisa design.

This paper is organized as follows: in Section 2 we present an
explicit parametrization of a subclass of linear constant feedback maps
that never destabilize an originally open-loop stable system, and establish
some of its properties. In section 3, we apply this construct to cbtain
several new closed-loop structural stability characteriszations of multi-input

1Q-optimal feedback maps. We conclude in section 4 with a krief discussion

S N
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dmwdﬁol—lhdﬂ-mhmm‘
Seadhack design.

pige ee.
1) The limser tims-isveriaat systea

i(t) = A z(t) + B ult)
8(t) = x(e)

where z(c) ¢ ** 5(*) = state vector
uie) ¢ ¥ u(*) = cemtzol wector
s(t) e & 8(:) = eutput vector
ad Ac ™
3 c ™™
¥ c ™

will be denoted by I(A, B, §'). Where X' is irreleveat to the discussiom,
we will shorten the motatics to L(A, B), and vhere the choice A, B is clear
from the comtast, we will just wee I.

If the matrix A is stable (i.e. all eigeavalues of A have strictly
m-mlml.--&nmuz(y;,f)--mm

2) R(x) = range space of K
W(K) = sullspece (hecmel) of X
M(K) = ramk of K
3) clvqa.me-nbg,!’).
2, 3) § controllable subepace of the pair (a, B)
drm) + 2@ + ... + 2" )

— 3 " . .
PP T T m— M
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lq'.y‘ sbepace of the pair (N°, A)
e -
N waly
4 12 g ¢ ¥ ig pesitive semidefinite, we will write
222
If  is positive definite, we will writs

g>o.




Given the stable systam I(A, B), let
s 2 (" ¢ ™| (a + 36" 1o ctabia)

i.0. S(I) is the set of all fesdback maps that never destabilise am originally
epen-loop stable oyster, whese

ste) B g%xee)

Tdeally, one would like to be able to emplicitly paramstrise S(I),
but as this is a wll-knowm intractable problem, our strategy here is to
lock for a sisple perametrisstiom of a (hopefully) sufficiemtly gemeral

subest of s(I).
W begia by first recalling scme standard lyapumev-type results:

Lo 1 (Womham)
(1) If A is stable, them the ILyupumov equation
2asarege0
with © > 0 has & wnigue solwtion ? > O.

If in addition (@2, A) 1s chesrveble, them ? > 0.

t12:) 129> 0 ame (@Y%, &) is cheerveble (detectaniv), then for all

220, 2>0maforall 3, 1, thopair (Jpererar,a+nrd

i e e e e b i



for (L), see (4], pp. 290
for (11), ses (4], pp. 290
for (114), sees (4], pp. 82,

To proceed, the follewing definitien will be wseful:

Definition 2
Por amy m_a_, let
e & (x>0/xa+a’x<0)
w'e 8 (x>oxasax <o)

Bamark: LP(A) is in gemeral a prgper subset of the set of all positive-
semidefinits matrices of dimsmsien n.

Srmple
Suppose that
A, o
“'-.[o 1,]"1“,. A <0
Toen

o - {[s 'n]lsv e [ ]'L}

a RI| K20
‘1 K2l

ote that

. | 22RO 20, KK, 2 K,

+l,)

-in-r. 21, vith eguality if2 A = A,.
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1) U(th“-nho.gl.!.tnﬂyhun
“ouﬁcng for alla, 20, a, >0

11) ;cu&)nn&lwgcuﬁoh)

1) K €LP(A) implics K € 122 ¢ B(S - UB'D)

L4
Straightforward.

We are mow ready to istroduce ouwr first czwcial result:

Iomma 3

Let A be stable.

Then (A + (N - K is stable for all K € LP(A) and for all N > 0,
B = <6 such that RN C RGY.

12 X ¢ 12° (), them the cemdition R(N) C R(D) can be amitted.

- Ppnet

1at

gf-ma+a’

Since X € LP(A), we have @ > O, and A stable implies (g2, ) ts
always dstectable.

o (/Q+ENRE A+ (- 0K is chesrvabla, vhich ispliss A + (F-WK

- ——— - e 2 T

BT — e T——




is stahle by Lemms 1 (11).
Otherwise, assume R(W) C R(N)
Which isplies that there exists ¥ such that N = V M or that
®-WE= (Y- DNEK
oy dotining 3 & (v - D'/
f.!m

2y
in Lesma 1 (1i1), we have that
(VETIXNEK, A+ (- WK is dstectable.
By Lemma 1 (i1), we therefore have (A + (N - M)K) stable.

Q.E.D.

Bemark
A special case cf Lemma 3 was established by Barnett and Storey

in [S).

By specializing Lemma 3, we immediatyly obtain an explicit parametri-.

sation of a subclass of stabilizing feadback. PFirst we introduce:
Defiaition 3
Given the stable system I(A, B), let

oA ™| - - sx 55", 120
-uaa-;:n’ty or else
K ¢ 12() with R(8) C R(L)}

it ity

i Y e . D P el s P —— L Py
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Iheorem 1

(1)

(11)

i s'

(1)

(11)

Given the stable system L(A, B), then

g’ € 8,(I) implies (A + _B_g’) is stable

4
[.—tg.—ag>£ on g e o (aom gty

g>ouunchthnttn

-

+Qe=Oanag

l’l

Iat Q > 0 be such that

KA+AK+Q=0 )

where g" é s - _)_"5 e sluz)
o0
which implies 5_-f o) "(255555+9_).‘§-*!E"

(" aTe_ ac ,‘ A+B6N ¢t _(A+BGHE
m_’ e~ Qe—dt = @ il T T i@ T de T TG
0

ity e S o S b O U g s
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Bemark
It can be easily shown that all the eigenvalues of the feedback term
B(S - 5)!’5 have non-positive real parts (the term -B L g K has only real
eigenvalues while B S__B_TE has only pure imaginary (conjugate pairs) eigen=-
values or zero eigenvalues). This obsarvation, and the content of Theorem 1(ii),
makes it convenient to interpret Sl(t) as a natural generalization of the

concept of ‘negative’ feedback to the multivariable and multi-input case.
The next two corollaries are easy consequences of Theorem 1.

Corol 1.1
Let L(A, B) be a system with a single input, i.e. let B be a column

(nxl) vector b. If g:. cees g; € s,(Z(a, b)), then

g aiq: € sltt) for all a, >0, i =1, 00y 3

for some admissible r,, K

lachg‘:l.lotthofonrb ' &

P 35
s0 arb -b’( ar,Kk,)
1’-1 2t M1t

But from Lemma 2(i), 5‘ € LP(h} implies g alxi& € LP(A) for all

a.r, >0 hence ,guig:eu(y for all a, > 0.
=

11 i |
Q.E.D.
Corollary 1.2
Suppose there exists L > 0 such thnt!&!‘reu'(hr).
M(A-ggf( + N)) is stable for all K > 0 and N = -N such

PP
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12 BLB ¢ Lr'(A) actually, then the condition R(K) D R(W) can be

~omitted.
Zxoof

Immediate from ‘taking the transpose' in Lesma 3.
QO'.D.

Theorem 1 has illustrated the importance of LP(A). It is therefore

useful to have an alternative characterization of LP(A):

tion 1
LP(A) is g-:lnvuint. i.e. for all K € LP(A)

ATR(R) C R(R)

Conversely, x € W(K) implies x'K x = O which implies f.lfoﬁ"x’a-o
or Netx =0 for all t € R , le. x €N, A). B
To complete the proof, note that
RD) = R = R
-, nt

-2, ®

= cantrollable subspace of (A, H).

3 .y@wm
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mmmmmog;_’um-uuynf-mmm.

Bemark: The significance of Proposition 1 is that it provides a systematic
means for gemerating all mesbers of LP(A). Por example, if A har distinct,
real eigenvalues, than ¢very K € LP(A) is of the form

KePup

where the rows of P are left eigemvectors of A, i.e.,
BPA=AP A~diagonal (A, ...p Q)

and N = diagomal (-1. coes -‘).1‘3_0,1-1. cooy Be

Thus, all mesbers of LP(A) cam be trivially gemerated once P is
kmown .

mmuslmu-ﬂmm»wmwm
stability, it is of course mot necessary, i.e. §,(I) is a strictly proper
sabeet of S(I). Imtuitively, .¢ the open-loop system is stable ‘enmough’
to begin with, it can tolerate a osmmtain amount of ‘positive’ feedbeck with-
out leading to closed-loop instability. In othex words, the poles of the
open-loop systsm can be shifted to the right by fesdback without destroying
~stability o long as none of them 7ot shifted imto the closed right-half
plase. By allowing such adlitiomal nontestabilising feedback, tharsfore,
-o‘thhﬂnb'“'l‘m. -nm.-hn:

Defiaition ¢
Given the stable systam L(A, B) -a-g?_g,;._cF. let
we, w2 E2oxasaze w0
e, wiaoozas e manE<9
R T Ty L e B T TR 1 AT TIam———
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Definition 5
Given the stable system L(A, B), let
L,

5,(D) ¢ {_G_! e ™" = (L+5)0°K, L= s=-5,

K€ 1’ (Z, L) or else K € LP(L, L)

with R(L + §) C R(L - L}

Given the stable system L(A, B), then
G € 8,(I) impliss (A + B G') is stable.

I

The proof follows by a straightforward extension of the proof of
lesma 3 and Theorem 1, and hence is omitted.

Bemark: It can be easily seen that Theorem 1 is just a speciul case of
Theores 2 (with L 0 and L < 0, 5,(I) will be reduced to 5, (I)). Note
that in the gensral case covercd by Theorem 2, N0 definiteness assumption
ic made of L, and thus warious ‘mixtures’ of ‘positive’ and ‘negative’
feedbacks ars &llowad.

The next proposition provides further clarificatioa on cur parametri-
sation scheme. First define:
r,® & (&7 ¢ #™|c" = p 5"x, b ¢ ™ arvitrary,
Ec " and K > 0)

r,® # (& ¢ ™=’ < migh).
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Froposition 2

e Nr,e -4

P U@ -

1.0. any fesdback map G' € F™™ is either in the set 7 (3) or else 7,(B).

Froof
We need only to show that

r,® = {c" ¢ ®|mic"®) - x(ch)

£

g

i

8

|=

v

=)

i
=y
g

.
%

Q.E.D,

We now relate the comtamt of Proposition 2 to Theorem 2. Cbesrve
first that szmgrlg.-‘t-um-ﬂ-m:o
capture any non-destabilizing feslback mep € P,(B). That S(D) NP (B) # ¢
is Gsmonstrated by the following trivial emsmple:

T



T PAPRRRIT " "1UTE =8 AR n . v e A " T ——— - Tl ————— T, A g g g W s s G N g, A Tl WP A T T

T b L

=16~
11 1

&nd t;d-gf)-[
o A

]umn.
2

Wote, however, that if B is of full ramk, then the set 7,(B) is WOT
p&:cn!".
) The more interesting quastiom, ‘is 32(!) generic (i.e. dense) in
S(E) NP, (B)?* is st present wnsolved.

Our results so far have been on systsms I(A, B) which are open-loop
stable; the question next arises as *© what the situation would be for
systams which are NOT opsn-loop stable (i.e. A has umstable poles). For A
mlzcudmmmmmumwm-.
One is reminded, howsver, of the algebraic Riccati equations; indeed, we
have the following imterpretatiom of the traditiomal LQ-optimization
problem:

Mfipition ¢
Given (A, B) a stabilissble pair, let
0e, » 2 (x20K-x0, 5 & &) for come 2> 0 aad scme 8
such that (', A) is a detectsble pair}
whers K(A, 3, B, N') demotes the wmique positive smmidefinite solutiom to
the algebraic Ricoati eguatiom:

EA+AE-EBRBE+RN =0

Tor R fiad, v» will denste the coxzespondiag set as IQQ, B D).

Sefingiton |
o® b e ™ - L 200
Ee 100 b B)

.
s, 8 TR B Ly —— M
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Proposition 3
Given any stabilizable system I(A, B),

G € 5,(I) implies (A + B G") is stable.

Bamark

The above proprsition merely susmarizes the well-known 'standard’
results of LQ-optimal feedback theory (see [1], [4]). However, the inter-
pretation here of the LQ-optimal feedbuck class (83(2)) as a parametrization

of a subclass of stabilizing feedback is interesting.
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3. Structural stability characterisstion of Linear Quadratic (LQ) optimal
A ]

In this section we show how the parametrisation scheme developed

in the previous section can be applied to obain characterisation of the
closed-loop structural stability properties of systems under LQ-optimal
fesdback. MNore precisely, we establish an explicit parametrisation of a
general class of structural perturbatiomns in the control feedback gains
s wall as in the control actuation matrix (B) that leave the closed-loop |

system stabilised. These new results, we believe, are the natural general-
isaticns of some earlier results of Anderson and Moore (2.

We begin by first recalling from Lesma 2(iii) that, for A stable,
K € LP(A) alvays implies K € LP(A - B L B'K); howover, for A unstable and
K> 0 such that (A - BL B'K) is stable, it need NOT be true that

;cng-gg_n_'g. The following example underscores this unfortumate

e ]

Then Q-ngn‘u-[ is stable, but

Ecl0e p M=o Ecwa -3 KD

PR TR W g pa———— b AL asna



Proof
Immediate from the Riccati equation. (Q.E.D,

In other words, the above unfortunate stat: of affairs cannot
occur if K is an LQ-solutiom.

¥We are now ready to state our first main result of *he section:

Theoren 3 (Infinite Gain Margin Property)
Let K € 1Q(A, By B

Then

(A - (B(S + L)B® + B(M + W3 IK) is stable for all

b |

LXK, 020, 8=-8, R(E CRE=-E)
e, RGD C RGO
3 arbitrary
Proof
W have K € LP(A - B X 'B'K), 80 by Lemma 3,
A-32"2"E+ (V- WK is stable for a1i W20, ¥ = -V
such that R(V) C ROW.
Take wenL-RMR BN
may-nsp +Buf
and we are dome.
Q.E.D. .
Bemack

vor § 3 0, ™heorem 3 is a gemeralisation of the 'infinite gcin margin'
property of LO-optizal feedback for single-input systems first noted by
Andarece and Moore (11, vho showsd that the fesdback gain vector §' = - = b'K

ean be mitiplied by any scalar @ > 1 withowt destroying stability) the
.. .,. " g . - i PGy »~ . . < i
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proof they used involves classical Wyquist techniques. m: not only
generalises this property to multi-input systems, but allows more compli-
ocated alterations of the feedback gain vectors; moreover, it makes tlie proof
of this property such more transperent.

ek

" -Por § # 0, Theorem 3 allows for changes in the B matrix itself
without destroying stability. Ome useful interpretation is the following.

Sugpose that the optimal feedback gain matrix has been computed for

& nominal B, but that the actual value of B during system operation is
changed to B = B + B,. Then the feedback term beccmes (B.X B 'K +
3,273 ", s long as B, =B (4 + JOR for scme ¥ = 4", M > O, Theoren 3
will guaranfee us that the systam will remain stabla. (For example,

&-Q.ou>0). More complicated cases are allowed.

g |

Alternatively, the case B ¥ 0 can be interpreted as allowing for
the possibility of adding extra comtrollers, and using these extra feedbacks
o ‘fine-tane' the closed-loop beliavior of the origimal system. (A more

. systematic exploitation of this idea will be dealt with in a future publi-

option; see also [3]).

| Theorem 3 has dealt with the case vhen the ‘megative’ feefback gains,
ots. aue sliewnd o inevsoss in Eagaitnie; the canverve situstien, vhes
the 'megat ive' feadheck gaime are redeced is megmitwde (or when additiomel

W'M-n“ is emmmined in the asmt proposition:

adi % Al aed Rl va cabeiis Both men ad i o 4 g o
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Theorem 4 (Gain Reduction and Robustness Property)

Let K > O be the Riccati solution to the LQO-problem (A, B, R, Q)

where R > 0 and (Qlﬂ. A) detectable. Then

(1)  (A-BM+ NIK is stable
1

=

for all M > 0 such that M > = R

N= N
1/2
(11) If (", A) is actually observable, then
(A -B(M+NBK+ 5_'1(_@ - _f_i)) is stable

where M, N are as above, and

Q=0 is such that 9 <29, R(1 9 - Q) Drig
and!l--u is such that n(-g Q)Dl(l).

Proot
W el fr(a-py g TG, B
Then we have K € LP(L ;
Theorem 2,

(. + B(@ - M B'K) is stable for all < 3

(11) ILet

T
in
+*
o
L |
o

Since {g"”,ywm: g,x‘-u-u,-onmm

+K (ﬁ-u-l)l * (3‘-55"'(&0!))'_:_-&_:_!(2_!_-3_ )g__t_
+Q -2 =
Hence, mmmmﬂm}ggﬁ, l(*g-ﬁ))n(g+i)

o

it can be shown that
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(Vigrad ¢ xnm- e A, ¢ K@+ @) 10 chesrveble |

Thos by Lesma 1(141), B + K'1(@ + @) is stanle.
' Q.B.D.
Remark
Theorem 4(1) is a generalization of the known ‘gaia reductiom
Solerance' property of LQ-optimal feedback. This interpretatiom is most
transparest in the special case yhes X' = diag. (a,, ..., &) amd
M=dlog. (A, ..., a), N Z0. Then the original individual fesdback

. SR e .

loops are of the form

!1--1*!:5 im]}], .cco @

The theorem states that, {u this special cass, the systsm remaiss
stable if the fesdback gains are reZesed to

IR
ulqa-:l»}n’.

Nore complicated cases are of course allowed.

By interpreting the additicnal term K (Q + i) as a model pertur- 1

MHgdmw—mm;,nmmMGun to pex~
form finite perturbation semsitivity smalysis.
The following simple emmmple illmstrates the wsefulsess of this




et}

Then we cbtaia the algsbzaic Riccati sclution as

SN

and the optimal fesfback gain g*® = -2(1 1)

———— L 'u”’]
6"y &
where Y ¢ R, " 'u] < [.s 1]
. L6 & 8
we are assured by Theozem 4(ii) that
[Jﬂl o T Y
n,-y 28,
——
aca

is stable for all & > 3
Consider the following specisl cases:

7-5’, .l..l-.

_[.s n”] sapy’ stable for all @ > § and B, owch thet
Q-Iu)’*tl.!-l-gtlncxog

] ~d
S _———

a+a

—— e E———




{b) Y-’lt-o’
We have

3¢ 0
“ .']-pagr" stable for all a > +
0 -2+
and B,, B, such that
10 B <.5 8, <3
) (S-8)03-8) >1

a—ull-o.tnmmummml,<1.
Other more general cases are of course allowed.
The sbove example thus shows that the combined effect of feedback
eaiz reduction sgnd perturbation or umcertaisty of the opsm—loop system
. paramsters (poles sad coupling tesms) cem be tolerated by a limsar quadratic

dosign without leading to cl' wd-leop imstability. This rchustaess property
of the 10-Sesfback dssign Gsserves mare stteatica.

B T T T TR TR AWORmRrmm R o
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4. Comcluding Remarks

Since further applications of the parametrization results established
in this paper to reliable stabilization synthesis and decentralized stabili-
sation coordination will be made in a future publication, we will reserve a
fuller discussion of the implications of our approach until then. At this
point, however, we would like to point ocut an important implication for
practical design that is immediate: the ability to perform feedback 'loop~
shaping' analysis.

In any realistic synthesis problem (keeping a system stabilized,
localising particular distrubances, etc.) there is usually a large number
of feasible solutions. While the use of cost-criterion optimization (e.g.
10) in theory allows the designer to pick exactly one such solutiom, in
peactice, the difficulties of judging or fully incorporating the relevant
cost comsiderations and their trade-offs as well as the often gross model
m*mmuudmm.ndthnommnau.
asceseitate further semsitivity amalysis or trial-and-error ‘'hedging' about
the nomisal solution. It iz therefore wery important in the computer-aided
Gesign context that the 'feasible solution space’ structurs be known in
ssme details to facilitate and guide the conduct of iterative search. In
this regaxd, a major merit of a 'classical’ design technique like root-locus
is thet it provides an esplicit fumccional dependence of the closed-loop
systen structures (distribution of poles and sercs) on the comtrol lt:nctuin
(Seedback gain). Nowsver, such classical approaches become totally intractable
when there is a multiple mmber of comtrollers, while ‘modern’ 'state-space’
1imser fesdback design techmiques like ‘pole-placemsnt’ algorithm and
‘Qyatio-fesdback’ dosign suffer thy sericus drawbeck of providing little
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structural information about the solutions they generate, and morsover such

e —————

tachnigques are guided more by mathematical convenience than by physical
interpretation.

Prom this perspective, the parametrization results established
earlier appear to be promising in providing the basis for a new iterative
design algoritim that will overcome the last-mentioned drawbacks.

Several years ago Rosenbrock (6] suggested a fregquency-domain multi-
loop feedback desian technique (the 'inverse Wyquist array' method) which
he motivated also as an attempt to overcome some of the above-mentioned
drawbacks. His approach is in contrast with ours, which is a ‘time-domain’
approach. It will be interesting to investigate the connection, if any,
between the two approaches.
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