CLOSED SUBMANIFOLDS WITH CONSTANT 2-TH MEAN CURVATURE RELATED WITH A VECTOR FIELD IN A RIEMANNIAN MANIFOLD

By

Yoshie KATSURADA

Introduction. H. Liebmann (1900) $[1]^{1}$, proved the following theorem: The only ovaloids with constant mean curvature H in an Euclidean space E^3 are the spheres.

Extension of this theorem to a convex hypersurface in an *n*-dimensional Euclidean space E^n has been given by W. Süss (1929) [2], (cf. also [3], p. 118, and [4]). Then H. Hope (1951) [5], and A. D. Alexandrov (1958) [6], have shown the results that the convexity is not necessary for the validity of the Liebmann-Süss theorem.

Recently the analogous problem for closed hypersurfaces in an *n*-dimensional Riemannian manifold R^n has been discussed by the present author [8], [9], [10], A. D. Alexandrov [7], K. Yano [13], T. Ôtsuki [15], M. Tani [16], and K. Nomizu [17], [18]. And also for a submanifold of codimension 2 in an odd dimensional sphere, M. Okumura has treated the analogue [19].

In the previous papers [11], [12], which are common works by T. Nagai, H. Kôjyo and the present author, we have given a certain extension of this problem to an *m*-dimensional closed submanifold V^m $(1 \le m \le n-1)$ in the *n*dimensional Riemannian manifold \mathbb{R}^n admitting a vector field ξ . However we have given there a restriction such that at each point on V^m , the vector ξ lies in the vector space spanned by the tangent space of V^m and the Euler-Schouten vector n.

The purpose of this paper is to give more general results except this restriction.

§1. Some integral formulas for a submanifold. We suppose an *n*-dimensional Riemannian manifold R^n $(n \ge 3)$ of class C^r $(r \ge 3)$ wich admits an one-parameter continuous group G of transformations generated by an infinitesimal transformation

(1.1) $\bar{x}^i = x^i + \xi^i(x)\delta\tau$

¹⁾ Numbers in brackets refer to the references at the end of the paper.

(where x^i are local coordinates in \mathbb{R}^n and ξ^i are the components of a contravariant vector ξ). If ξ is a Killing vector, a homothetic Killing vector, a conformal Killing vector, etc. ([14], p. 32), then the group G is called isometric, homothetic, conformal, etc.

In \mathbb{R}^n , we consider a domain M. If the domain M is simply covered by the orbits of the transformations generated by ξ , and ξ is everywhere of class C^r and $\neq 0$ in M; then we call M a regular domain with respect to the vector field ξ .

Let us denote by V^m an *m*-dimensional closed orientable submanifold of class C^3 imbedded in a regular domain M with respect to the vector field ξ , locally given by

(1.2)
$$\begin{aligned} x^{i} &= x^{i}(u^{\alpha}) \\ \alpha &= 1, \cdots, m , \end{aligned}$$

where u^{α} are local coordinates of V^{m} . Throughout the present paper Latin indices run from 1 to n and Greek indices from 1 to m. We assume that at any point on V^{m} the vector ξ is not on its tangent space.

We shall indicate by n_p^i $(p=m+1, \dots, n)$ the contravariant unit vectors normal V^m and suppose that they are mutually orthogonal. Let n be in the vector space spanned by m+1 independent vectors $\frac{\partial x^i}{\partial u^{\alpha}}$ $(\alpha=1, \dots, m)$ and ξ and be the unit vector normal V^m . Then, we may consider n as one of the unit normal vectors of V^m , that is, $n_{m+1}^i = n^i$.

Let us consider a differential form of m-1 degree at a point of V^m , defined by

(1.3)
$$(1, 3) = \sqrt{g} \left((n, n, \dots, n, \xi, \underbrace{dx, \dots, dx}_{m-1}) \right)^{\operatorname{def.}} \sqrt{g} (n, \dots, n, \xi, dx, \dots, dx) = \sqrt{g} \left((n, \dots, n, \xi, \frac{\partial x}{\partial u^{\alpha_1}}, \dots, \frac{\partial x}{\partial u^{\alpha_{m-1}}} \right) du^{\alpha_1} \wedge \dots \wedge du^{\alpha_{m-1}},$$

where the symbol () means a determinant of order n whose colums are the components of respective vectors, dx is a displacement along V^m , g is the determinant of the metric tensor g_{ij} of R^n . Then the exterior differential of the differential form (1.3) divided by m! becomes as follows

$$\frac{1}{m!}d \ ((\underset{\xi}{n}, \underset{m+2}{n}, \underset{n}{\cdots}, \underset{n}{n}, \xi, dx, \cdots, dx)) = \frac{1}{m!} \left\{ ((\underset{\xi}{\delta n}, \underset{m+2}{n}, \underset{n}{\cdots}, \underset{n}{n}, \xi, dx, \cdots, dx)) + ((\underset{\xi}{n}, \underset{m+2}{n}, \underset{n}{\cdots}, \underset{n}{n}, \xi, dx, \cdots, dx)) + \cdots + ((\underset{\xi}{n}, \underset{m-1}{\cdots}, \underset{n}{n}, \delta, dx, \cdots, dx)) + ((\underset{\xi}{n}, \underset{m-1}{\cdots}, \underset{n}{n}, \delta\xi, dx, \cdots, dx)) \right\}$$

where δv means $v_{;\alpha} du^{\alpha}$ and the symbol ";" the operation of *D*-symbol due to van der Waerden-Bortolotti ([20] p. 254).

Let C_j^i be $\sum_{p=m+1}^n n^i n_j$ (n=n) and $i \ (\lambda=1,\dots,m)$ mutually orthogonal unit tangent vectors of V^m . Then we have

$$n_{j^{\alpha}}^{i} = C_{j^{\alpha}k}^{i} n^{j} \frac{\partial x^{k}}{\partial u^{\alpha}} = -\sum_{\lambda=1}^{m} \left(i_{j^{\alpha}k} n^{j} \frac{\partial x^{k}}{\partial u^{\alpha}} \right) i^{i}.$$

Therefore we may put

$$n_{p}^{i}_{p} = \frac{\gamma_{\alpha}^{r}}{\frac{\partial x^{i}}{\partial u^{r}}}.$$

Since we have

$$g_{ij}\left(\frac{\partial x^{i}}{\partial u^{\beta}}\right)_{;a} n^{j} = -g_{ij}\frac{\partial x^{i}}{\partial u^{\beta}} n^{j}_{a},$$

we obtain

(1.5)
$$n_{p}^{i} = -b_{a}^{r} \frac{\partial x^{i}}{\partial u^{r}} \qquad (p = \xi, \ m+2, \cdots, n)$$

where b_{p}^{r} means $g_{p}^{r\beta}b_{\alpha\beta}$ and $b_{p}^{\alpha\beta} \equiv \left(\frac{\partial x^{i}}{\partial u^{\alpha}}\right)_{;\beta} n_{i}$, and $g^{r\beta}$ is the contravariant metric tensor of V^{m} .

From (1.5) the first term of the right-hand member of (1.4) becomes

(1.6)
$$\frac{1}{m!} \left(\left(\delta n, n, \dots, n, \xi, dx, \dots, dx \right) \right) = (-1)^{(n-m)(n-1)} H_1 n_{\xi} \xi^i dA,$$

where dA is the area element of V^m and H_1 means the first mean curvature of V^m with respect to the normal direction n^i . Similarly, for every integer p satisfying $m+2 \le p \le n$ we have

(1.7)
$$\frac{1}{m!} \left((\underset{\xi}{n}, \dots, \underset{p}{\delta n}, \dots, \underset{n}{n}, \xi, dx, \dots, dx) \right) = (-1)^{(n-m)(n-1)} H_1 n_i \xi^i dA .$$
$$= 0$$

because ξ lies in the vector space spanned by m+1 independent vectors $\frac{\partial x^i}{\partial u^{\alpha}}$ $(\alpha=1,\dots,m)$ and n.

On the other hand the last term of the right-hand member of 1.4 becomes

(1.8)
$$\frac{\frac{1}{m!}\left((n,\dots,n,\delta\xi,\ dx,\dots,dx)\right)}{=(-1)^{(n-m)(n-1)}\frac{1}{2m}\left(\underset{\varepsilon}{L}g_{ij}\right)\frac{\partial x^{i}}{\partial u^{\alpha}}\frac{\partial x^{j}}{\partial u^{\beta}}g^{\alpha\beta}dA,$$

where $\lim_{\xi} g_{ij}$ is the Lie derivative of g_{ij} with respect to ξ ([14], p. 5).

From (1.6), (1.7) and (1.8), (1.4) is rewritten as follows

(1.9)
$$\frac{\frac{1}{m!}d\left((n,\dots,n,\xi,dx,\dots,dx)\right) = (-1)^{(n-m)(n-1)} \left\{ \underset{\varepsilon}{H_{1}n_{i}\xi^{i}}dA + \frac{1}{2m}(\underset{\varepsilon}{L}g_{ij})\frac{\partial x^{i}}{\partial u^{\alpha}}\frac{\partial x^{j}}{\partial u^{\beta}}g^{\alpha\beta}dA \right\}.$$

Integrating both members of (1.9) over the whole submanifold and applying Stokes' theorem, we obtain

$$\frac{1}{m!} \int_{\mathfrak{d}V^m} ((\underset{\varepsilon}{n,n}, \cdots, \underset{n}{n}, \xi, dx, \cdots, dx)) \\= (-1)^{(n-m)(n-1)} \left\{ \int_{V^m} \underset{\varepsilon}{H_1n_i} \xi^i dA + \frac{1}{2m} \int_{V^m} g^{*ij} \underset{\varepsilon}{L} g_{ij} dA \right\},$$

where ∂V^m means the boundary of V^m and g^{*ij} is $\frac{\partial x^i}{\partial u^{\alpha}} \frac{\partial x^j}{\partial u^{\beta}} g^{\alpha\beta}$. Making use of the fact that V^m is closed, we have

$$(\mathbf{I}'') \qquad \qquad \int_{\mathcal{V}^m} \frac{H_1 n_i \xi^i dA}{\xi} + \frac{1}{2m} \int_{\mathcal{V}^m} g^{*ij} L_{\xi} g_{ij} dA = 0 \,.$$

If the manifold \mathbb{R}^n assumes of constant Riemann curvature which includes an Euclidean space, then we consider the following differential form of m-1degree

(1.10)
$$\begin{array}{c} ((n,n,\dots,n,\xi,\underbrace{\delta n,\dots,\delta n}_{\xi},\underbrace{dx,\dots,dx}_{m-\nu-1})) \\ \stackrel{\text{def.}}{= \sqrt{g}} (n,n,\dots,n,\xi,\underbrace{\delta n,\dots,\delta n}_{\xi},dx,\dots,dx) \end{array}$$

for a fixed integer ν satisfying $m-1 \ge \nu \ge 1$.

As well-known, a submanifold V^m in \mathbb{R}^n has the following property:

$$b_{\epsilon}_{\alpha\beta;\tau} - b_{\epsilon}_{\alpha\tau;\beta} = -R_{ijkl} n^{i} \frac{\partial x^{j}}{\partial u^{\alpha}} \frac{\partial x^{k}}{\partial u^{\beta}} \frac{\partial x^{l}}{\partial u^{\tau}} \quad ([20], \text{ p. } 226),$$

where R_{ijkl} is the curvature tensor of R^n . Since R^n is of constant Riemann curvature, we have

(1.11)
$$n_{\xi}^{i}{}_{,\alpha;\beta}-n_{\xi}^{i}{}_{;\beta;\alpha}=0.$$

Consequently differentiating exteriorly the differential form (1.10), we have

$$d((\underbrace{n, n}_{\xi \ m+2}, \cdots, \underbrace{n}_{n}, \xi, \delta \underbrace{n, \cdots, \delta \underbrace{n}_{\xi}, dx, \cdots, dx})) = ((\delta \underbrace{n, n}_{\xi \ m+2}, \cdots, \underbrace{n}_{n}, \xi, \delta \underbrace{n, \cdots, \delta \underbrace{n}_{\xi}, dx, \cdots, dx})) + ((\underbrace{n, \delta \atop m+2}, \underbrace{n, k}_{n}, \xi, \delta \underbrace{n, \cdots, \delta \underbrace{n}_{\xi}, dx, \cdots, dx})) + \cdots + ((\underbrace{n, n}_{\xi \ m+2}, \cdots, \underbrace{n}_{n}, \xi, \delta \underbrace{n, \cdots, \delta \underbrace{n}_{\xi}, dx, \cdots, dx})) + ((\underbrace{n, n}_{\xi \ m+2}, \cdots, \underbrace{n}_{u}, \delta \underbrace{\xi, \delta \underbrace{n}_{\xi}, \cdots, \delta \underbrace{n}_{\xi}, dx, \cdots, dx})),$$

because $((n, n, \dots, n, \xi, \delta \delta n, \delta n, \dots, \delta n, dx, \dots, dx)) = 0$ from (1.11).

On substituting $n_{\xi}^{i}{}_{;a} = -b_{\xi}^{\beta} \frac{\partial x^{i}}{\partial u^{\beta}}$ into the first term of the right-hand member of (1.12), we get

(1.13)
$$\begin{array}{c} ((\delta_n, n, \cdots, n, \xi, \delta_n, \cdots, \delta_n, dx, \cdots, dx)) \\ = m! (-1)^{(n-m)(n-1)-\nu} H_{\nu+1} n_i \xi^i dA , \\ \end{array}$$

where $H_{\ell^{\nu+1}}$ denotes the $\nu + 1$ -th mean curvature of V^m with respect to the normal direction n^{ℓ} and if we indicate by k_1, k_2, \dots, k_m the principal curvatures of V^m for the normal vector n, $H_{\nu+1}$ is defined to be the $\nu+1$ -th elementary symmetric function of k_{ϵ} ($\alpha = 1, \dots, m$) divided by the number of terms, that is,

$$\binom{m}{\nu+1}H_{\nu+1} = \sum_{\alpha_1 < \alpha_2 < \cdots < \alpha_{\nu+1}} k_{\alpha_1} k_{\alpha_2} \cdots k_{\xi} k_{\alpha_{\nu+1}}.$$

Also, by virtue of (1.5) we can see that the vectors

$$n \times \delta_{m+2} \times n_{m+3} \times \cdots \times n_{n} \times \underbrace{\delta_{n} \times \cdots \times \delta_{n}}_{\substack{\xi \\ \nu \\ \nu}} \times \underbrace{dx \times \cdots \times dx}_{\substack{m-\nu-1 \\ m-\nu-1}},$$

$$n \times n_{\xi} \times \delta_{m+3} \times \cdots \times n_{n} \times \delta_{n} \times \cdots \times \delta_{n} \times dx \times \cdots \times dx,$$
...

and

$$\underset{\varepsilon}{n \times \underset{m+2}{n \times \cdots \times n}} \times \underset{n-1}{n \times \underset{n}{\delta n \times \delta n}} \times \underset{\varepsilon}{\delta n \times \cdots \times \delta n} \times dx \times \cdots \times dx$$

have the same direction to the covariant vectors n, n, \dots, n , \dots and n respectively. Thus we obtain

$$((\underbrace{n, \delta_{m+2}, n, \dots, n}_{\xi}, \underbrace{\delta_{n}, \dots, \delta_{t}}_{\xi}, \underbrace{\delta_{n}, \dots, \delta_{t}}_{\xi}, dx, \dots, dx)) = 0,$$

Y. Katsurada

$$((n, n, \delta_{\xi}, \dots, n, \xi, \delta_{n}, \dots, \delta_{\xi}, dx, \dots, dx)) = 0,$$

$$(1.14)$$

$$((n, n, \dots, n, \delta_{n}, \xi, \delta_{n}, \dots, \delta_{\xi}, dx, \dots, dx)) = 0,$$

because ξ lies in the vector space spanned by m+1 independent vectors $\frac{\partial x^i}{\partial u^{\alpha}}$ $(\alpha=1,\dots,m)$ and n.

From that the vector $\underset{\epsilon}{n \times n}_{m+2} \times \cdots \times \underset{n}{n \times \delta}_{n} \times \cdots \times \delta}_{n} \times dx \times \cdots \times dx$ is orthogonal to the normal vectors n, n, \cdots and n,and $\delta n^{i}_{\epsilon} = -b^{i}_{\epsilon} \frac{\partial x^{i}}{\partial u^{\beta}} du^{\alpha}$, the last term of the right-hand member of (1.12) becomes as follows

(1.15)
$$\begin{array}{c} ((n, n, \dots, n, \delta\xi, \delta n, \dots, \delta n, dx, \dots, dx)) \\ = m! (-1)^{(n-m)(n-1)-\nu} \frac{1}{2m} H_{\nu}^{\alpha\beta} L_{\xi} g_{\alpha\beta} dA \end{array}$$

where $\underset{\varepsilon}{L}g_{\alpha\beta} = (\underset{\varepsilon}{L}g_{ij}) \frac{\partial x^{i}}{\partial u^{\alpha}} \frac{\partial x^{j}}{\partial u^{\beta}}$ and

ч

$$H_{\varepsilon}^{\alpha\beta} = \frac{1}{(m-1)!} \varepsilon^{\alpha\alpha_1\cdots\alpha_{m-1}} \varepsilon^{\beta\beta_1\cdots\beta_{m-1}} b_{\alpha_1\beta_1}\cdots b_{\alpha_{\nu}\beta_{\nu}} g_{\alpha_{\nu+1}\beta_{\nu+1}}\cdots g_{\alpha_{m-1}\beta_{m-1}},$$

and $\varepsilon^{\alpha \alpha_1 \cdots \alpha_{m-1}}$ denotes the ε -symbol of the submanifold V^m . Accordingly we have

(1.16)
$$\frac{\frac{1}{m!}d\left((n, n, \dots, n, \xi, \delta n, \dots, \delta n, dx, \dots, dx)\right)}{=(-1)^{(n-m)(n-1)-\nu}\left\{\underset{\varepsilon}{H_{\nu+1}n_i\xi^i}dA + \frac{1}{2m}\underset{\varepsilon}{H_{\nu}}\underset{\varepsilon}{H_{\mu}}\underset{\varepsilon}{}_{\mu}g_{\alpha\beta}dA\right\}}.$$

Integrating both members of (1.16) over the whole submanifold V^m and applying Stokes' theorem, we have

$$\frac{1}{m!} \int_{\vartheta V^m} \left((n, n, \dots, n, \xi, \delta n, \dots, \delta n, dx, \dots, dx) \right) \\
= (-1)^{(n-m)(n-1)-\nu} \left\{ \int_{V^m} H_{\nu+1} n_i \xi^i dA + \frac{1}{2m} \int_{V^m} H_{\nu}^{\alpha\beta} L g_{\alpha\beta} dA \right\}.$$

Thus, for a closed orientable submanifold V^m we obtain

(II'')
$$\int_{V^m} \frac{H_{\nu+1}n_i\xi^i dA}{\xi^i} dA + \frac{1}{2m} \int_{V^m} \frac{H_{\nu}^{\alpha\beta}L}{\xi} g_{\alpha\beta} dA = 0.$$

If m=n-1, that is, V^m is the hypersurface in \mathbb{R}^n , the formulas (I'') and

176

(II'') are coincide with the formulas (I) and (II) given in the previous paper [8]. Especially if the vector n is coincide with the Euler-Schouten unit vector n at each point on V^m , then the formulas (I'') and (II'') become the formulas (I') and (II') given in the previous paper [12].

§ 2. The integral formulas concerning some special transformations. In this section, we shall discuss the formulas (I'') and (II'') for a special infinitesimal transformation. Let the group G of transformations be conformal, that is, ξ^i satisfies an equation: $Lg_{ij} \equiv \xi_{i;j} + \xi_{j;i} = 2\phi g_{ij}$ ([14], p. 32). Then we obtain

$$g^{*ij}_{\xi} L_{\xi} g_{ij} = 2m\phi$$
, $H_{\iota}^{\alpha\beta}_{\xi} L_{\xi} g_{\alpha\beta} = 2m\phi H_{\iota}$.

Therefore (I'') and (II'') are rewritten in the following forms:

$$(\mathbf{I}'')_{c} \qquad \qquad \int_{\mathcal{V}^{m}} \frac{H_{1}n_{i}\xi^{i}dA}{\xi^{i}dA} + \int_{\mathcal{V}^{m}} \phi dA = 0,$$

(II'')_c
$$\qquad \qquad \int_{\mathcal{V}^{m}} \frac{H_{\nu+1}n_{i}\xi^{i}dA}{\xi^{i}dA} + \int_{\mathcal{V}^{n}} \phi H_{\nu}dA = 0 \qquad (1 \leq \nu \leq m-1)$$

and we can see

$$(\mathbf{I}'')_{\mathbf{h}} \qquad \qquad \int_{V^{m}} \frac{H_{\mathbf{i}} n_{i} \xi^{i} dA + c \int_{V^{m}} dA = 0,}{(\mathbf{I}\mathbf{I}'')_{\mathbf{h}}} \qquad \qquad \int_{V^{m}} \frac{H_{\nu+1} n_{i} \xi^{i} dA + c \int_{V^{m}} H_{\nu} dA = 0}{(1 \leq \nu \leq m-1)^{2}}$$

in case of $\phi = \text{constant} (\equiv c)$ (G being homothetic), and

$$\begin{split} (\mathbf{I}^{\prime\prime})_{\mathbf{i}} & \int_{\mathcal{V}^{m}} \underset{\boldsymbol{\xi}}{H_{\mathbf{i}}} n_{i} \boldsymbol{\xi}^{i} dA = 0 \ , \\ (\mathbf{II}^{\prime\prime})_{\mathbf{i}} & \int_{\mathcal{V}^{m}} \underset{\boldsymbol{\xi}}{H_{\nu+1}} n_{i} \boldsymbol{\xi}^{i} dA = 0 \qquad (1 \leq \nu \leq m-1) \end{split}$$

in case of $\phi = 0$ (G being isometric).

Especially if our manifold \mathbb{R}^n is an Euclidean space \mathbb{E}^n and if ξ is the homothetic Killing vector field on \mathbb{E}^n with components $\xi^i = x^i$, x^i being rectangular coordinates with a point in the interior of V^m as origin in the space \mathbb{E}^n , then the orbits of the transformations generated by ξ are the lines through

²⁾ In this case, \mathbb{R}^n becomes an Euclidean space, because if \mathbb{R}^n with constant Riemann curvature admits an one-parameter group G of homothetic transformations, then either \mathbb{R}^n is \mathbb{E}^n or the group G is isometric.

the origin and we have

$$Lg_{ij} = 2g_{ij}.$$

Consequently, from $(I'')_h$ and $(II'')_h$ we obtain

(I*)
$$\int_{V^m} H_1 p dA + \int_{V^m} dA = 0,$$

(II*)
$$\int_{V^m} H_{\nu+1} p dA + \int_{V^m} H_{\nu} dA = 0,$$

where $p = n_i x^i$. This means that the formulas (I*) and (II*) are generalization of those formulas given by C. C. Hsiung [4] for a closed orientable hypersurface in an *n*-dimensional Euclidean space E^n .

§ 3. Some properties of a closed orientable submanifold related with a vector field. In this section we suppose again that the group G is conformal. Then we shall prove the following four theorems for a closed orientable submanifold V^m in a Riemannian manifold R^n with constant Riemann curvature.

Theorem 3.1. If in \mathbb{R}^n , there exists such a group G of conformal transformations as ρ is positive (or negative) at each point of V^m and if H_1 is constant, then every point of V^m is umbilic with respect to the normal vector n, where ρ denotes $n_i \xi^i$.

Proof. Multiplying the formula $(I'')_c$ by $H_1 = \text{const.}$, we have

$$\int_{V^m} \frac{H_1^2 \rho dA}{\xi} + \int_{V^m} \phi H_1 dA = 0.$$

On the other hand, from $(II'')_c$ we have

$$\int_{\mathcal{V}^m} \frac{H_2 \rho dA}{\varepsilon} + \int_{\mathcal{V}^m} \frac{\phi H_1 dA}{\varepsilon} = 0.$$

Consequently it follows that

$$\int_{\mathcal{V}^m} (H_1^2 - H_2) \mathcal{P} dA = 0.$$

From our assumption about ρ , this holds if and only if $H_1^2 - H_2 = 0$, since

$$H_{\varepsilon}^{2}-H_{\varepsilon}=\frac{1}{m^{2}(m-1)}\sum_{\alpha<\beta}(k_{\alpha}-k_{\beta})^{2}\geq 0.$$

Therefore at each point of V^m we obtain

178

$$k_1 = k_2 = \cdots = k_m$$

Accordingly every point of V^m is umbilic with respect to n.

Proof. Multiplying the formula $(I'')_c$ by $H_{\mu} = \text{const.}$, we obtain

(3.1)
$$\int_{\mathcal{V}^m} \frac{H_1 H_{\mathcal{V}} \rho dA}{\xi} + \int_{\mathcal{V}^m} \phi H_{\mathcal{V}} dA = 0$$

By vatue of $(II'')_c$ and (3.1), we have

$$\int_{\mathcal{V}^{m}} (\underbrace{H_{1}H_{\nu}}_{\xi} - \underbrace{H_{\nu+1}}_{\xi}) \mathcal{P} dA = 0 \; .$$

From our assumption, this holds if and only if $H_1H_{\nu}-H_{\nu+1}=0$, since

$$H_{\varepsilon}H_{\nu}-H_{\varepsilon}-H_{\varepsilon}=\frac{\nu!(m-\nu-1)!}{mm!}\sum_{\varepsilon}k_{\varepsilon_{1}}\cdots k_{\varepsilon_{\nu-1}}(k_{\varepsilon_{\nu}}-k_{\varepsilon_{\nu+1}})^{2}\geq 0.$$

Then at each point of V^m , we obtain

$$k_1 = k_2 = \cdots = k_m \, .$$

Accordingly every point of V^m is umbilic with respect to n.

Theorem 3.3. If in \mathbb{R}^n , there exists such a group G of conformal transformations as ρ is positive (or negative) at each point of V^m , for which $H_1\rho + \phi \ge 0$ (or ≤ 0) at all points of V^m , then every point of V^m is umbilic with respect to n.

Proof. If we express the formula $(I'')_c$ as follows

$$\int_{\mathcal{V}^m} (H_1 \rho + \phi) dA = 0 ,$$

then from our assumption we have the relation:

$$(3.2) \qquad \qquad \phi = -\frac{H_1}{\xi} \rho \,.$$

Substituting (3.2) into $(II'')_c$ for $\nu = 1$, we have

Y. Katsurada

$$\int_{V^m} (H_1^2 - H_2) \rho dA = 0 .$$

Thus, we can see the conclusion.

Theorem 3.4. If H_1 is positive (or negative) at all points of V^m and if R^n admits such a group G of conformal transformations as ϕ is positive (or negative), for which either $\rho \geq \frac{-\phi}{H_1}$ or $\rho \leq \frac{-\phi}{H_1}$ at all points of V^m , then every point of V^m is umbilic with respect to n.

Proof. The formula $(I'')_c$ is rewritten as follows

$$\int_{V^m} \frac{H_1}{\varepsilon} \left(\rho + \frac{\phi}{H_1} \right) dA = 0 \; .$$

By virtue of our assumptions $H_1 > 0$ (or < 0) and $\rho + \frac{\phi}{H_1} \ge 0$ (or ≤ 0) at all points of V^m , we have the following relation

(3.3)
$$\rho = -\frac{\phi}{H_1}$$
.

Substituting (3.3) into $(II'')_c$ for $\nu = 1$, we obtain

$$\int_{\mathcal{V}^m} \frac{\phi}{H_1} (H_1^2 - H_2) dA = 0 \quad ,$$

which holds if and only if $H_1^2 - H_2 = 0$. Thus we obtain the conclusion.

Remark I. If V^m is the hypersurface in \mathbb{R}^n , these four theorems are coincide with the theorems given in the previous paper [8]. Especially if the vector n is coincide with the Euler-Schouten unit vector n at each point of V^m , then these four theorems become those theorems given in the previous paper [12].

Remark II. In all these sections we have treated the normal unit vector n with respect to the vector field ξ and the mean curvature H_{ξ} . These are the notions due to R. E. Stong [21].

References

- H. LIEBMANN: Ueber die Verbiegung der geschlossenen Flächen positive Krümmung, Math. Ann. 53 (1900), 91-112.
- [2] W. SÜSS: Zur relativen Differentialgeometrie V., Tôhoku Math. J., 30 (1929), 202-209.

180

- [3] T. BONNESEN und W. FENCHEL: Theorie der Konvexen Körper, (Springer, Berlin 1934).
- [4] C. C. HSIUNG: Some integral formulas for closed hypersurfaces, Math. Scand. 2 (1954), 286–294.
- [5] H. HOPF: Ueber Flächen mit einer Relation zwischen den Hauptkrümmungen, Math. Nachr. 4 (1951), 232-249.
- [6] A. D. ALEXANDROV: Uniqueness theorems for surfaces in the large, V. Vestnik Leningrad University 13 (1958), 5-8 (Russian, with English summary).
- [7] A. D. ALEXANDROV: A characteristic property of spheres, Ann. di Mat. p. appl., 58 (1962), 303-315.
- [8] Y. KATSURADA: Generalized Minkowski formulas for closed hypersurfaces in Riemann space, Ann. di Mat. p. appl., 57 (1962), 283-293).
- [9] Y. KATSURADA: On a certain property of closed hypersurfaces in an Einstein space, Comment. Math. Helv., 38 (1964), 165–171.
- [10] Y. KATSURADA: On the isoperimetric problem in a Riemann space, Comment. Math. Helv., 41 (1966), 18-29.
- [11] Y. KATSURADA and T. NAGAI: On some properties of a submanifold with constant mean curvature in a Riemann space, Jour. Fac. Sci. Hokkaido Univ., 20 (1968), 79-89.
- [12] Y. KATSURADA and H. KÔJYO: Some integral formulas for closed submanifolds in a Riemann space, Jour. Fac. Sci. Hokkaido Univ., 20 (1968), 90-100.
- [13] K. YANO: Closed hypersurfaces with constant mean curvature in a Riemannian manifold, J. Math. Soc. Japan, 17 (1965), 333-340.
- [14] K. YANO: The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957.
- [15] T. ÔTSUKI: Integral formulas for hypersurfaces in a Riemannian manifold and their applications, Tohoku Math J. 17 (1965), 335-348.
- [16] M. TANI: On hypersurfaces with constant k-th mean curvature, Kodai Math. Sem. Rep., 20 (1968), 94–102.
- [17] K. NOMIZU: I. Hypersurfaces with constant mean curvature in S^n , to appear.
- [18] K. NOMIZU: II. Surfaces with constant mean curvature in S^3 , to appear.
- [19] M. OKUMURA: Compact orientable submanifold of codimension 2 in an odd dimensional sphere, Tôhoku Math. J., 20 (1968), 8-20.
- [20] J. A. SCHOUTEN: Ricci-Calculus, (second edition) (Berlin 1954).
- [21] R. E. STONG: Some Differential Geometric Properties of Submanifolds of Euclidean Spaces, Proc. Amer. Math. Soc., 12 (1961), 343-349).

Department of Mathematics, Hokkaido University

(Received Nov. 26, 1968)