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Introduction. H. Liebmann (1900) [1], proved the following theorem:
The only ovaloids with constant mean curvature $H$ in an Euclidean space

$E^{3}$ are the spheres.
Extension of this theorem to a convex hypersurface in an n-dimensional

Euclidean space $E^{n}$ has been given by W. S\"uss (1929) [2], (cf. also [3], $p$ .
118, and [4]). Then H. Hope (1951) [5], and A. D. Alexandrov (1958) [6],
have shown the results that the convexity is not necessary for the validity of
the Liebmann-S\"uss theorem.

Recently the analogous problem for closed hypersurfaces in an n-dimen-
sional Riemannian manifold $R^{n}$ has been discussed by the present author [8],
[9], [10], A. D. Alexandrov [7], K. Yano [13], T. \^Otsuki [15], M. Tani [16],
and K. Nomizu [17], [18]. And also for a submanifold of codimension 2 in
an odd dimensional sphere, M. Okumura has treated the analogue [19].

In the previous papers [11], [12], which are common works by T. Nagai,
H. K\^ojyo and the present author, we have given a certain extension of this
problem to an m-dimensional closed submanifold $V^{m}(1\leqq m\leqq n-1)$ in the n-
dimensional Riemannian manifold $R^{n}$ admitting a vector field $\xi$ . However we
have given there a restriction such that at each point on $V^{m}$, the vector $\xi$

lies in the vector space spanned by the tangent space of $V^{m}$ and the Euler-
Schouten vector

$En$
.

The purpose of this paper is to give more general results except this
restriction.

\S 1. Some integral formulas for a submanifold. We suppose an $n$ -

dimensional Riemannian manifold $R^{n}(n\geqq 3)$ of class $C^{r}(r\geqq 3)$ wich admits an
one-parameter continuous group $G$ of transformations generated by an infini-
tesimal transformation

(1. 1) $ x^{i}\leftarrow=x^{l}+\xi^{i}(x)\delta\tau$

1) Numbers in brackets refer to the references at the end of the paper.
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(where $x^{i}$ are local coordinates in $R^{n}$ and $\xi^{i}$ are the components of a con-
travariant vector $\xi$). If $\xi$ is a Killing vector, a homothetic Killing vector,

a conformal Killing vector, etc. ([14], p. 32), then the group $G$ is called
isometric, homothetic, conformal, etc.

In $R^{n}$ , we consider a domain $M$. If the domain $M$ is simply covered by
the orbits of the transformations generated by $\xi$, and $\xi$ is everywhere of class
$C^{r}$ and $\neq 0$ in $M$ ; then we call $M$ a regular domain with respect to the
vector field $\xi$ .

Let us denote by $V^{m}$ an m-dimensional closed orientable submanifold of
class $C^{3}$ imbedded in a regular domain $M$ with respect to the vector field $\xi$ ,
locally given by

(1. 2) $x^{i}=x^{i}(u^{\alpha})$ $i=1,$ $\cdots,$ $n$

$\alpha=1,$ $\cdots,$ $m$ ,

where $u^{a}$ are local coordinates of $V^{m}$ . Throughout the present paper Latin
indices run from 1 to $n$ and Greek indices from 1 to $m$ . We assume that
at any point on $V^{m}$ the vector $\xi$ is not on its tangent space.

We shall indicate by $n^{i}(p=m+1, \cdots, n)$ the contravariant unit vectors
$p$

normal $V^{m}$ and suppose that they are mutually orthogonal. Let n\’e be in the

vector space spanned by $m+1$ independent vectors $\frac{\partial x^{i}}{\partial u^{\alpha}}(\alpha=1, \cdots, m)$ and $\xi$

and be the unit vector normal $V^{m}$ . Then, we may consider
$ n\xi$

as one of the
unit normal vectors of $V^{m}$ , that is, $n^{i}=n^{i}$ .

$m+1$ $\xi$

Let us consider a differential form of $m-1$ degree at a point of $V^{m}$ ,
defined by

$((n,n,\cdots, n\text{\’{e}} m+2n\xi,\frac{dx,\cdots,dx}{m- 1}))=\sqrt{}\overline{g}def(n_{\text{\’{e}} n} n, \xi, dx, \cdots, dx)$

(1. 3)
$=\sqrt{}\overline{q}((n,$ $\cdots,$$n\text{\’{e}} n\xi,$

$\frac{\partial x}{\partial u^{\alpha_{1}}},$ $\frac{\partial x}{\partial u^{\alpha_{m-1}}}I^{du^{a_{1}}\wedge\cdots\wedge du^{\alpha_{m-1}}}$ ,

where the symbol $($ $)$ means a determinant of order $n$ whose colums are the
components of respective vectors, $dx$ is a displacement along $V^{m},$ $q$ is the
determinant of the metric tensor $g_{ij}$ of $R^{n}$ . Then the exterior differential of
the differential form (1. 3) divided by $m$ ! becomes as follows

$\frac{1}{m!}d((n,n,\cdots,n\xi m+2n\xi, dx, \cdots, dx))=\frac{1}{m!}\{((\delta n,n,\cdots,n\text{\’{e}} m+2n\xi, dx, \cdots, dx))$

(1. 4) $+((n, \delta n,\cdots, n, \xi\epsilon m+2ndx, \cdots, dx))+\cdots$

$+((n, \cdots,n,\delta n\epsilon n- 1n\xi, dx, \cdots, dx))+((n, \cdots, n\epsilon n\delta\xi, dx, \cdots, dx))\}$
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where $\delta v$ means $v_{;\alpha}du^{\alpha}$ and the symbol “ ;” the operation of D-symbol due
to van der Waerden-Bortolotti ([20] p. 254).

Let $C_{j}^{i}$ be $p=m+1pp\sum^{n}n^{i}n_{j}(n=m+1n)\text{\’{e}}$ and $\lambda i(\lambda=1, \cdots, m)$ mutually orthogonal unit
tangent vectors of $V^{m}$ . Then we have

$n_{;a}^{i}=C_{j;k}^{i}n^{j}\frac{\partial x^{k}}{\partial u^{a}}=pp-\sum_{\lambda=1}^{m}(i_{j;k}n^{j}\frac{\partial x^{k}}{\partial u^{\alpha}})i^{i}$

Therefore we may put

$n_{;a}^{i}=r_{a}^{\gamma}\frac{\partial x^{i}}{\partial u^{\gamma}}pp$ .

Since we have

$g_{ij}(\frac{\partial x^{i}}{\partial u^{\beta}})_{;a^{p}}n^{j}=-q_{ij}\frac{\partial x^{i}}{\partial u^{\beta}}n_{a}^{j}p$

we obtain

(1. 5) $pn_{;a}^{i}=-b_{\alpha}^{\gamma}\frac{\partial x^{i}}{\partial u^{\gamma}}p$ $(p=\xi, m+2, \cdots, n)$

where $pb_{\alpha}^{\gamma}$ means $g^{\gamma\beta}b_{a\beta}p$ and $pb_{\alpha\beta}\equiv(\frac{\partial x^{i}}{\partial u^{a}})_{;\beta^{p}}n_{i}$ , and $q^{\gamma\beta}$ is the contravariant metric

tensor of $V^{m}$ .
From (1. 5) the first term of the right-hand member of (1. 4) becomes

(1. 6) $\frac{1}{m!}((\delta n,n,\cdots, n, \xi\text{\’{e}} m+2ndx, \cdots, dx))=(-1)^{(n- m)(n- 1)}H_{1}n_{i}\xi^{i}dA\xi\text{\’{e}}$

where $dA$ is the area element of $V^{m}$ and $ H_{1}\xi$ means the first mean curvature
of $V^{m}$ with respect to the normal direction $n^{i}\text{\’{e}}$ . Similarly, for every integer
$p$ satisfying $m+2\leqq p\leqq n$ we have

(1. 7)
$\frac{1}{m!}((n, \cdots, \delta n, \cdots,n, \xi, dx, \cdots, dx))\xi pn=(-1)^{(n- m)(n- 1)}H_{1}n_{i}\xi^{i}dApp$

$=0$

because $\xi$ lies in the vector space spanned by $m+1$ independent vectors $\frac{\partial x^{i}}{\partial u^{\alpha}}$

$(\alpha=1, \cdots, m)$ and $n$ .
$\xi$

On the other hand the last term of the right-hand member of 1.4 becomes

$\frac{1}{m!}((n, \cdots,n, \delta\xi\xi ndx, \cdots, dx))$

(1. 8)
$=(-1)^{(n- m)(n- 1)}\frac{1}{2m}(Lq_{ij})\frac{\partial x^{i}}{\partial u^{a}}\frac{\partial x^{j}}{\partial u^{\beta}}g^{\alpha\beta}dA\xi$
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where $ Lg_{ij}\xi$ is the Lie derivative of $g_{ij}$ with respect to $\xi$ ([14], p. 5).

From (1. 6), (1. 7) and (1. 8), (1. 4) is rewritten as follows

$\frac{1}{m!}d((n, \cdots, n, \xi, dx, \cdots, dx))=\xi n(-1)^{(n- m)(n- 1)}\{H_{1}n_{i}\xi^{i}dA\xi\xi$

(1. 9)
$+\frac{1}{2m}(Lg_{ij})\frac{\partial x^{i}}{\partial u^{\alpha}}\frac{\partial x^{j}}{\partial u^{\beta}}g^{a\beta}dA\}\xi$

Integrating both members of (1. 9) over the whole submanifold and ap-
plying Stokes’ theorem, we obtain

$\frac{1}{m!}\int_{\partial V}((n,n, \cdot. ., n, \xi, dx, \cdots, dx))n$

$=(-1)^{(n- m)(n- 1)}\{\int_{V}H_{1}n_{i}\xi^{i}dA+\frac{1}{2m}\int_{V^{m\xi}}g^{*if}Lq_{ij}dA\}$ ,

where $\partial V^{m}$ means the boundary of $V^{m}$ and $g^{*ij}$ is $\frac{\partial x^{i}}{\partial u^{a}}\frac{\partial x^{j}}{\partial u^{\beta}}q^{\alpha\beta}$ . Making use

of the fact that $V^{m}$ is closed, we have

(I”) $\int_{V^{m}}H_{1}n_{i}\xi^{i}dA+\frac{1}{2m}\int_{V^{m\text{\’{e}}}}g^{*ij}Lq_{ij}dA=0$ .

If the manifold $R^{n}$ assumes of constant Riemann curvature which includes
an Euclidean space, then we consider the following differential form of $m-1$

degree

(1. 10)
$((n,n, \cdots,n, \xi, \delta n, \cdots, \delta n, dx,\cdots,dx))\text{\’{e}} m+2n\text{\’{e}}\xi\rightarrow\vee m-\nu- 1\nu$

$def=\sqrt{}\overline{q}(n,n, \cdots, n, \xi, \delta n, \cdots, \delta n, dx, \cdots, dx)\xi m+2n\xi\xi$

for a fixed integer $\nu$ satisfying $m-1\geqq\nu\geqq 1$ .
As well-known, a submanifold $V^{m}$ in $R^{n}$ has the following property:

$ b_{a\beta;\gamma}-b_{a\gamma;\beta}=\xi\xi-R_{ijkl}n^{i}\frac{\partial x^{j}}{\partial u^{\alpha}}\frac{\partial x^{k}}{\partial u^{\beta}}\frac{\partial x^{l}}{\partial u^{\gamma}}\xi$ ([20], p. 226),

where $R_{ijkl}$ is the curvature tensor of $R^{n}$ . Since $R^{n}$ is of constant Riemann
curvature, we have

(1. 11) $ n_{a;\beta}^{i}-n_{;\rho;a}^{i}=0\epsilon\epsilon$

Consequently differentiating exteriorly the differential form (1. 10), we have
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$ d((n,n, \cdots,n, \xi, \delta n, \cdots, \delta n, dx, \cdots, dx))\epsilon m+2n\xi\xi$

$=((\delta n,n, \cdots,n, \xi, \delta n, \cdots, \delta n, dx, \cdots, dx))\xi m+2n\xi\xi$

(1. 12) $+((n, \delta n, \cdots,n, \xi, \delta n, \cdots, \delta n, dx, \cdots, dx))\xi m+2n\xi\xi$

$+\cdots+((n,n, \cdots, \delta n, \xi, \delta n, \cdots, \delta n, dx, \cdots, dx))\text{\’{e}} m+2n\xi\xi$

$+$ ($(n,n_{k},$ $\cdots,$ $n,$ $\delta\xi,$ $\delta n,$
$\cdots,$ \mbox{\boldmath $\delta$}n, $dx,$ $\cdots,$ $dx)$ )

$\text{\’{e}} m2u\epsilon$ \’e

because $((n,n, \cdots,n, \xi, \delta\delta n\xi m+2n\xi , \delta n , \cdots, \delta n, dx, \cdots, dx))=0\xi\xi$ from (1. 11).

On substituting $n_{;a}^{i}=\text{\’{e}}-b\text{\’{e}}$

’
$\frac{\partial x^{i}}{\partial u^{\beta}}$ into the first term of the right-hand mem-

ber of (1.12), we get

$((\delta n,n, \cdots,n, \xi, \delta n, \cdots, \delta n\xi m+2n\xi\xi , dx, \cdots, dx))$

(1. 13)
$=m$ ! $(-1)^{(n-m)(n-1)-\nu}H_{\nu+1}n_{i}\xi^{i}dA\xi\xi$

where $H_{\nu+1}$ denotes the $\nu+1$ -th mean curvature of $V^{m}$ with respect to the
$\xi$

normal direction $ n^{i}\xi$ and if we indicate by $k_{1},$ $k_{2},$
$\cdots,$$ k_{m}\text{\’{e}}\xi\xi$ the principal curvatures

of $V^{m}$ for the normal vector
$ n\epsilon$

$ H_{\nu+1}\xi$ is defined to be the $\nu+1$ -th elementary
symmetric function of $k_{\alpha}\xi(\alpha=1, \cdots, m)$ divided by the number of terms, that is,

$\left(\begin{array}{l}m\\\nu+1\end{array}\right)H_{\nu+1}=\sum_{a_{1}<\alpha_{2}<}.k_{a_{1}}k_{a_{2}}\cdots k_{\text{\’{e}} a_{\nu+1}}<\alpha_{\nu+1}\text{\’{e}}\text{\’{e}}\xi$

Also, by virtue of (1. 5) we can see that the vectors

$n\times\delta n\times n\times\cdots\times n\times\delta n\times\cdots\times\delta n\times\epsilon m+2m+3n\xi\bigvee_{\nu}^{\epsilon\frac{dx\times}{m-}\frac{\times dx}{\nu-1}}$

$n\times n\times\delta n\times\xi m+2m+3$ $\times n\times\delta nn\xi\times\cdots\times\delta n\text{\’{e}}\times dx\times\cdots\times dx$ ,

and

$n\xi\times n\times m+2$ $\times nn-\ddagger\times\delta n\times\delta nn\xi\times\cdots\times\delta n\times dx\xi\times\cdots\times dx$

have the same direction to the covariant vectors $m+2m+3n,n,$
$\cdots$ and

$nn$
respectively.

Thus we obtain

$((n, \delta n,n, \cdots,n, \xi, \delta n, \cdots, \delta n, dx, \cdots, dx))=0\epsilon m+2m+3n\xi\xi$
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($(n,n,$ $\delta n,$ $\cdots,n,$ $\xi,$ \mbox{\boldmath $\delta$}n, $\cdots,$
$\delta n,$ $dx,$ $\cdots,$ $dx)$ )$=0\xi m+2m+3n$\’e $\xi$

,

(1. 14) $\cdots$ ,

$((n,n, \cdots,n, \delta n, \xi, \delta n, \cdots, \delta n, dx, \cdots, dx))=0\text{\’{e}} m+2n- 1n\xi\xi$

because $\xi$ lies in the vector space spanned by $m+1$ independent vectors $\frac{\partial x^{i}}{\partial u^{\alpha}}$

$(\alpha=1, \cdots, m)$ and $n$ .
$\xi$

From that the vector $n\xi\times nm+2\times\cdots\times nn\times\delta n\xi\times\cdots\times\delta n\xi\times dx\times\cdots\times dx$ is or-

thogonal to the normal vectors
$n,n\xi m+2$

and
$nn$

and $\delta n^{i}=-b_{a}^{\theta}\xi\xi\frac{\partial x^{i}}{\partial u^{\beta}}du^{a}$ , the

last term of the right-hand member of (1. 12) becomes as follows

$((n,n, \cdots,n, \delta\xi, \delta n, \cdots, \delta n, dx, \cdots, dx))\xi m+2n\xi\xi$

(1. 15)
$=m$ ! $(-1)^{(n- m)(n- 1)-}\frac{1}{2m}H_{\nu}^{a\beta}Lg_{a\beta}dA\xi\xi$

where $ Lg_{\alpha\beta}=(Lg_{ij})\frac{\partial x^{i}}{\partial u^{\alpha}}\frac{\partial x^{j}}{\partial u^{\beta}}\xi\xi$ and

$ H_{\nu}^{a\beta}=\frac{1}{(m-1)!}\epsilon^{\alpha\alpha_{1}\cdots\alpha_{m-1}}\epsilon^{\beta\beta_{1}\cdots\beta_{m-1}}b_{a_{1}\beta_{1}}\cdots b_{\alpha_{\nu}\beta_{\nu}}q_{\alpha_{\nu+1}\beta_{\nu+1}}\cdots g_{\alpha_{m-1}\beta_{m- 1}}\xi\text{\’{e}}\xi$

and $\epsilon^{a\alpha\cdots a_{m-1}}$ denotes the e-symbol of the submanifold $V^{m}$ . Accordingly we
have

$\frac{1}{m!}d((n,n, \cdots, n, \xi, \delta n, \cdots, \delta n, dx, \cdots, dx))\xi m+2n\xi\xi$

(1. 16)
$=(-1)^{(n- m)(n- 1)-\nu}\{H_{\nu+1}n_{i}\xi^{i}dA+\frac{1}{2m}\xi H_{\nu}^{a\beta}\xi Lq_{a\beta}dA\}$ .

Integrating both members of (1. 16) over the whole submanifold $V^{m}$ and
applying Stokes’ theorem, we have

$\frac{1}{m!}\int_{\partial V^{m\xi m+2n}}$(($n,n,$ $\cdots,n,$ $\xi,$ \mbox{\boldmath $\delta$}n, $\cdot$ .., \mbox{\boldmath $\delta$}n, $dx,$ $\cdots,$
$dx$))\’e

$=(-1)^{(n- m)(n- 1)-\nu}\{\int_{r^{m}}H_{\nu+1}n_{i}\xi^{i}dA+\frac{1}{2m}\int_{V^{m\xi\text{\’{e}}}}H_{\nu}^{a\beta}Lg_{\alpha\beta}dA\}$ .

Thus, for a closed orientable submanifold $V^{m}$ we obtain

(II’ $’$ ) $\int_{V^{m}}H_{\nu+1}n_{i}\xi^{i}dA+\frac{1}{2m}\int_{V}H_{\nu}^{a\beta}Lg_{\alpha\beta}dA=0$ .

If $m=n-1$ , that is, $V^{m}$ is the hypersurface in $R^{n}$ , the formulas (I) and
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(II”) are coincide with the formulas (I) and (II) given in the previous paper
[8]. Especially if the vector

$\xi n$
is coincide with the Euler-Schouten unit vector

$n$ at each point on $V^{m}$ , then the formulas (I”) and (II”) become the formulas
$E$

(I) and (II‘) given in the previous paper [12].

\S 2. The integral formulas concerning some special transformations.
In this section, we shall discuss the formulas (I“) and $(II^{\prime\prime})$ for a special in-
finitesimal transformation. Let the group $G$ of transformations be conformal,
that is, $\xi^{i}$ satisfies an equation: $Lg_{ij}\equiv\xi_{i;j}\epsilon+\xi_{j;i}=2\phi g_{ij}$ ([14], p. 32). Then
we obtain

$ g^{*ij}Lq_{ij}=2m\phi\xi$ $ H_{\nu}^{a\beta}Lg_{a\beta}=2m\phi H_{\nu}\xi\xi\xi$

Therefore $(I^{\prime\prime})$ and $(II^{\prime\prime})$ are rewritten in the following forms:

$(I\prime\prime)_{c}$

$\int_{V^{m}}H_{1}n_{i}\xi^{i}dA+\int_{V^{m}}\phi dA=0$ ,

$(II^{\prime\prime})_{c}$

$\int_{V^{m^{\prime}}}H_{\nu+1}n_{i}\xi^{f}dA+\int_{V^{v\iota\xi}}\phi H_{k}dA=0$ $(1\leqq\nu\leqq m-1)$

and we can see

$(I^{\prime\prime})_{h}$

$\int_{V^{m}}H_{1}n_{i}\xi^{i}dA+c\int_{V^{m}}dA=0$ ,

$(II^{\prime\prime})_{h}$

$\int_{V^{m\text{\’{e}}\text{\’{e}}}}H_{\nu+1}n_{i}\xi^{i}dA+c\int_{V^{n\text{\’{e}}}}H_{h}dA=0$ $(1\leqq\nu\leqq m-1)^{2)}$

in case of $\phi=constant(\equiv c)$ ( $G$ being homothetic), and

$(I\prime\prime)_{1}$

$\int_{V^{m}}H_{1}n_{i}\xi^{i}dA=0$ ,

$(II^{\prime\prime})_{1}$

$\int_{V^{m}}H_{\nu\dashv 1}n_{i}\xi^{i}dA=0$ $(1 \leqq\nu\leqq m-1)$

in case of $\phi=0$ ( $G$ being isometric).
Especially if our manifold $R^{n}$ is an Euclidean space $E^{n}$ and if $\xi$ is the

homothetic Killing vector field on $E^{n}$ with components $\xi^{i}=x^{i},$ $x^{i}$ being rect-
angular coordinates with a point in the interior of $V^{m}$ as origin in the space
$E^{;\iota}$ , then the orbits of the transformations generated by $\xi$ are the lines through

2) In this case, $R^{n}$ becomes an Euclidean space, because if $R^{n}$ with constant Riemann
curvature admits an one-parameter group $G$ of homothetic transformations, then either $R^{n}$

is $E^{n}$ or the group $G$ is isometric.
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the origin and we have
$ Lg_{tj}=2g_{ij}\epsilon$

Consequently, from $(I^{\prime\prime})_{h}$ and $(II^{\prime\prime})_{h}$ we obtain

$(I^{*})$ $\int_{V^{m\xi}}H_{1}pdA+\int_{V^{m}}dA=0$ ,

$(II^{*})$ $\int_{r^{m\xi}}H_{\nu+1}pdA+\int_{V^{m\xi}}H_{\nu}dA=0$ ,

where $p=n_{i}x^{l}\text{\’{e}}$ . This means that the formulas $(I^{*})$ and $(II^{*})$ are generalization

of those formulas given by C. C. Hsiung [4] for a closed orientable hyper-
surface in an n-dimensional Euclidean space $E^{n}$ .

\S 3. Some properties of a closed orientable submanifold related
with a vector field. In this section we suppose again that the group $G$ is
conformal. Then we shall prove the following four theorems for a closed
orientable submanifold $V^{m}$ in a Riemannian manifold $R^{n}$ with constant Rie-
mann curvature.

Theorem 3. 1. If in $R^{n}$ , there exists such a group $G$ of conformal
tnnsformations as $\rho$ is positive (or negative) at each point of $V^{m}$ and $\iota fH_{1}\xi$

is constant, then every point of $V^{m}$ is umbilic with respect to the normal
vector

$ n\xi$
where $\rho$ denotes $ n_{i}\xi^{t}\xi$

Proof. Multiplying the formula $(I^{\prime\prime})_{c}$ by $ H_{1}=const\epsilon$ we have

$\int_{f^{r}}m\xi H_{1}^{2}\rho dA+\int_{V}\phi H_{1}dA=0$ .

On the other hand, from $(II^{\prime\prime})_{c}$ we have

$\int_{V^{m}}\xi H_{2}\rho dA+\int_{V^{m\xi}}\phi H_{1}dA=0$ .

Consequently it follows that

$\int_{V^{m\xi\xi}}(H_{1}^{2}-H_{2})\rho dA=0$ .

From our assumption about $\rho$ , this holds if and only if $ H_{1}^{2}-H_{2}=0\xi\xi$ since

$ H_{1}^{2}-H_{2}=\frac{1}{m^{2}(m-1)}\sum_{a\text{\’{e}}\text{\’{e}}<\beta}(k_{a}-k_{\beta})^{2}\geqq 0\epsilon\epsilon$

Therefore at each point of $V^{m}$ we obtain
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$ k_{1}=k_{2}=\cdots=k_{m}\xi\xi\xi$

Accordingly every point of $V^{m}$ is umbilic with respect to
$ n\xi$

Theorem 3.2. If in $R^{n}$ , there exists such a group $G$ of conformal
transformations as $\rho$ is positive (or negative) at each point of $V^{m}$ , and if
the principal curvatures $k_{1},$ $k_{2},$

$\cdots,k_{m}\epsilon\text{\’{e}}\epsilon$ at each point of $V^{m}$ are positive and

$H_{\nu}\text{\’{e}}$ is constant for any $\nu(1<\nu\leqq m-1)$ , then every point of $V^{\prime n}$ is umbilic
with respect to the normal vector

$nk*$

Proof. Multiplying the formula $(I^{\prime\prime})_{c}$ by $H_{\nu}=const\text{\’{e}}.$ , we obtain

(3. 1) $\int_{V}H_{1}H_{\nu}\rho dA+\int_{V^{m\text{\’{e}}}}\phi H_{\nu}dA=0$ .

By vatue of $(II^{\prime\prime})_{c}$ and (3. 1), we have

$\int_{V^{m\text{\’{e}}\xi\xi}}(H_{1}H_{\nu}-H_{\nu+1})\rho dA=0$ .

From our assumption, this holds if and only if $ H_{1}H_{\nu}-H_{\nu+1}=0\xi\xi\xi$ since

$H_{1}H_{\nu}-H_{\nu+1}=\frac{\nu!(m-\nu-1)!}{mm!}\sum k_{a_{1}}\cdots k_{a_{\nu-1}}(k_{\alpha_{\nu}}-k_{\alpha_{\nu+1}})^{2}\text{\’{e}}\xi\text{\’{e}}\xi\xi\text{\’{e}}\xi\geqq 0$ .

Then at each point of $V^{m}$ , we obtain

$ k_{1}=k_{2}=\cdots=k_{m}\text{\’{e}}\xi\xi$

Accordingly every point of $V^{m}$ is umbilic with respect to n\’e.
Theorem 3.3. If in $R^{n}$ , there exists such a group $G$ of conformal

transformations as $\rho$ is positive (or negative) at each point of $V^{M}$, for which
$H_{1}\rho\xi+\phi\geqq 0$

$(or\leqq 0)$ at all points of $V^{m}$ , then every point of $V^{m}$ is umbilic

with respect to
$n3$

Proof. If we express the formula $(I^{\prime\prime})_{c}$ as follows

$\int_{V^{m\xi}}(H_{1}\rho+\phi)dA=0$ ,

then from our assumption we have the relation:
(3. 2) $\phi=-H_{1}\rho\text{\’{e}}$ .

Substituting (3. 2) into $(II^{\prime\prime})_{c}$ for $\nu=1$ , we have
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$\int_{V^{m\xi\xi}}(H_{1}^{2}-H_{2})\rho dA=0$ .

Thus, we can see the conclusion.
Theorem 3.4. If $ H_{1}\xi$ is positive (or negative) at all points of $V^{m}$ and

if $R^{n}$ admits such a group $G$ of conformal transformations as $\phi$ is positive
(or negative), for which either

$\rho\geqq\frac{-\phi}{H_{1},\epsilon}$
or

$\rho\leqq\frac{-\phi}{H_{1},\xi}$
at all points of $V^{m}$ , then

every point of $V^{m}$ is umbilic with respect to $n$ .
$\xi$

Proof. The formula $(I^{\prime\prime})_{c}$ is rewritten as follows

$\int_{r^{m_{\vee^{\vee}}^{\wedge}}}H_{1}(\rho+\frac{\phi}{H_{1},\text{\’{e}}})dA=0$ .

By virtue of our assumptions $ H_{1}>0\xi$ (or $<0$ ) and
$\rho+\frac{\phi}{H_{1},\xi}\geqq 0$

(or $\leqq 0$ ) at all

points of $V^{m}$ , we have the following relation

(3. 3)
$\rho=-\frac{\phi}{H_{1},\xi}$

.

Substituting (33) into $(II^{\prime\prime})_{c}$ for $\nu=1$ , we obtain

$\int_{V}\frac{\phi}{H_{1},\epsilon}(H_{1}^{2}-H_{2})dA=0$ ,

which holds if and only if $H_{1}^{2}-H_{2}=0\xi\text{\’{e}}$ Thus we obtain the conclusion.
Remark I. If $V^{m}$ is the hypersurface in $R^{n}$ , these four theorems are

coincide with the theorems given in the previous paper [8]. Especially if the
vector $n$ is coincide with the Euler-Schouten unit vector

$En$
at each point of

$V^{m},$
$then\text{\’{e}}$ these four theorems become those theorems given in the previous

paper [12].

Remark II. In all these sections we have treated the normal unit vector
$ n\xi$

with respect to the vector field $\xi$ and the mean curvature $ H_{\nu}\xi$ These are
the notions due to R. E. Stong [21].
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