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Introduction. H. Liebmann (1900) [1]", proved the following theorem :

The only ovaloids with constant mean curvature H in an Euclidean space
E? are the spheres.

Extension of this theorem to a convex hypersurface in an 7-dimensional
Euclidean space E™ has been given by W. Siiss (1929) [2], (cf. also [3], p.
118, and [4]). Then H. Hope (1951) [5], and A. D. Alexandrov (1958) [6],
have shown the results that the convexity is not necessary for the validity of
the Liebmann-Siiss theorem.

Recently the analogous problem for closed hypersurfaces in an 7-dimen-
sional Riemannian manifold R™ has been discussed by the present author [8],
[9], [10], A. D. Alexandrov [7], K. Yano [13], T. Otsuki [15], M. Tani [16],
and K. Nomizu [17], [18]. And also for a submanifold of codimension 2 in
an odd dimensional sphere, M. Okumura has treated the analogue [19].

In the previous papers [11], [12], which are common works by T. Nagai,
H. Koéjyo and the present author, we have given a certain extension of this
problem to an m-dimensional closed submanifold V™ (1<m=<n—1) in the -
dimensional Riemannian manifold R* admitting a vector field £&. However we
have given there a restriction such that at each point on V™, the vector &

lies in the vector space spanned by the tangent space of V” and the Euler-

Schouten vector 7.
ol

The purpose of this paper is to give more general results except this
restriction.

§ 1. Some integral formulas for a submanifold. We suppose an 7n-
dimensional Riemannian manifold R* (n=3) of class C” (r=3) wich admits an

one-parameter continuous group G of transformations generated by an infini-
tesimal transformation

(1.1) it =zt + &(x)or

1) Numbers in brackets refer to the references at the end of the paper.
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(where x’ are local coordinates in R™ and & are the components of a con-
travariant vector &). If & is a Killing vector, a homothetic Killing vector,
a conformal Killing vector, etc. ([14], p. 32), then the group G is called
isometric, homothetic, conformal, etc. :

In R”, we consider a domain M. If the domain M is simply covered by
the orbits of the transformations generated by & and & is everywhere of class
C” and #0 in M; then we call M a regular domain with respect to the
vector field £. :

Let us denote by V” an m-dimensional closed orientable submanifold of
class C® imbedded in a regular domain M with respect to the vector field &,
locally given by

(1. 2) xt =z (u) i=1.n

a=1,---,m,
where u* are local coordinates of V™. Throughout the present paper Latin
indices run from 1 to z# and Greek indices from 1 to m. We assume that
at any point on V™ the vector £ is not on its tangent space.

We shall indicate by #n’ (p=m+1,---,n) the contravariant unit vectors

»
normal V™ and suppose that they are mutually orthogonal. Let 7 be in the
. §
ox’
ua
and be the unit vector normal V™. Then, we may consider n as one of the
§

vector space spanned by 72 +1 independent vectors (=1, ---,m) and &

unit normal vectors of V™, that is, n*=n".
m+1 &

Let us consider a differential form of m—1 degree at a point of V™,
defined by

((na n, -, N, 57 dxa Tty dx))d;fﬂl? (7’2, e, N, 'S’ dxa Y dx)
n S——— 3 n

(1. 3) m

= ‘/?((7% A, E’ oz o oz
& n

dus’ 7 Qutms

)du“x/\ e /\du“mnx’

where the symbol ( ) means a determinant of order n whose colums are the
components of respective vectors, dx is a displacement along V™, g is the
determinant of the metric tensor g¢,; of R*. Then, the exterior differential of
the differential form (1. 3) divided by = ! becomes as follows

%d ((na n, -, n, S’ dxa 9dx)) = _]:*‘{((5”’ n,---,n, 87 dx’ 9dx))
m! ¢ mi2 n m! ¢ mi2 m
(1. 4) +((n9 5”, e, n, 59 dxa '“>dx))+”'

é m+2 n

—i—((zz, eey 73,1571, &, dx, ---,dx))+ ((n, ---, n, 6&, dz, ---,dx))}

§
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bl

where dv means v,, du® and the symbol “;” the operation of D-symbol due

>

to van der Waerden-Bortolotti ([20] p. 254).
Let C% be f} n’n; (n =n) and ¢ (1=1,---,m) mutually orthogonal unit
§ 2

p=m-+1p p m 41
tangent vectors of V™. Then we have

k m %
n?a = C?;knj ax _ - ij;knj ax ii .
P »  Ju” =1\2""p  Qu* /i
Therefore we may put
n¢ =7 axi
p p ou
Since we have
axi i_. axi nj
P A W
we obtain
(1.5) nt, = —bp0X (p=¢&, m+2,---,n)
p ou’

»

Z

where &7 means ¢%b,;, and baﬁE( ox n;, and ¢™ is the contravariant metric
» » p \ ou” ).zp

tensor of V™.

From (1.5) the first term of the right-hand member of (1.4) becomes

(1’ 6) i ((572’ n,-,n, E, dxa Tt dx)) = (_1)(n—m)(n—l)HnieidA ’
¢é n § ¢

m! m+2
where dA is the area element of V™ and H, means the first mean curvature
3
of V™ with respect to the normal direction 7’. Similarly, for every integer

s

P satisfying m+2<p<n we have

1 (n, -+, 0m, -+, m, & dzx, -+, dx)) = (—1)* ™" VH ntdA .
(1. 7) m! e P n » p
=0
Z
because & lies in the vector space spanned by m+1 independent vectors gx
ua’

(a=1,---,m) and .
&
On the other hand the last term of the right-hand member of 1.4 becomes

L ((n; N, 55’ dx, ) dx))

|
1s ™ oA
— (_ 1)(n—m)(n7—1)_“‘1___(L QM) ox ox’

_ “*dA ,
2m ¢ ou* ou’ g
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where L g,; is the Lie derivative of ¢,; with respect to & ([14], p. 5).
3
From (1.6), (1.7) and (1. 8), (1.4) is rewritten as follows

___d(( o1, &, dx, o, da)) = (— 1) {Hin g'd A
1.9) m! n ¢ ¢

4 1 (Lg )ax ox?

2m du out

gdA} .

Integrating both members of (1.9) over the whole submanifold and ap-
plying Stokes’ theorem, we obtain

LS (72, -1, & dx, -+, dix)

m‘ ap™ & m+2

=<—1)<"-m><"—1>{§ Hn&'dA + -1 S g*“LgﬁdA},
A 2m Jym ¢
ox® ox?

where 9 V™ means the boundary of V™ and ¢** is
ou" uf

~—g*®. Making use

of the fact that V™ is closed, we have

) | Bngaar - { oLeda=o.
p & ¢ 2m i 3
If the manifold R™ assumes of constant Riemann curvature which includes
an Euclidean space, then we consider the following differential form of m—1
degree

((71, n,:--n, 59 571, R 5”7 dxa '“,dx))
(1. 10) " \E——.ﬂ——e' ml—_’

b4

‘/g ( ’ s Tty 7, Ea 6”5"',571’ dx""adx)
n § §

2

for a fixed integer v satisfying m—1=v=1.
As well-known, a submanifold V™ in R™ has the following property :

ox? ox* ox’
Oupir—0upss = — Ryjuin’ 20], p. 226),
Dapsr ™ Jarss igxill ou" ok ow ([20], p )

where R,;.; is the curvature tensor of R*. Since R" is of constant Riemann
curvature, we have

(1.11) 7 ip— e =0 .

3 3

Consequently differentiating exteriorly the differential form (1. 10), we have



Closed Submanifolds with Constant v-th Mean Curvature Related 175

d((n,n, -, n ¢ on, -, on,dz, -, dx))
n 3 &

=((0n,n, -, n, & on, -, on, dzx, -+, dx))
n 3 é

§ m+2

(1' 12) +((n9 on y "ty N, E, 6”: MY 571, dx’ e dx))
& m+2 n 3 é
+ e +((7’l, n,--., 57’1, E’ 6729 B 571, dx’ “"dx))
§ m+2 n 3 3

+(n, ;- 7, o0&, 572, -, on,dzx, ---,dx)),
é

§ m *2
because ((n, 7 , -+, n, & don, on, .-+, én, dx, ---,dx))=0 from (1.11).
n 3 3 §

& m+2
ox’

24P

On substituting #°,= —5&° into the first term of the right-hand mem-
& 3

ber of (1.12), we get

(on,n ,---,n, & on, -+, on,dzx, ---,dx))
1.13) fmrzom € ¢
( ) — m!(_1)(n—7l1,)(n~—1)7qu+1n¢$idA R
e ¢
where II,H denotes the v+ 1-th mean curvature of V™ with respect to the

normal dlrectlon n and if we indicate by kl, kz, e, k the principal curvatures

of V™ for the normal vector n H be1 1S deﬁned to be the v+ 1-th elementary

symmetric function of %, (a = 1 m) divided by the number of terms, that is,
¢ ,
m
H,, A6 = ok, Ry .
<V+1) P a.<a2<Z:~-~<a,+, £t

Also, by virtue of (1.5) we can see that the vectors

RXON X N X XAXnX- - xonxdrx --xdx,
é m+2 m+3 n 13 & _—,__l_g
—_——— m—y—

»

X N XON X" XNXNnX - xonxdrx- -xdx,
& §

m+2 m+3 n &

and

NX N XX NXONXINX - XNXArX -+ Xdx
13 13

m+2 n—1 7 '3

have the same direction to the covariant vectors n, =

,--- and » respectively.
m+2 m+3 n

Thus we obtain

((n,5 n,n,--,n, ‘5’ 5”; "’,(772,6?123, ---,dx))=0,

3 m+2 m+3 n & &
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(n,n,om,,né&on,-,ondx, - ,dx)=0,
n & 3

& m+2 m+3

(1. 14)
(n, n,--, n,onéon,- -, ondzx, ,dx)=0,
n-1 n- 3 é

L]
because £ lies in the vector space spanned by 72+ 1 independent vectors

o

u
(=1, ---,m) and n.
3
From that the vector nx n X+~ Xnuxdnx- - -xonxdxrx---xdx is or-
é m+2 n 3 13
ox’

thogonal to the normal vectors =, n,--- and n, and on’= —25] Wdua’ the
& m+2 n 3 3 U

last term of the right-hand member of (1.12) becomes as follows

((n, n,---,n, 68 én,---,0n,dx, -, dx))
& m+2 n H &

1. 15
( ) =m! (“1)“’“%)("41)*"—1 HLg..dA,
: 2m ¢ ¢
i J
where Lg.;=(Lg,,) LY,
¢ ¢ ou* ou’
(R S S S, g
3 (m_l) ! § “1% & auﬁy a”+lﬁ”+l am_lﬁm_l b4

and ¢**m-1 denotes the e-symbol of the submanifold V™. Accordingly we
have

—d(n,n,-,né on, -, 0n,dx, --+,dx))
é 2 n & &
(1.16) ~
— (—1)r-mm-Ds {H,andA v 1 per gaﬁdA} .
¢ ¢ 2m ¢ ¢

Integrating both members of (1.16) over the whole submanifold V™ and
applying Stokes’ theorem, we have

...1_S ((n’ n, N, 8’ 5n,...,5n’ dx’...,dx))
m! Jopm & me2 n ¢ ¢
=<—1><”-m><”-“-v{g H,.ngdA +—1—S HL gapdA}.
pn & € 2m Jpm e ¢
Thus, for a closed orientable submanifold V™ we obtain
ar) S H,.ng'dA +LS Hs*Lg,,dA=0.
ym € & 2m )y ¢ &

If m=n—1, that is, V™ is the hypersurface in R*, the formulas (I"") and
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(I") are coincide with the formulas (I) and (II) given in the previous paper
[8]. Especially if the vector 7 is coincide with the Euler-Schouten unit vector

é

n at each point on V™, then the formulas (I") and (II”) become the formulas
E
(I'’) and (II') given in the previous paper [12].

§ 2. The integral formulas concerning some special transformations.
In this section, we shall discuss the formulas (I”) and (II”) for a special in-
finitesimal transformation. Let the group G of transformations be conformal,
that is, & satisfies an equation: Lg,;=¢&,;,+£&,,=2¢g,, ([14], p. 32). Then

& .

we obtain

g*ZjL gi; = 2m¢ 5 H,{'ﬁLgnﬂ = 2m¢H,, .
§ 3 3 §

Therefore (I') and (II") are rewritten in the following forms:

(1), § Hng'dA +S $dA =0,
pm & & p
(I1”), S H,.né'dA + S SHAA =0  (l<v<m—1)
pn & é p &
and we can see
T, S HungdA+ cS dA =0,
pn &€ ¢ y
), S . nedA +cS HdA=0  (l<v=m—1)?
ym § 3 pr é
in case of ¢=constant (=c) (G being homothetic), and
), S Hng'dA =0,
y™ & ¢
1y, S H.on#dA=0  (1=v=m—1)
pm & §

in case of =0 (G being isometric). _\

Especially if our manifold R” is an Euclidean space E” and if & is the
homothetic Killing vector field on E” with components & =z¢ z* being rect-
angular coordinates with a point in the interior of V™ as origin in the space
E”, then the orbits of the transformations generated by & are the lines through

2) In this case, R* becomes an Euclidean space, because if R” with constant Riemann

curvature admits an one-parameter group G of homothetic transformations, then either R»
is E» or the group G is isometric.



178 Y. Katsurada

the origin and we have

%g” =20, .

Consequently, from (I"), and (II"’), we obtain

(I%) S HlpdA+S dA =0,
V~n é Vm
(I1%) S H,..pdA +S HdA =0,

where p=n,2*. This means that the formulas (I*) and (I*) are generalization
3

of those formulas given by C. C. Hsiung [4] for a closed orientable hyper-

surface in an 7n-dimensional Euclidean space E”.

§ 3. Some properties of a closed orientable submanifold related
with a vector field. In this section we suppose again that the group G is
conformal. Then we shall prove the following four theorems for a closed
orientable submanifold V™ in a Riemannian manifold R™ with constant Rie-
mann curvature.

Theorem 3.1. If in R*, there exists such a group G of conformal
transformations as P is positive (or negative) at each point of V™ and if H,
3

is constant, then every point of V™ is umbilic with respect to the normal
vector n, where P denotes n,t*.
[ &

Proof. Multiplying the formula (I'”), by H, =const., we have
&
S deA+S SH,dA =0.
g 3 i &
On the other hand, from (II"”), we have

g HpdA +S SH,dA =0 .

py & yr &

Consequently it follows that

S (H:—H,)PdA =0 .
3

me

From our assumption about @, this holds if and only if H?— H,=0, since
3 &

L sh—kyzo0.

Hf—HZ = -
¢ ¢ mi(m—1) s ¢ ¢

Therefore at each point of V™ we obtain
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k1=k2=“'=km.
é 3 &

Accordingly every point of V™ is umbilic with respect to 7.
&
Theorem 3.2. If in R*, there exists such a group G of conformal
transformations as P is positive (or negative) at each point of V™, and if

the principal curvatures ki, k,, -+, k, at each point of V™ are positive and
§ [ §

H, is constant for any v (1<v<m—1), then every point of V™ is umbilic

3

with respect to the normal vector n.
§

Proof. Multiplying the formula (I"), by H,=const., we obtain
3

(3.1) S H,H.,edA +S SH.AA =0 .
el 3

pyn & ¢

By vatue of (II”), and (3.1), we have

S (H\H,—H,.,)PdA =0.
14 3

n & §

From our assumption, this holds if and only if H\H,—H,,,=0, since
& ¢ &

! gy ——
HH,—H,, =2m=v ”’Zkamka,_,(ka—
& ¢ 3 3 §

mm! ’
Then at each point of V™, we obtain

kh=k=--=k,.

é § §
Accordingly every point of V™ is umbilic with respect to 7.

Theorem 3.3. If in R, there exists such a group G of conformal
transformations as P is positive (or negative) at each point of V™, for which
Hp+¢=0 (or =0) at all points of V™, then every point of V™ is umbilic
&

with respect to n.
2

Proof. If we express the formula (I"), as follows
S (Hpo+¢)dA =0,
ym™ &

then from our assumption we have the relation:

(3. 2) ¢= "‘I;IIP.

Substituting (3. 2) into (II"), for v=1, we have
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S (H?—H,)pdA =0 .

ym € §
Thus, we can see the conclusion.
Theorem 3.4. If H, is positive (or negative) at all points of V™ and
Falle
if R admits such a group G of conformal transformations as ¢ is positive

(or negative), for which either P= H¢ or P < H¢ at all points of V™, then

1 1
& §

every point of V™ is umbilic with respect to n.
3

Proof. The formula (I”), is rewritten as follows

S H1<p+-ﬂ>dA —0.
pm § Hl
é
By virtue of our assumptions ;>0 (or <0) and P+———¢-— =0 (or <0) at all
¢ 1

points of V™, we have the following relation

: N
3.3) . . P i

3
Substituting (3. 3) into (II"), for v=1, we obtain

¢ -(Hi—H,)dA =0
SV”‘ H1 ) ’

which holds if and only if H?—H,=0. Thus we obtain the conclusion.
§ é

Remark I. If V™ is the hypersurface in R”, these four theorems are
coincide with the theorems given in the previous paper [8]. Especially if the
vector 7 is c01nc1de with the Euler-Schouten unit vector n at each point of
Vm, then ‘these four theorems become those theorems glven in the previous
paper [12].

Remark II. In all these sections we have treated the normal unit vector
n with respect to the vector field £ and the mean curvature H These are

the notions due to R. E. Stong [21].
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