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Abs t rac t 

In this paper we study queueing networks which allow multiple changes at a given 

time. The model has a natural application to discrete-time queueing networks but also 

describes queueing networks in continuous time. 

It is shown that product-form results which are known to hold when there are single 

changes at a given instant remain valid when multiple changes are allowed. 
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1. In t roduc t ion 

A general model for queueing networks with product-form Solutions was introduced by 

Jackson (1957). He considered an open network of N queues in which customers arrive from 

outside the system to queue i in a Poisson stream, undergo an exponentially distributed 

service time and then are routed to another queue j with probability pij or leave the system 

with probability 1 — ]Ci=i Phj- ^ e showed that the steady-state occupancy distribution 

of the queueing network factorizes into a product form over the queues. For brevity'we 

refer to a network as having product form in such a situation. Jackson (1963) extended his 

model, whilst retaining product form, by allowing the arrival streams to be dependent on 

the total number of customers in the queue and the service rates to be arbitrary functions 

of the queue size. 

Since Jackson's papers many other authors have discussed stochastic networks with 

product form. Gordon and Newell (1967) showed that a closed network of JV queues and 

routeing rules similar to Jackson's also possesses product form. Whittle (1968) showed that 

product form exists in a migration process in which transition of single individuals from 

colony j to colony k takes place with intensity dependent on the number of individuals in 

colony j . Baskett, Chandy, Muntz and Palacios (1975) looked at open, closed and mixed 

networks of queues and showed that provided the service discipline at queue i is one of 

three types (processor sharing, infinite server or last-come first-served preemptive resumé) 

the service time distribution at that queue can be generally distributed and the network 

will still retain product form. 

This work was put in a more general context by Kelly (1975a), (1975b), (1976) and 

(1979). Kelly (1975a) introduced the concept of the symmetrie queue as a queue in which 

the proportion of service given to a particulax position when there are n customers in the 

queue is equal to the probability that a customer arriving to find n — 1 customers already 
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in the queue will be allocated to that position. In a further paper (1975b) he analysed a 

network in which the rate of service at node i is of the form 

(1 1) * ( " ~ e*) 
( } Mn) ' 

where the state of the network is given by n and ei is a vector with a one in the ith position 

and zeros everywhere else, and showed that it has product form. Generally distributed 

service times were introduced by Kelly (1976) where he showed that the service time at 

a symmetrie queue can be generally distributed without affecting the product form of the 

steady state distribution. Queues with any of the three service disciplines of Baskett, 

Chandy, Muntz and Palacios mentioned above are examples of Kelly's symmetrie queues 

as are queues with the WEIRDP discipline of Chandy and Martin (1983). Queues with 

the Last Batch Processor Sharing disciplines of Noetzel (1979) can also be represented as 

symmetrie queues. 

Chandy, Howard and Towsley (1977) looked at a network of queues each of which 

is a generalization of a symmetrie queue. They set up global balance equations with the 

state space supplemented by residual service times and separate these into partial balance 

equations which are satisfied by product form solutions. 

Chandy and Martin (1983) considered a queue partitioned into distinguished classes 

where the rate at which customers at distinguished class i are served when the occupancy 

of the whole queue is given by n can be written in the form (1.1) and where the proportion 

of service allocated to position j of distinguished class i when the state is n is equal to 

the probability that a customer arriving to distinguished class i to find a state of n — e* is 

then allocated to position j . 

. By considering each distinguished class as a node in a network of queues the above 

conditions can be interpreted as a generalization of the notion of a symmetrie queue so that 

the arrival rates and service allocations are functions of the complete state of the network 



ra ther than just the state of the relevant queue. Chandy and Martin 's results then can be 

interpreted as showing that these conditions are necessary and sufficiënt for a network of 

queues to have product form. 

Hordijk and van Dijk (1981), (1983a) and (1983b) discussed product form models of 

queues in which the routeing of customers can be state dependent in sorne way. Using 

an associated adjoint process as the key to thëir analysis they considered networks with 

blocking and showed that there is a trade-off between the generality of the blocking function 

and the degree of balance required from the routeing matr ix for a network to have product 

form. 

In all of the above models only one transition is assumed to take place at a time. 

This may be (although not always) a natural assumption to make if we are thinking in 

continuous time. However in models of discrete-time queueing networks it is natural to 

assume tha t multiple transitions can occur simultaneously. . 

Models of discrete t ime queues have been discussed by Daduna and Schassberger 

(1983), Walrand (1983) and Pujolle, Claude, and Seret (1986). Each of these authors 

adopted rules for handling the simultaneous occurrence of multiple transitions. Daduna 

and Schassberger considered a network of queues with (discrete) phase type occupation 

times in which the only simultaneous transitions allowed were the incremehtation of phases. 

Pujolle et al. looked first at a single queue and then at a tandem system of queues in which 

only one simultaneous arrival and depaxture were allowed. Walrand analysed a network of 

queues in which the probability that a queue with i customers present will serve j of them 

in a t ime slot is of the form 

(1-2) S(i,j) = ^a(ï)...a(i-j + l) 
3-

where a(0) = 0, a(j) > 0 for j > 0 and c(i) is a normalizing constant. 
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In this paper we discuss closed networks of queues which are generalisations of the 

product form networks in the literature in two ways; 

(a) different size batches of customers can depart from several queues simultaneously, and 

(b) the rate at which batches are worked on has a form similar to (1.1), but the arbi-

trary function in the numerator can be different from the arbitrary function in the 

denominator. 

The net effect of this structure is to allow multiple changes of a form more general 

than the discrete-time changes discussed by the authors above. 

In Section 2 we discuss closed networks in which the individual customers are labelled. 

Section 3 discusses how the results of section 2 can be applied to derive results for closed 

networks in which the individual customers are not distinguished. In section 4 we look 

at networks in which customers occupy labelled positions at each queue. The probability 

that a given pattem of customers leave their current queue can now depend on the type 

of customer in each position. 

2. A closed network wïth multiple transitïons 

Consider a closed qüeueing network which has nodes 1 , . . . , JV and customers labelled 

1 , . . . , S. The states of the network are defined by vectors s = ( s j , . . . , s s ) where Sj € 

{ 1 , . . . , N} is the node occupied by customer j . 

Changes in the network are assumed to happen according to the following mechanism. 

There is a function q(s, T) which describes the propensity for a set of customers with labels 

given by T C { 1 , . . . , S} to change nodes when the state is s. In continuous time ^(s, T) 

is the rate that a pattern of customers given by T simultaneously make a transfer, while 
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in discrete time q(s,T) denotes the probability that the customers in T make a transfer 

in the same time interval. 

Conditional on it changing nodes, the probability that customer j is routed from Sj 

to another node aj is given by Pj{sj,a,j) independently of the state of the network or 

which other customers are in T. Assume that ^ f e = 1 Pj(i, k) = 1 for all j — 1 , . . . , S and 

i = 1 , . . . JV and describe by s\Tc the restriction of s to positions in T c = { 1 , . . . , S}\T. 

Then the probability conditional on T that the state changes from s to a is 

(2.1) p(s,a|T)= Jlpjisj,^) 

for any vectors s and a with s |T c = a|Tc. 

Theorem 1 (labelled customers) 

Assume that the set of states s which can be reached according to the routeing rules 

of the network is irreducible. Suppose furthermore that for all subsets T of { 1 , . . . , 5} 

(,2) * . r > - ^ . 

where $(.) and \&(.) are arbitrary given functions. Then the equilibrium distribution of 

the queueing network is 

s 
(2.3) <-)=-C*(s)IIv;(*;). 

where C is a normalizing constant and for j = 1 , . . . , S the yj(i) satisfy 

s 
(2.4) yj(i) = Y, yi(*)Pi(fc, 0 (i < i < S). 

k=l 

Proof 
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Firstly consider a family of Markov Chains on N states, the one step transition matrix 

for chain j being \pj(k, i)]. Each chain is finite and irreducible and so positive recurrent. 

Relation (2.4) represents the global balance equations for chain j and so possesses a positive 

solution, unique to a scale factor. 

Returning to the original sysytem we show that, for an initial distribution given by 

(2.3), the probability of moving into state s due to changes in the positions given by T is 

balanced by the probability of moving out of state s due to changes in the positions given 

by T . This balance is embodied in equation (2.5) below. On summation over all T, any 

distribution which satisfies (2.5) for all T will also satisfy the global balance equations for 

the network and hence be its unique stationary distribution. 

The balance equations are 

(2.5) 7r(s)g(s,T) = ^7 r ( a ) 9 ( a ,T )p ( ( a , S | T ) VT, 
a 

where the summation is over all states a derivable from s by changing the entries in 

positions given by T. Substitution from (2.1), (2.2), (2.3) and use of the fact that s|Tc = 

a |T c reduces the right hand side of equation (2.5) to 

nw( f l i ) f t ' ( f l i» 5 i ) -(2.6) C 5 > ( S | T C ) 
a 

From (2.4), (2.2) and (2.3), this is equal to the left hand side of (2.5). o 

Remark 

Since the function \&(.) does not appear in the equihbrium solution (2.3), varying it 

does not vary the equilibrium distribution except possibly for the normalizing constant C. 

We may also choose \I/(.) to permit only certain sorts of transition sets T. Thus if the 

function ^ ( s |T c ) is put equal to 0 for all T containing more than (say) / elements, the rate 
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of transfers of more than l customers will be zero. The Standard Jackson network results 

follow from Theorem 1 by setting / = 1. 

Consequently, by varying the choice of $(.), classes of networks with considerably 

different structures can be shown to have the same form of equilibrium distribution. 

We have thus two generalizations to the queueing network literature. The first is the 

use of batch services and the second the use of an arbitraxy function ^( . ) in the numerator 

of (2.2) which is different from the arbitrary function $(.) in the denominator. There is a 

wide class of closed queueing network models for which the probability of a given pattern 

of transfers can be written in this form. The problem of analysing such networks reduces 

to the problem of flnding suitable functions $•(.) and $(.) to reflect the physical situation. 

The equilibrium distribution is then given by (2.3) with the appropriate function $(.) 

inserted. 

Example 1 (A discrete-time network in which customers move indepen-

dently) 

Consider a discrete-time queueing network in which changes to the network can happen 

only at fixed time points. Assume that the decision of a particular customer j to change 

nodes at any time point is made independently of the current state and of which other 

customers make a transfer. Denote the probability that customer j decides to change 

nodes by qj > 0 for j = 1,..., S. Then the probability that the set of customers changing 

nodes is given by T is 

q(s,T)=l[qjl[[[l-qj] 

To analyse this network we need only to find functions $(.) and \&(.) for which (2.2) holds. 
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This can be achieved with the choice 

and 

j£Tc ^ 

3. Networks where individual customers are not labelled 

In our analysis so f ar we have labelled and distinguished between individual customers. 

However in practice it is more likely that sets of customers will be essentially identical. 

For example the set of customers { 1 , . . . , S} may be partitioned into sets K.i, (1 < l < L) 

of customers of identical type. In example 1 we considered each customer to be in its own 

set in the partition. The other extreme has all customers in just one set. 

In most models with customer types it is impossible to distinguish between customers 

of identical type. Thus many states s are physically indistinguishable. In such models it is 

often reasonable to postulate that service and routeing characteristics depend only on the 

number of customers of each type present at each node and the number of customers of 

each type undergoing transfer, rather than on the actual labels of the customers. Making 

these assumptions leads us to the following result. 

Let the incidence matrix n(s) = (rii}i(s)) for 1 < i < N and 1 < / < L give the number 

of £/-type customers at node i when the process has state s. It is conventional to denote 

the state by n rather than s. Theorem 1 specializes as follows. 

Theorem 2 (unlabelled customers) 

In the situation of Theorem 1 let $(s) depend on s only through n(s) and let pj(i, k) 

depend on j only through the class Ki in whichj resides. Then the equilibrium probabilities 
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may be written as 

(3.1) <»)=c*(n)nn^2; 
N L , . , „ M 

fel 1-1 Ui>1-

where yi(i) satisfies 
N 

y»(*) = $^vi(*)p*(*»0-
it=i 

Proof 

Replacing yj(i) by yi(i) for all j € JCi in equation (2.3) gives 

L N 

(3.2) 7r(s) = C $ ( s ) n n ^ ' ) n i - ' . 
J=I ;=i 

The function $(s) depends on s only through n(s) and there are Yli=i IL=i l^-'l' /ni,d ways 

of choosing s so that n(s) = n. Summing (3.2) over such s and changing the normalizing 

constant appropriately gives equation (3.1). o 

Corollary 

Represent by dij (1 < i < N; 1 < l < L) the number of /Cj-type customers completing 

service together at node i. If, for each d, the probability of a batch service pattern d when 

the state is n is of the form 

(3.3) ï ( n . d ) = * ^ ° ' 
«•(»)Il£.iIÉ.i<M 

where *&*(.) and $*(.) are arbitrary given functions then 

iv L 
(3.4) 7r(n) = C$*(n) J[ J[ yi(i)

n<<'. 
» = i / = i 

Proof 
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For given values ntij the number of possibüities T which result in the same service 

pattern d is Y[f=l ]jf=1 ( J ' j ) . For each of these #(.) and $(.) are the same. Consequently, 

summing (2.2) over these T, we get 

g ( n ,d ) =^nfï'n M 
*(n) Ü i J U , i 
nili ut* ni,il- $(n|Tc) 

rAf 
Ln£LinwKi-*,i)! 

riV 
.IL=iIL=i^v 

From the argument dependence of the functions involved, comparison with (3.3) provides 

**(n - d) = —w j - ^ - 1 — ' -

and 

$*(n) 
A$(n) 

for some constant A. Substitution for $(n) in (3.1) gives (3.4) for a suitable constant C. 

O 

Example 2 

In many discrete time queueing networks the probability of a given number of cus

tomers of type / departing from node i depends on the total number of type / customers 

that are actually present at node i. One natura! form that <?(n, d) may take is the following. 

(3.5) ? ( n , d ) = n n ( T ) t 1 -*>'<™ -di>^ ri *M-

Note the similarity between (3.5) and the form (1.2) used by Walrand (1983). This 

form reflects the situation where a batch of departures is essentially made up of a set 

of customers each making its own decision whether to transfer or not, dependent on the 

current number of customers of the same type at the same queue. 
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On taking 

*»= „ l ,nnïir^y 
U,=l 11/=! nM ! i=l 1=1 j=l qtM> 

and 

**(n ~ d) = TT* TT* f » TT HK1" *.'Ki " *.0] ft -Afy 
ll»=i l l /=i W - dWl i=n=i y=i S l ' ^ 

we see that q(n, d) given by (3.5) has the form (3.3). 

4. Queues where positions are defined 

In many queueing networks the rate at which customers are served is a function of 

the whole state at any given node rather than just the numbers of each type of customer 

present. For example in a network of two nodes with two customer types we may wish to 

distinguish between the state ((1,2) : <f>) which has a type one customer in positon 1 and a 

type two customer in position 2 of queue 1 and the state ((2,1) : <f) in which the customers 

are the other way round. To model such networks the structure defined in section 2 needs 

to be modified slightly. 

The state vector r now needs to include information on both the queue and position 

of the customers. Thus let TJ = (ij,rn.j), where ij is the queue occupied by customer j 

and rrij is the position in that queue occupied by customer j . Assume as in section 3 that 

the customers are partitioned into classes £/. 

Clearly the set of possible r has to be restricted so that the same position in a given 

queue is not occupied by two different customers, so we assume that rj ^ r* if j ^ k. It is 

also desirable that positions 1 , . . . , nj are occupied when there are n{ customers at node i. 

To ensure that this is the case we adopt the following rules for relabelling customers when 

transitions occur. 
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We deem that all departures occur before any arrivals take place at a transition instant. 

If the state is r and customers given by T leave their current queues, all customers in 

positions higher than the positions of customers in T move down to fill all the gaps, but 

preserve their relative order. The customers in T are routed to new nodes according to 

their routeing matrices to produce a new state r' and the number of customers at node i 

is now (say) n\. It remains to assign positions to-these customers. Let d\ be the number 

of customers at node i in r ' |T . Then a convenient way to allocate positions to the d^ 

customers newly arrived to node i is to assign them to each of the nj! /(nj — d'^l possible 

patterns with equal probability. All customers that were originally in the queue are moved 

up in an order preserving way to make room. 

With the customer positions at each queue included the state space carries much more 

information than the previous description detailed in section 2. However, in practice, what 

usually matters in determining transition probabilities is not the positions occupied by each 

labelled customer, but rather the occupancy or distribution of types of customer over the 

positions in the queues. There will in genera! be many states r which have the same 

occupancy. Thus we define the following function. 

Let c(r) = (cijTn(r)) for 1 < i < N and 1 < m < n,- be defined so that its entries 

give the type of customer in position m of queue i. We denote the state of the network by 

c. By representing the state in this form we assign a type of customer to each queue and 

occupied position. 

Theorem 3 

Consider a network of queues for which the states r contain information on the position 

of, customers as described above. Assume that 

, „.s #(r|Tc) 
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where the arbitrary functions \I>(r|Tc) and $(r) depend on r only through c(r) and that 

the routeing rules pj(i, k) depend only on the class l in which customer j resides. Thus we 

write $(c) for $(c(r)) where r is such that c(r) = c. 

Then the equilibrium distribution o£ the queueing network is 

yi{i)nt'1 

(4.1) x(c) = C$(c)niI 

where for l = 1 , . . . , L the yi(i) satisfy 

« « «*' 

N 

(4.2) .VI(0 = S V I ( * ) P K M -
fc=i 

Proof 

Equation (2.3) gives the equilibrium distribution for a network of queues where cus

tomer positions are not taken into account. When we include position there are fli=i n^-

different states r corresponding to the same state s. Since the allocation rules are random 

each of these states r will have equilibrium probability 

(4-3) *(r) = - ^ j . 
IL=intl 

Now sum over all r corresponding to a given c(r). There are Yii=x l̂ wl- s u c n r> o v e r 

which the values of n» for 1 < i < N remain constant. Thus summing we get 

(4-4) TT(C) = - ^ - [ [ W • 
l l i= i n ». /=i 

The assumption that customers' routeing probabilities depend only on their class means 

that for a given state r 

(4-5) nèwer-n^i)-
Using this, the fact that $ ( r ) depends only on c(r), (2.3) and (4.4) gives (4.1). o 
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R e m a r k 

It is natural to describe a pattern of departures from c by giving the set T> of nodes 

and positions (i, m) (1 < i < N; 1 < m < n,) from which departures have taken place. 

The state c\Vc then gives the type of customer in the remaining positions after customers 

given by V have left, assuming as before that all customers have been packed downwards 

to the lowest possible positions. We can translate g(r, T ) into g(c, V) in the following way. 

If the state is c then the process must be in some state r with c(r) = c. For this r, V 

is completely determined by T and vice versa. Thus 

(4-6) ? ( r ' T ) - - $ ( i r = *(C(p))' 

since $(r ) and \I/(r|Tc) depend on r only through c(r). We can therefore define the 

probability that customers at nodes and positions given by T> depart when the occupancy 

is given by c as 

Example 3 

As a simple illustrative example of how Theorem 3 works consider a network of just 

two nodes with three customers, two of type 1 and and one of type 2. If both of the 

type 1 customers are at the same node then they can be served only if they are in adjacent 

positions, in which case they are served with probability 1/2 as is the type 2 customer alone. 

If the two type 1 customers are at opposite nodes then they are both served simultaneously 

with probability 1/4 or the type 2 customer is served alone with probability 3/4. 

Denoting a state by c = (ui : 112) where Uji is the type of customer in position i of 
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queue j this network has the following states 

Ci = = ((1, 1,2):*) 

c 2 = = ((V 2,1) :4>) 

C3 -= ((2, 1,1):*) 

C 4 = = (*: (1,1,2)) 

c 8 = = (*: (1,2,1)) 

Ce = = (*: (2,1,1)) 

c 7 = = ((1) :(1,2)) 

C8 : = ((1) = (2,1)) 

C 9 : = ((2) = (!,!)) 

ClO : = ((1,1): (2)) 

Cll : = ((1,2):(1)) 

Cl2 = ((2,1):(1)) 

Because of the small number of customers involved in this example we are able to un-

ambiguously define the transfer pattems just by giving the nodes and types of customer 

which transfer. Hence the following transfer pattems are possible 

dx = ( ( l , l ) : * ) 

d2 = ( * : ( l , l ) ) 

ds = ((1) : (1)) 

d 4 = (*:(2)) 

d 5 = ( (2 ) :* ) 

The above assumptions about transfer probabilities imply 

?(c i ,d i ) = 3(ci ,d 5) = ?(c3 ,di) = g(c3 ,d5) = 1/2 

g(c4 ,d2) = g(c4 ,d4) = g(c6 ,d2) = ?(c6 ,d4) = 1/2 
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g(c 2 ,d 5 ) = g(c5 ,d4) = 1 

q(c7,d3) = $(c 8 ,d 3 ) = g ( cn ,d s ) = ? (c i 2 , d 3 ) = 1/4 

g(c 7 ,d 4 ) = g(c 8 ,d 4 ) = q(clt,ds) = ? (c i 2 , d 5 ) = 3/4 

q(c9,d2) = g(c e ,d 5 ) = ? (c i 0 , d i ) = ? (c i 0 , d 4 ) = 1/2 

which can be achieved by putting 

*((2) : <f>) = *((1,1) : <f>) = *(<£ : (2)) = * ( * = (1.1)) = 1 

\&(.) = O otherwise 

and 

$(c x ) = $ (c s ) = $(c4) = $(c 6 ) = 2 

$(c 2 ) = $(c5) = 1 

$(c 7 ) = $(c 8 ) = $ ( c n ) = $ (c i 2 ) = 4 

$(c9) =-$(cio) = 2 

The equilibrium distribution is then given by (4.1) where the yi(i) satisfy the routeing 

equations for the network. 
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