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Closed surfaces with bounds on their Willmore energy

ERNST KUWERT AND REINER SCHÄTZLE

Abstract. The Willmore energy of a closed surface in R
n is the integral of its

squared mean curvature, and is invariant under Möbius transformations of R
n .

We show that any torus in R
3 with energy at most 8π − δ has a representative

under the Möbius action for which the induced metric and a conformal metric
of constant (zero) curvature are uniformly equivalent, with constants depending
only on δ > 0. An analogous estimate is also obtained for closed, orientable

surfaces of fixed genus p ≥ 1 in R
3 or R

4, assuming suitable energy bounds
which are sharp for n = 3. Moreover, the conformal type is controlled in terms
of the energy bounds.

Mathematics Subject Classification (2010): 53A05 (primary); 53A30, 53C21,
49Q15 (secondary).

1. Introduction

For an immersed surface f : # → Rn the Willmore functional is defined as the

integral

W( f ) =
1

4

∫

#

| $H |2 dµg,

where $H is the mean curvature vector, g = f ∗geuc is the pull-back metric and µg

is the induced area measure on #. The Gauß equation says that

K =
1

2
(| $H |2 − |A|2) =

1

4
| $H |2 − 1

2
|A◦|2, (1.1)

where Ai j = A◦
i j + 1

2
$Hgi j is the vector-valued second fundamental form and K is

the sectional curvature of g. In the case when # is a closed, orientable surface of

genus p, the Gauß-Bonnet theorem therefore implies the identities

W( f ) =
1

4

∫

#

|A|2 dµg + 2π(1− p) =
1

2

∫

#

|A◦|2 dµg + 4π(1− p). (1.2)

Both authors were supported by the Deutsche Forschungsgemeinschaft via DFG Forschergruppe
469, and by the Centro di Ricerca Matematica Ennio De Giorgi during a visit in Pisa.

Received October 12, 2010; accepted in revised form March 10, 2011.



606 ERNST KUWERT AND REINER SCHÄTZLE

We denote by βnp the infimum of the Willmore functional among closed, orientable

surfaces f : # → Rn of genus p. It is well-known that βn0 = 4π with round

spheres as unique minimizers. For p ≥ 1 we have βnp > 4π by the analysis of

L. Simon [13]. We put

β̃np = min
{

4π +

k
∑

i=1

(βnpi − 4π) : 1 ≤ pi < p,

k
∑

i=1

pi = p
}

, (1.3)

where β̃n1 = ∞, and define the constants

ωn
p =

{

min(8π, β̃3p) for n = 3,

min(8π, β̃4p,β
4
p + 8π

3
) for n = 4.

(1.4)

The main result of this paper is the following bilipschitz estimate. As the Will-

more functional is invariant under the Möbius group of Rn , i.e. under dilations and

inversions, the choice of the Möbius transformation in the statement is essential.

Theorem 1.1. For n = 3, 4 and p ≥ 1, let C(n, p, δ) be the class of closed, ori-

entable, genus p surfaces f : # → Rn satisfyingW( f ) ≤ ωn
p − δ for some δ > 0.

Then for any f ∈ C(n, p, δ) there is a Möbius transformation φ and a constant

curvature metric g0, such that the metric g induced by φ ◦ f satisfies

g = e2ug0 where max
#

|u| ≤ C(p, δ) < ∞.

We have βnp < 8π as observed by Pinkall and independently Kusner, see for

example [6], and βnp < β̃np from [1]. Thus C(n, p, δ) is nonempty at least for

small δ > 0. The stereographic projection of the Clifford torus into R3 has en-

ergy 2π2 < 8π = ω31 and is conjectured to be the minimizer for p = 1, com-

pare [11]. We remark that we would have ωn
p = 8π once we knew that βnq ≥ 6π

for 1 ≤ q < p and β4p ≥ 16π/3 for n = 4. It will be shown that our energy

assumptions are sharp for n = 3, that is the conclusion of the theorem fails if ω3p
is replaced by any bigger constant. Combining the estimate in Theorem 4.2 with

Mumford’s compactness lemma we prove the following application.

Theorem 1.2. For n ∈ {3, 4} and p ≥ 1, the conformal structures induced by

immersions f in C(n, p, δ) are contained in a compact subset K = K (p, δ) of the

moduli space.

In particular as ω41 ≥ 20π/3 we concludeW( f ) > 2π2 for all tori f : # →
R4 whose conformal structure is sufficiently degenerate. A straightforward second

application of Theorem 1.1 is a compactness theorem, which will be stated in our

forthcoming paper [8]. There the problem of minimizing the Willmore functional

with prescribed conformal type is addressed.
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We now briefly summarize the contents of the paper. In Section 2 we review a

version of the approximate graphical decomposition lemma on annuli, due to L. Si-

mon [13]. In Section 3 we present the global estimate of the conformal factor, under

certain technical assumptions. The choice of the Möbius transformation is carried

out in Section 4, and the proof of Theorem 4.1 is then completed by verifying the

assumptions from Section 3. In Section 5 we discuss the bound for the conformal

type and the optimality of the constant ωn
p. Our results rely on estimates for surfaces

of the type of the plane due to S. Müller and V. Šverak [10]. The version needed is

presented in the final Section 6.

ACKNOWLEDGEMENTS. The main ideas of this paper were developed during a

joint visit at the Centro di RicercaMatematica Ennio De Giorgi, Pisa. It is a pleasure

to thank for the hospitality and the fruitful scientific atmosphere.

2. Preliminaries

Here we collect some results from the work of L. Simon [13], starting with conse-

quences of the monotonicity identity. For a proper immersion f : # → B̺(0) ⊆
Rn of an open surface # and any σ ∈ (0, ̺), we have by (1.3) in [13] the bound

σ−2µ(Bσ (0)) ≤ C
(

̺−2µ(B̺(0)) + W( f, B̺(0))
)

, (2.1)

where µ = f (µg) is the pushforward area measure and

W( f, B̺(0)) =
1

4

∫

B̺(0)

| $H |2 dµ.

We should really integrate over f −1(B̺(0)) with respect to µg, but the pullback is

omitted for convenience; in fact the notation can be justified by considering µ as a

2-varifold with square integrable weak mean curvature as in the appendix of [7]. If

# is compact without boundary we may let ̺ ր ∞ in (2.1) to get

σ−2µ(Bσ (0)) ≤ CW( f ) for all σ > 0. (2.2)

Moreover, the multiplicity of the immersion at 0 is just the 2-density of µ and

satisfies the Li-Yau inequality, see Theorem 6 in [9],

θ2(µ, 0) ≤ 1

4π
W( f ). (2.3)

We will need the following version of the approximate graphical decomposition

lemma, see Lemma 2.1 and [13, pages 312–315].
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Lemma 2.1. For any * < ∞ there exist ε0 = ε0(n,*) > 0 and C = C(n,*) <

∞ such that if f : # → B̺(0) ⊆ Rn is a proper immersion satisfying

µ(B̺(0) − B̺/2(0)) ≤ *̺2 and

∫

B̺(0)−B̺/2(0)

|A|2 dµ ≤ ε2 for ε < ε0,

(2.4)

then the following statements hold:

(a) Denote by Ai , i = 1, . . . ,m, those components of f −1(B7̺/8(0) − B5̺/8(0)
)

which extend to ∂B9̺/16(0). There exist compact subdiscs P1, . . . , PN ⊆ # with

N
∑

j=1

diam f (Pj ) < Cε1/2̺,

such that on each Ai − ⋃N
j=1 Pj the immersion is a ki -valued graph for ki ∈ N,

intersected with B7̺/8(0) − B5̺/8(0), over some affine 2-plane. Furthermore

M :=

m
∑

i=1

ki ≤ C. (2.5)

(b) There is a set S ⊆ (5̺/8, 7̺/8) of measureL1(S) > 3̺/16, such that for σ ∈ S

the immersion is transversal to ∂Bσ (0), and for each Ŵi
σ := Ai ∩ f −1(∂Bσ (0)

)

we have
∣

∣

∣

∫

Ŵiσ

κg ds − 2πki

∣

∣

∣
≤ Cεα where α = α(n) > 0. (2.6)

Furthermore, the restriction of f to Aiσ := Ai ∩ f −1(Bσ (0)) has a C1,1 exten-

sion f̃ : Ãiσ → Rn , where Ãiσ is obtained by attaching a punctured disc E iσ
to Aiσ along Ŵi

σ , such that f̃ is a flat ki -fold covering of an affine 2-plane L i
outside B2σ (0) and has curvature bounded by

∫

E iσ

| Ã|2 dµ̃ ≤ Cε2. (2.7)

(c) If we assume in addition to (2.4) that

∫

B̺(0)−B̺/2(0)

|x⊥|2

|x |4
dµ(x) < ε2, (2.8)

where ⊥ denotes the projection in the normal direction along the immersion,

then f −1(B7̺/8(0) − B5̺/8(0)
)

=
⋃m

i=1 A
i and we have the estimate

µ(B7̺/8(0) − B5̺/8(0)) ≥ (1− Cε2α)Mπ
(

(7̺/8)2 − (5̺/8)2
)

. (2.9)
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If the assumptions of Lemma 2.1 hold with ̺/2 replaced by some r ∈ (0, ̺/2], that

is µ
(

B̺(0) − Br (0)
)

≤ *̺2 and

∫

B̺(0)−Br (0)

|A|2 dµ,

∫

B̺(0)−Br (0)

|x⊥|2

|x |4
dµ(x) < ε2, (2.10)

then by inequality (2.1) the assumptions of Lemma 2.1 are satisfied with ̺ replaced

by any σ ∈ [2r, ̺]. The resulting graphical decompositions have the same multi-

plicity M by continuity. Choosing σν = (5/7)ν̺ and summing over the inequalities

(2.9) we find

µ(B7̺/8(0) − B5r/4(0)) ≥ (1− Cε2α)Mπ
(

(7̺/8)2 − (5r/4)2
)

. (2.11)

The results in [13] are stated only for embedded surfaces, however they extend

to immersions simply by considering a pertubation fλ = ( f, λ f0) : # → Rn ×
R3, where f0 : # → R3 is some differentiable embedding. The fλ satisfy the

assumptions of Lemma 2.1 for a slightly bigger constant *, hence they admit a

graphical decomposition as stated over some 2-planes inRn×R3, which are almost

horizontal for λ sufficiently small. By slightly tilting the planes one obtains the

desired almost graphical decomposition for the given immersion f , with power

α = 1/(4n + 6) instead of 1/(4n − 6) which is the constant in [13, Lemma 2.1].

3. Oscillation estimates

In this section we present the main PDE argument for the estimate of the conformal

factor.

Theorem 3.1. Let f : # → Rn , n = 3, 4, be an immersion of a closed, orientable

surface # of genus p ≥ 1 withW( f ) ≤ *. Assume that f (#) ⊆ ⋃K
k=1 B̺k/2(xk)

with ̺l/̺k ≤ R, such that for all k = 1, . . . , K and some δ > 0 the following

conditions hold:
∫

B̺k
(xk)

|K | dµ < 8π − δ for n = 3, (3.1)

∫

B̺k
(xk)

|K | dµ +
1

2

∫

B̺k
(xk)

|A◦|2 dµ < 8π − δ

∫

B̺k
(xk)

|A◦|2 dµ ≤ 8π − C0ε
2















for n = 4, (3.2)

∫

B̺k
(xk)−B̺k/2(xk)

|A|2 dµ < ε2. (3.3)

Denoting by Dk,α
σ , 1 ≤ α ≤ mk , the components of f

−1(Bσ (xk)) which meet

∂B9̺k/16(xk), we further assume for all σ ∈ [5̺k/8, 7̺k/8] up to a set of measure
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at most ̺k/16 that

∫

D
k,α
σ

K dµg > −2π + δ for all α = 1, . . . ,mk . (3.4)

Then for ε ≤ ε(*, δ) and C0 ≥ C0(*), there is a constant curvature metric g0 =

e−2ug such that
max

#
|u| ≤ C(*, R, K , p, δ).

Proof. By rescaling we may assumeµg(#) = 1. We take g0 = e−2ug as the unique
conformal, constant curvature metric also with µg0(#) = 1, which means

−2gu + Kg0 e
−2u = Kg where Kg0 =

2πχ(#)

µg0(#)
= 4π(1− p). (3.5)

Clearly the condition µg0(#) = µg(#) implies

u(p) = 0 for some p ∈ #, (3.6)

and hence it suffices to prove the estimate

osc#u ≤ C(*, R, K , p, δ). (3.7)

The boundW( f ) ≤ * and the identity (1.2) imply

∫

#

|A|2 dµg ≤ C(*, p), (3.8)

and the Li-Yau inequality (2.2) yields

̺−2µ(B̺(x)) ≤ C(*) for all B̺(x) ⊆ R
n. (3.9)

The set of all σ ∈ [5̺k/8, 7̺k/8] satisfying both (3.4) and the inequality

∫

∂Bσ (xk)

|A|2 ds :=

∫

∂
[

f −1(Bσ (xk))
]
|A|2 dsg ≤ 16ε2/̺k (3.10)

has measure at least ̺k/8. Thus we can choose σk, σ
′
k ∈ [5̺k/8, 7̺k/8] satisfying

(3.4), (3.10) and the conclusions of Lemma 2.1(b), such that σk − σ ′
k > ̺k/16.

Since f (#) ⊆ ⋃K
k=1 B̺k/2(xk) we have

# =
⋃

k,α

D
k,α

σ ′
k

. (3.11)

From the Gauß-Bonnet theorem and (3.4), we obtain for each component

∫

∂D
k,α
σk

κg dsg = 2πχ(Dk,α
σk

) −
∫

D
k,α
σk

K dµg < 2π
(

χ(Dk,α
σk

) + 1
)

− δ.
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We conclude that each Dk,α
σk

is a disc, and that the multiplicity of its boundary

entering in (2.6) equals one, which means that all the graphs in Lemma 2.1(a) are

singlevalued. Again by Lemma 2.1(b), we extend f |
D
k,α
σk

to an immersion fk,α :

#k,α → Rn such that

∫

#k,α−D
k,α
σk

|A fk,α |
2 dµ fk,α ≤ Cε2. (3.12)

Here Dk,α
σk

⊆ #k,α
∼= R2 and fk,α is the standard embedding of a single plane

outside B2σk (xk) ⊆ Rn , in particular fk,α is complete. Now for gk,α := f ∗
k,αgeuc

the Gauß-Bonnet theorem implies
∫

#k,α

Kgk,α dµgk,α = 0.

By the uniformization theorem, we may assume that the diffeomorphism #k,α
∼=

R2 is conformal, and write gk,α = e2uk,αgeuc on #k,α
∼= R2. From (3.1), (3.2) and

(3.12), we get
∫

#k,α

|Kgk,α | dµgk,α ≤ 8π − δ + Cε2 for n = 3,

∫

#k,α

|Kgk,α | dµgk,α +
1

2

∫

#k,α

|A◦
fk,α

|2 dµgk,α ≤ 8π − δ + Cε2

∫

#k,α
|A◦

fk,α
|2 dµgk,α ≤ 8π − C0ε

2 + Cε2







for n = 4.

Choosing Cε2 < δ/2 and C0 > C , this verifies the assumptions of Theorem 6.1,

except that the parameter δ is replaced by δ/2. Thus we have

−2gk,αuk,α = Kgk,α in #k,α,

where uk,α satisfies the estimates, possibly after adding a suitable constant,

‖uk,α‖L∞(#k,α), ‖Duk,α‖L2(#k,α), ‖D2uk,α‖L1(#k,α) ≤ C(δ)

∫

#k,α

|A fk,α |
2 dµgk,α

≤ C(*, p, δ).

Here the L1 and L2 norms on the left are with respect to the Euclidean metric on

#k,α
∼= R2, and we use (3.8) and (3.12) for the second inequality. As fk,α and f

coincide on Dk,α
σk
, we have gk,α = g on Dk,α

σk
, hence

−2guk,α = Kg in Dk,α
σk

(3.13)

and by conformal invariance of the Dirichlet integral

‖uk,α‖
L∞(D

k,α
σk

)
,

∫

D
k,α
σk

|Duk,α|2g dµg ≤ C(*, p, δ). (3.14)
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Combining with (3.5) and as g = gk,α = e2uk,αgeuc on D
k,α
σk

⊆ #k,α
∼= R2, we get

−2(u − uk,α) = −e2uk,α2g(u − uk,α) = −Kg0e
−2(u−uk,α) in Dk,α

σk
,

hence using 0 ≤ −Kg0 = 4π(p − 1) we conclude

−2(u − uk,α) ≥ 0,

−2 (u − uk,α)+ ≤ C(p − 1),

}

in Dk,α
σk

. (3.15)

Next we choose extrinsic cut-off functions γk ∈ C20(B5̺k/8(xk)) with 0 ≤ γk ≤ 1,

γk = 1 on B̺k/2(xk) and |D jγk | ≤ C̺
− j
k for j = 1, 2; we then put η̃k,α := γk ◦ f

on Dk,α
σk

and η̃k,α = 0 on # − Dk,α
σk
. Then η̃ :=

∑

k,α η̃k,α ≥ 1 on #, as f (#) is

covered by the B̺k/2(xk) for k = 1, . . . , K . We put ηk,α = η̃k,α/η̃ and get

spt ηk,α ⊆ Dk,α
σk

,
∑

k,α ηk,α = 1,

|Dηk,α|g ≤ C(R, K )̺−1
k ,

|D2ηk,α|g ≤ C(R, K )(̺−2
k + ̺−1

k |A|).

Putting ū :=
∑

k,α ηk,αuk,α , we calculate from (3.5) and (3.13)

−2g(u − ū) = −Kg0e
−2u + 2

∑

k,α

Dηk,αDuk,α +
∑

k,α

2gηk,α uk,α =: h (3.16)

and estimate by (3.8), (3.9), (3.14), recalling Kg0 = 4π(1−p) ≤ 0 and g0 = e−2ug,
∫

#

|h| dµg ≤
∫

#

(−Kg0)e
−2u dµg

+C(R, K )
∑

k,α

(

̺−2
k µg(D

k,α
σk

)
)1/2 (

∫

D
k,α
σk

|Duk,α|2g dµg

)1/2

+C(R, K )
∑

k,α

‖uk,α‖
L∞(D

k,α
σk

)

∫

D
k,α
σk

(

̺−2
k + ̺−1

k |A|
)

dµg

≤ C(*, R, K , p, δ).

Furthermore

‖ū‖L∞(#),

∫

#

|Dū|2g dµg ≤ C(*, R, K , p, δ).

Multiplying (3.16) by u − ū − λ where λ ∈ R is arbitrary, we obtain

∫

#

|D(u − ū)|2g dµg ≤
∫

#

|h| |u − ū − λ| dµg

≤ C(*, R, K , p, δ) ‖u − ū − λ‖L∞(#)

≤ C(*, R, K , p, δ)
(

1+ ‖u − λ‖L∞(#)),
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hence
∫

#

|Du|2g dµg ≤ 2

∫

#

|D(u − ū)|2g dµg + 2

∫

#

|Dū|2g dµg

≤ C(*, R, K , p, δ) (1+ osc#u). (3.17)

Recalling the choice of σk, σ
′
k , we note B

g

̺k/16
(z) ⊆ Dk,α

σk
for z ∈ D

k,α

σ ′
k

, where

B
g
̺ (z) is the geodesic ball with respect to g. Writing B2̺(z) for the Euclidean co-

ordinate disc using #k,α
∼= R2, we see from (3.14) that B22c0̺k

(z) ⊆ Dk,α
σk

for

c0 = c0(*, p, δ) > 0 small enough. Now by (3.11) any z ∈ # belongs to some

D
l,β

σ ′
l

, hence by (3.14) and µg(#) = 1

π(c0̺l)
2 = L2(Bc0̺l (z)) ≤ C(*, p, δ) µg(D

l,β
σl

) ≤ C(*, p, δ),

hence ̺k ≤ C(*, R, p, δ) for all k since ̺k/̺l ≤ R by assumption. Further by

(3.9)

1 = µg(#) ≤
K

∑

k=1

µ(B̺k/2(xk)) ≤ C(*)K max
1≤k≤K

̺2k .

Using again ̺l/̺k ≤ R we see that

c0(*, R, K , p) ≤ ̺k ≤ C(*, R, p, δ). (3.18)

Next, (3.17) and the Poincaré inequality show that, for appropriate λk,α,z ∈ R,

(c0̺k)
−1‖u − λk,α,z‖L2(B2c0̺k (z)) ≤ C ‖Du‖L2(B2c0̺k (z)) ≤ C

(

1+
√
osc#u

)

.

Select a maximal subset {zi }i∈I ⊆ D
k,α

σ ′
k

with B2c0̺k/4
(zi ) pairwise disjoint, whence

the B2c0̺k/2
(zi ), i ∈ I , cover D

k,l

σ ′
k

. As the Dk,α
σk

⊇ B2c0̺k/4
(zi ) are pairwise disjoint,

we estimate the cardinality of I by

card(I ) π(c0̺k/4)
2 ≤ L2(Dk,α

σk
) ≤ C(*, p, δ)µg(D

k,α
σk

)

≤ C(*, p, δ)µ(B̺k (xk)) ≤ C(*, p, δ)̺2k ,

as g = e2uk,αgeuc, using (3.14) and (3.9), hence

card(I ) ≤ C(*, p, δ).

If B2c0̺k/2
(zi )∩ B2c0̺k/2

(z j ) 4= ∅, then L2(B2c0̺k (zi )∩ B2c0̺k (z j )) ≥ π(c0̺k/2)
2 and

|λk,α,zi −λk,α,z j |≤ C(c0̺k)
−1

(

‖u−λk,α,zi ‖L2(B2c0̺k (zi ))+‖u−λk,α,z j ‖L2(B2c0̺k (z j ))
)

≤ C(*, K , p, δ) (1+
√
osc#u).
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As D
k,α

σ ′
k

is connected and covered by the B2c0̺k/2
(zi ), we find for i, j ∈ I a chain

B2c0̺k/2
(ziν ), ν = 1, . . . , N , with N ≤ card(I ) and such that neighboring discs

intersect. Thus

|λk,α,zi − λk,α,z j | ≤ C(*, K , p, δ) (1+
√
osc#u) ∀i, j ∈ I.

Therefore there exists a λk,α ∈ R such that

̺−1
k ‖u − λk,α‖

L2(D
k,α

σ ′
k

;g)
≤ C(*, K , p, δ) (1+

√
osc#u).

The sets B
k,α
̺k/2

:= D
k,α

σ ′
k

∩ f −1(B̺k/2(xk)) form an open cover of #. Moreover if

z ∈ B
k,α
̺k/2

∩ B
l,β

̺l/2
where ̺k ≤ ̺l , then we obtain as above B

g

̺k/8
(z) ⊆ D

k,α

σ ′
k

∩ D
l,β

σ ′
l

,

using σ ′
k ≥ 5̺k/8, σ

′
l ≥ 5̺l/8 , and

µg(D
k,α

σ ′
k

∩ D
l,β

σ ′
l

) ≥ µg(B
g

̺k/8
(z)) ≥ c0(*, p, δ)L2(B2c0̺k (z)) ≥ c0(*, p, δ)̺2k .

This yields

|λk,α − λl,β | ≤ (c0̺k)
−1‖λk,α − λl,β‖

L2(D
k,α

σ ′
k

∩Dl,β
σ ′
l

;g)

≤ (c0̺k)
−1

(

‖u − λk,α‖
L2(D

k,α

σ ′
k

;g)
+ ‖u − λl,β‖

L2(D
l,β

σ ′
l

;g)

)

≤ C(*, R, K , p, δ) (1+
√
osc#u),

as ̺l/̺k ≤ R by assumption. Again by connectedness of # there is a λ ∈ R

‖u − λ‖L2(#;g) ≤ C(*, R, K , p, δ) (1+
√
osc#u) max

1≤k≤K
̺k . (3.19)

Next choose z0 ∈ # with u(z0) = min# u. Then z0 ∈ B
k,α
̺k/2

for some k,α.

By (3.14) and (3.15) we have, as B22c0̺k
(z0) ⊆ Dk,α

σk
, the estimate u − uk,α ≥

min# u−C(*, p, δ) =: λ̄, and conclude from the weak Harnack inequality, see [3]

Theorem 8.18,

(c0̺k)
−1‖u − uk,α − λ̄‖L2(B2c0̺k (z0)) ≤ C inf

B2c0̺k
(z0)

(u − uk,α − λ̄).

Hence from u(z0) = min# u we see that

(c0̺k)
−1‖u −min

#
u‖L2(B2c0̺k (z0)) ≤ C(*, p, δ).

Then

|min
#

u − λ| ≤ C(*, R, K , p, δ) (1+
√
osc#u) max

1≤k≤K
̺k
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by (3.19), and we conclude

‖u −min
#

u‖L2(#,g) ≤ C(*, R, K , p, δ) (1+
√
osc#u) max

1≤k≤K
̺k . (3.20)

Now min# u ≤ 0 by (3.6). Employing the mean value inequality, see [3] Theorem

2.1, we obtain from (3.15) for z ∈ D
k,α

σ ′
k

‖(u−uk,α)+‖L∞(B2c0̺k
(z)) ≤ C(c0̺k)

−1‖(u−uk,α)+‖L2(B22c0̺k (z))+C(c0̺k)
2(p−1).

Combining (3.14), (3.18), (3.20) and min# u ≤ 0 implies

max
#

u ≤ C(*, p, δ)̺−1
k ‖u −min

#
u‖L2(#;g) + C(*, p, δ) + C(c0̺k)

2(p − 1)

≤ C(*, R, K , p, δ) (1+
√
osc#u)

≤ C(*, R, K , p, δ) +
1

2
max

#
u − 1

2
min
#

u,

hence max# u ≤ C(*, R, K , p, δ) + |min# u|, and

osc#u ≤ C(*, R, K , p, δ) + 2|min
#

u|. (3.21)

Next we define A = {x ∈ # : u(x) ≤ min# u/2}. As u − min# u ≥ |min# u|/2

on # − A, we get from (3.18), (3.20) and (3.21)

1

2
|min

#
u|µg(# − A) ≤

∫

#

(u −min
#

u) dµg

≤ C(*, R, K , p, δ) (1+
√
osc#u)

≤ C(*, R, K , p, δ) (1+
√

|min
#

u|).

Thus for |min# u| ≫ C(*, R, K , p, δ) we estimate

µg(# − A) ≤ C(*, R, K , p, δ)(1+
√

|min# u|)

|min# u|
≤ 1

2
.

As both g and g0 = e−2ug have unit area, this yields µg(A) ≥ 1/2 and

1 ≥
∫

A

e−2u dµg ≥ µg(A) e−min# u ≥ 1

2
e|min# u|.

We conclude that |min# u| ≤ C(*, R, K , p, δ), and hence (3.7) follows from

(3.21), and the theorem is proved.

Inspecting the proof, we see that instead of (3.4) we could require directly that each

component Dk,α
σ is a disc and f |

∂D
k,α
σ
is a single, nearly flat circle, for all σ ∈

]5̺k/8, 7̺k/8[ up to a set of measure ̺k/16. We also remark that the assumptions

(3.1)-(3.4) are trivially implied by the single condition
∫

B̺k
(xk)

|A|2 dµ < ε2 for all k = 1, . . . , K .

In fact, the estimate of the conformal factor can then be shown in any codimension.
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4. Estimation modulo the Möbius group

It will be essential in Theorem 4.2 to pass to a good representative under the action

of the Möbius group. The following lemma yields the desired Möbius transforma-

tion.

Lemma 4.1. Let f : # → Rn be an immersion of a closed surface #, with con-

formally invariant energy
∫

#
|A◦|2 dµ =: E . Then there exists a Möbius transfor-

mation φ such that f̃ = φ ◦ f satisfies f̃ (#) ⊆ B1(0) and

∫

B̺0
(x)

| Ã◦|2 dµ̃ ≤ E/2 for all x ∈ R
n, where ̺0 = ̺0(n, E) > 0. (4.1)

Proof. By a dilation we may assume that for all x ∈ Rn and some x0 ∈ Rn we have

∫

B1(x)

|A◦|2 dµ ≤ E/2 ≤
∫

B1(x0)

|A◦|2 dµ. (4.2)

From (1.2) we see that the total Willmore energy of f is bounded by

W( f ) ≤ E/2+ 4π. (4.3)

We now prove by area comparison arguments that there is a point x ∈ Rn satisfying

B1(x) ∩ f (#) = ∅ and |x − x0| ≤ C(n, E). (4.4)

The Li-Yau-inequality as in (2.2) yields the upper bound

r−2µ(Br (x0)) ≤ C(E) for any r > 0, (4.5)

while ̺ = 1 and σ ց 0 in (2.1) yields

µ(B1(x)) + W( f, B1(x)) ≥ c > 0 for any x ∈ f (#). (4.6)

For R > 0 to be chosen, let B2(x j ), j = 1, . . . , N , be a maximal disjoint collection

of 2-balls with centers x j ∈ BR(x0). As the balls B4(x j ) cover BR(x0) we have

N ≥ Rn/4n . If f (#) ∩ B1(x j ) 4= ∅ for all j , then (4.6), (4.5) and (4.3) imply

c N ≤
N

∑

j=1

(

µ(B2(x j )) + W( f, B2(x j ))
)

≤ C(E) (R2 + 1),

thus R ≤ C(n, E). Taking R = C(n, E) + 1 yields (4.4) for appropriate x = x j .

Translating by −x , we can assume that x = 0 in (4.4), that is f (#) ⊆ Rn −
B1(0). For R := C(n, E) + 1 with C(n, E) as in (4.4), we obtain from (4.2) for all

x ∈ Rn

∫

B1(x)

|A◦|2 dµ ≤ E/2, and

∫

Rn−BR(0)

|A◦|2 dµ ≤ E/2. (4.7)



CLOSED SURFACES WITH BOUNDS ON THEIR WILLMORE ENERGY 617

Now for f̃ = φ◦ f where φ(x) = x/|x |2 we clearly have f̃ (#) ⊆ B1(0). Moreover

if |x | ≥ 1/(2R), then a ball B̺(x) of radius ̺ = 1
2
(
√
1+ R−2 − 1) is mapped

by φ−1 = φ to a ball B̺∗(x∗) with ̺∗ ≤ 1, and claim (4.1) follows from (4.7)

using that the integral is locally conformally invariant. In the remaining case |x | ≤
1/(2R), we use B̺(x) ⊆ B1/R(0) for ̺ ≤ 1/(2R), and obtain (4.1) from the second

inequality in (4.7).

We can now prove our main theorem, recalling from (1.4) the definition of the ωn
p.

Theorem 4.2. For n = 3, 4 and p ≥ 1, let C(n, p, δ) be the class of closed, ori-

entable, genus p surfaces f : # → Rn satisfyingW( f ) ≤ ωn
p − δ for some δ > 0.

Then for any f ∈ C(n, p, δ) there is a Möbius transformation φ and a constant

curvature metric g0, such that the metric g induced by φ ◦ f satisfies

g = e2ug0 where max
#

|u| ≤ C(p, δ) < ∞.

Proof. It is obviously sufficient to obtain the result for small δ > 0. We consider

an arbitrary sequence of surfaces f j ∈ C(n, p, δ), and put g j = f ∗
j geuc, µ j =

f j (µg j ). From (1.2) we have

∫

#

|A◦
j |
2 dµg j ≤ 2(ωn

p − δ) + 8π(p − 1) ≤ 8π(p + 1) − 2δ. (4.8)

Using Lemma 4.1 we may assume after applying suitable Möbius transformations

that

f j (#)⊆ B1(0) and

∫

B̺0
(x)

|A◦
j |
2 dµ j ≤4π(p + 1) − δ for all x ∈R

n, (4.9)

where ̺0 > 0 depends only on the genus p. The uniformization theorem yields

unique conformal metrics e−2u j g j having the same area and constant curvature.
The theorem will be proved by showing that

lim inf
j→∞

‖u j‖L∞(#) < ∞. (4.10)

We start by recalling from (2.2) the Li-Yau-inequality

̺−2µ j (B̺(x)) ≤ C for all x ∈ R
n, ̺ > 0. (4.11)

For α j = f j (µg j!|A j |
2) we have α j (R

n) ≤ C(p), hence for a subsequence

µ j ,α j → µ,α weakly∗ in C0c (R
n)∗. (4.12)

Moreover we see as in [13, page 310] that

sptµ j → sptµ in Hausdorff distance, (4.13)
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which yields further sptα ⊆ sptµ ⊆ B1(0). Now by Allard’s integral compactness

theorem for varifolds, see [12, Remark 42.8], the measureµ is an integral 2-varifold

with weak mean curvature Hµ ∈ L2(µ), more precisely we have

W(µ) :=
1

4

∫

|Hµ|2 dµ ≤ lim inf
j→∞

W( f j ) ≤ 8π − δ.

As discussed in the appendix of [7], the monotonicity formula from [13] applies to

varifolds with weak mean curvature in L2, in particular the Li-Yau inequality (2.3)

yields

θ2(µ, x) ≤ 8π − δ

4π
= 2− δ

4π
for all x ∈ R

n. (4.14)

We further obtain, writing ⊥ for the projection onto (Txµ)⊥,

∫

Bσ (x0)

|(x − x0)
⊥|2

|x − x0|4
dµ(x) < ∞ for all x0 ∈ R

n. (4.15)

Let ε0 = ε0(n,β) be the constant from [13, Lemma 2.1]; we take β = C for C > 0

as in (4.11) whence ε0 > 0 is universal. For ε1 ∈ (0, ε0] there are only finitely

many points x1, . . . , xK with

α({xk}) ≥ ε21 for k = 1, . . . , K ,

in fact K ≤ C(p)ε−2
1 . For given ε ∈ (0, ε1)we may use (4.15) and (4.14) to choose

̺ ∈ (0, 1
2
mink 4=l |xk − xl |) with ̺ < ̺0, such that for all k we have the inequalities

α(B̺(xk) − {xk}) < ε2,

µ(B7̺/8(xk)) < (2− δ
20

)π(7̺/8)2,

∫

B̺(xk)

|(x − xk)
⊥|2

|x − xk |4
dµ(x) < ε2.

For any y /∈ {x1, . . . , xK } there exists a radius ̺y ∈ (0, ̺0) such that α(B̺y (y)) <

ε21 . Now we select finitely many points y1, . . . , yL ∈ sptµ − ⋃K
k=1 B̺/2(xk) such

that

sptµ ⊆
K
⋃

k=1

B̺/2(xk) ∪
L

⋃

l=1

B̺yl /2
(yl).
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By (4.12) and (4.13) we get for any r ∈ (0, ̺/2] and j sufficiently large (de-

pending on r)

f j (#) = sptµ j ⊆
K
⋃

k=1

B̺/2(xk) ∪
L

⋃

l=1

B̺yl /2
(yl),

∫

B̺(xk)−Br (xk)

|A j |
2 dµ j < ε2,

∫

B̺yl
(yl )

|A j |
2 dµ j < ε21,

µ j (B7̺/8(xk)) < (2− δ/20)π(7̺/8)2,

∫

B̺(xk)−Br (xk)

|(x − xk)
⊥|2

|x − xk |4
dµ j (x) < ε2,



















































































(4.16)

for k = 1, . . . , K and l = 1, . . . , L . For the covering in (4.16) we shall now

verify the assumptions of Theorem 3.1, provided that ε1 = ε1(n, δ) ∈ (0, ε0) and

ε = ε(n, p, δ) ∈ (0, ε1) are sufficiently small.

The condition (3.4) is clearly satisfied on the B̺yl
(yl), l = 1, . . . , L , for ε1 > 0

sufficiently small. For k ∈ {1, . . . , K }, we have the assumptions of Lemma 2.1 and

also (2.10) for any r ∈ (0, ̺/2]. Thus for the multiplicity Mk as in (2.5), we get

from (2.11)

(1− Cε)Mkπ
(

(7̺/8)2 − (5r/4)2
)

≤ µ j (B7̺/8(xk) − B5r/4(xk))

≤ µ j (B7̺/8(xk))

≤ (2− δ/20)π(7̺/8)2,

Assuming ε ≤ ε(δ) and r/̺ ≤ c(δ) this implies

Mk = 1. (4.17)

For σ ∈ [5̺k/8, 7̺k/8] as in Lemma 2.1, we conclude that f −1
j

(

Bσ (xk)
)

is

bounded by just one circle, and can be compactified to a closed, orientable surface

#k = # j,k of genus pk = p j,k by adding one disc. This means we have

χ( f −1
j (Bσ (xk))) = 2(1− pk) − 1. (4.18)

As (2.6) holds with multiplicity one, the Gauß-Bonnet theorem yields

∣

∣

∣

∫

Bσ (xk)

K j dµ j + 4πpk

∣

∣

∣
≤ Cεα. (4.19)
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Now K j ≥ −1
2
|A◦

j |
2 by (1.1), and using ̺ ≤ ̺0 we see from (4.8) and (4.9) that

∫

Bσ (xk)

K j dµ j ≥ −1
2

∫

B̺k
(xk)

|A◦
j |
2 dµ j ≥ −1

4

∫

#

|A◦
j |
2 dµ j ≥ −2π(p+1)+

δ

2
.

In the case p = 1 this implies the condition (3.4) with δ/2 instead of δ as well as

pk = 0, for ε ≤ ε(n, δ). For p ≥ 2 we get

pk < (p + 1)/2 < p for k = 1, . . . , K . (4.20)

For appropriate σk = σ j,k ∈]5̺/8, 7̺/8[, we now use Lemma 2.1(b) to attach

an end to the restriction of f j to f −1
j (Bσk (xk)), obtaining an immersion f̃ j,k :

#k−{qk} → Rn such that under f̃ j,k a neighborhood of the puncture qk corresponds

to a neighborhood of infinity in some affine plane, and such that
∫

Rn−Bσk
(xk)

| Ãk |
2 dµ̃k ≤ Cε2. (4.21)

By (4.21) and the conformal invariance of the Willmore energy, we get

W( f j , Bσk (xk)) ≥ W( f̃ j,k) − Cε2 ≥ βnpk − 4π − Cε2. (4.22)

Adding k discs to # − ⋃K
k=1 Bσk (xk) yields a surface of some genus p0, where

2(1− p) = χ(#) = χ
(

# −
K
⋃

k=1

f −1
j (Bσk (xk))

)

+

K
∑

k=1

χ
(

f −1
j (Bσk (xk))

)

= 2(1− p0) − K +

K
∑

k=1

(

2(1− pk) − 1
)

= 2
(

1−
K

∑

k=0

pk

)

,

which means

p =

K
∑

k=0

pk . (4.23)

In fact, adding the discs with bounds as in (4.21), we see that

W

(

f j , R
n −

K
⋃

k=1

Bσk (xk)
)

≥ βnp0 − C(K )ε2. (4.24)

Combining (4.22) and (4.24) implies

K
∑

k=0

(βnpk − 4π) ≤ W( f j ) − 4π +C(K )ε2 ≤ ωn
p − δ − 4π +C(K )ε2 < ωn

p − 4π,
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if ε ≤ ε(K , δ). From (4.23), (4.20) and the definition of the ωn
p, see (1.4), we now

see

p0 = p, and pk = 0 for k = 1, . . . , K . (4.25)

Together with (4.19) this establishes (3.4) for any p ≥ 1.

Next, claim (3.3) is immediate by taking ε, ε1 ≤ ε(*, δ) and r ≤ ̺/2 in (4.16).

Moreover, for l = 1, . . . , L we get from (4.16)

2

∫

B̺yl
(yl )

|K j | dµ j ,

∫

B̺yl
(yl )

|A◦
j |
2 dµ j ≤

∫

B̺yl
(yl )

|A j |
2 dµ j ≤ ε21,

hence (3.1) and (3.2) hold for ε1 > 0 small enough. For k = 1, . . . , K we get from

(2.6) combined with (4.17), (4.18) and (4.25), for appropriate σ ∈]5̺/8, 7̺/8[,

∣

∣

∣

∫

Bσ (xk)

K j dµ j

∣

∣

∣
≤ 2π

∣

∣

∣
χ

(

f −1
j (Bσ (xk))

)

− 1

∣

∣

∣
+ Cεα = Cεα. (4.26)

From |K | ≤ 1
2
|A|2 = |A◦|2 + K we have the inequality

∫

B̺(xk)

|K j | dµ j ≤ 1

2

∫

B̺(xk)−B̺/2(xk)

|A j |
2 dµ j +

∫

Bσ (xk)

|A◦
j |
2 dµ j

+

∫

Bσ (xk)

K j dµ j ,

hence we obtain from (4.16) and (4.26)

∫

B̺(xk)

|K j | dµ j ≤
∫

B̺(xk)

|A◦
j |
2 dµ j + Cεα. (4.27)

We proceed similarly using (4.16), (4.26), (4.24), (4.25) and |A◦|2 = | $H |2/2− 2K

1

2

∫

B̺(xk)

|A◦
j |
2 dµ j ≤ 1

4

∫

Bσ (xk)

| $H j |
2 dµ j + Cεα

≤ W( f j ) − W( f j , R
n −

K
⋃

k=1

Bσk (xk)) + Cεα

≤ ωn
p − δ − βnp + Cεα.

As ωn
p ≤ 8π and βnp ≥ 4π , we conclude from (4.27)

∫

B̺(xk)

|K j | dµ j ≤ 2(ωn
p − βnp) − 2δ + Cεα ≤ 8π − 2δ + Cεα,
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which proves (3.1) taking ε ≤ ε(δ). For n = 4 we have

∫

B̺(xk)

|K j | dµ j +
1

2

∫

B̺(xk)

|A◦
j |
2 dµ j ≤ 3

2

∫

B̺(xk)

|A◦
j |
2 dµ j + Cεα

≤ 3(ω4p − δ − β4p) + Cεα.

Now (3.2) follows by definition of ω4p for ε ≤ ε(δ) small enough. Thus all con-

ditions of Theorem 3.1 are verified, and application of that theorem finishes the

proof.

5. Compactness in moduli space

The main result of this section is

Theorem 5.1. For n ∈ {3, 4} and p ≥ 1, the conformal structures induced by

immersions f in C(n, p, δ) are contained in a compact subset K = K (p, δ) of the

moduli space.

The theorem follows directly from Theorem 4.2 and the following:

Lemma 5.2. Let f : # → Rn be an immmersion of a closed, orientable surface of

genus p ≥ 1, with induced metric g = f ∗geuc. Assume that

W( f ), max
#

|u| ≤ *,

where W( f ) is the Willmore energy and g0 := e−2ug is a conformal metric of
constant curvature. Then the conformal structure induced by g lies in a compact

subset K = K (n, p,*) of the moduli space.

Proof. We first give the proof for p ≥ 2, where we normalize to Kg0 ≡ −1 by
a dilation. Let ℓ > 0 be the length of a shortest closed geodesic in (#, g0). By

the Mumford compactness theorem, see e.g. [14] Theorem C.1, the lemma follows

from a lower bound for ℓ depending only on n, p and *. As the hyperbolic plane

has no conjugate points, we have inj(M, g0) = ℓ/2 by an argument of Klingenberg,

see Lemma 4 in [5], and hyperbolic geometry implies

µg0(B
g0
r (p)) ≥ πr2 for all 0 < r ≤ ℓ/2. (5.1)

Select a closed geodesic γ for g0 of length ℓ. With respect to geodesic distance,

there is a parallel neighborhood of γ which is isometric to the quotient of {reiθ :

r > 0, |θ − π/2| < θ0} by the action of e
kℓ, k ∈ Z, where γ corresponds to

θ = π/2. Clearly γ is not contractible since otherwise it would lift to a closed

geodesic in the hyperbolic plane. By the collar lemma, see [14] Lemma D.1, we

may take θ0 ∈ (0,π/4] as a universal constant, as we can assume without loss of
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generality that ℓ ≤ 1. Now let p1 ≃ eiθ1, . . . , pK ≃ eiθK be a maximal collection

of points with |θ j −π/2| < θ0, such that the balls B
g0
ℓ (p j ) are pairwise disjoint. By

maximality the B
g0
2ℓ (p j ) cover the geodesic {eiθ : |θ − π/2| < θ0}, which implies

that K ≥ c0/ℓ for a universal constant c0 > 0. The closed curves γk corresponding

to et+iθk , 0 ≤ t ≤ ℓ, have length Lg0(γk) ≤ Cℓ. We conclude

Lg(γk) ≤ C(*)Lg0(γk) ≤ C(*)ℓ =: ̺/4. (5.2)

Given k ∈ {1, . . . , K }, we denote by Ik the set of those i ∈ {1, . . . , K } for which

f (pi ) ∈ B2̺( f (pk))}. For i ∈ Ik and p ∈ B
g0
ℓ (pi ) we estimate

| f (p) − f (pk)| ≤ distg(p, pi ) + | f (pi ) − f (pk)| ≤ C(*)distg0(p, pi ) + 2̺

≤ C(*)̺.

As the balls B
g0
ℓ (pi ) are pairwise disjoint, we get putting r = ℓ/2 in (5.1)

(#Ik)
πℓ2

4
≤

∑

i∈Ik
µg0(B

g0
ℓ (pi )) ≤ C(*) µg

(

f −1BC(*)̺

(

f (pk)
)

)

≤ C(*)̺2,

where the last step uses the Li-Yau inequality (2.2). We thus have

#Ik ≤ C(*) for k = 1, . . . , K . (5.3)

Now choose a maximal set J ⊆ {1, . . . , K } with B̺( f (pk)) ∩ B̺( f (pl)) = ∅
for k 4= l. For any m ∈ {1, . . . , K } we have f (pm) ∈ B2̺( f (pk)) for some

k ∈ J , which means {1, . . . , K } =
⋃

k∈J Ik . By (5.3) this yields K ≤ ∑

k∈J #Ik ≤
C(*)#J and hence

#J ≥ c0/ℓ for c0 = c0(*) > 0. (5.4)

As the B̺( f (pk)) are disjoint for k ∈ J , we get for some k ∈ J using Gauß-Bonnet

∫

B̺( f (pk))

|A|2 dµ ≤ 1

#J

∫

#

|A|2 dµ ≤ C(*, p)ℓ.

Thus for C(*, p)ℓ < ε0(n,*) the assumptions of [13] Lemma 2.1 are satisfied,

recalling also the density ratio estimate (2.2), hence there exists a σ ∈]̺/4, ̺/2[

such that f −1(Bσ ( f (pk))
)

is a disjoint union of discs Di
σ , i = 1, . . . ,M . Now by

(5.2) we have Lg(γk) ≤ ̺/4 < σ which implies that f ◦ γk lies in Bσ (( f (pk)), or

equivalently γk is contained in f −1(Bσ ( f (pk))
)

. But then γk is actually contained

in one of the discs Di
σ , in particular γk is contractible in #. But then γ is also

contractible which contradicts our previous observation.

For p = 1 we normalize such that µg0(#) = 1. It is well-known that (#, g0)

is isometric to the quotient of R2 by a lattice of the form Ŵ/
√
b, where Ŵ = Z +

Z(a, b) with 0 ≤ a ≤ 1/2, a2 + b2 ≥ 1 and b > 0; here dilating the lattice

by 1/
√
b adjusts the volume to one. The length of a shortest closed geodesic is
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then ℓ = 1/
√
b, in fact any horizontal line segment of that length corresponds to

a shortest closed geodesic. We now consider points pk corresponding to (0, 2kℓ)

for k = 1, . . . , K . It is elementary that we can achieve B
g0
ℓ (pk) ∩ B

g0
ℓ (pl) = ∅

where K ≥ c0ℓ
−2. The horizontal segments yield closed geodesics γk through pk

of length Lg0(γk) = ℓ. From here the proof proceeds as in the case p ≥ 2.

We finally discuss the optimality of the constants ωn
p in Theorem 4.2. A stan-

dard example, see [13], is obtained by connecting two concentric round spheres

at small distance by p + 1 suitably scaled catenoids. This yields a sequence of

embeddings f j : # → R3 of genus p ≥ 1 with W( f j ) → 8π . By a dila-

tion we have in addition that µg j (#) = 1 for all j . Assume by contradiction that

there exist Möbius transformations φ j and constant curvature metrics g0, j , such

that g̃ j = (φ j ◦ f j )
∗geuc = e2u j g0, j where max# |u j | remain in a compact set as

j → ∞. Composing φ j with a suitable dilation we may assume that µg̃ j (#) = 1.

By Lemma 5.2, the conformal structures induced by the g j remain bounded, which

implies that the minimal length of a noncontractible loop with respect to g0, j , and

hence with respect to g̃ j , is bounded below independent of j . In particular, the met-

ric g̃ j is not uniformly bounded by g j near the concentrating catenoids. Now φ j is

a composition of a Euclidean motion, a dilation and an inversion, hence we have

g̃ j = c2j g j or g̃ j =
c2j

| f j − a j |4
g j , where c j > 0, a j ∈ R

3.

In the first case, the area normalization implies c j = 1 which is a contradiction.

In the second case, we note that the a j cannot diverge since otherwise we get for

large j

c2j

16|a j |4
g j ≤ g̃ j ≤

16c2j

|a j |4
g j .

The area normalization yields 1/16 ≤ c2j/|a j |
4 ≤ 16, and we have a contradiction

as before. Thus we can assume that the a j converge to some a ∈ R3, and also that

the c j remain bounded. But since p + 1 ≥ 2 there is a catenoid concentrating at a

point different to a, and at that point g̃ j remains bounded by g j . This contradiction

shows that the constant ωn
p in Theorem 4.2 cannot be replaced by a constant strictly

bigger than 8π . Inverting surfaces of genus pi where p1 + . . . + pk = p at points

on the surface and then glueing them into a round sphere, we see similarly that

ωn
p cannot be replaced by a number bigger than β̃np, and in particular that ω3p =

min{8π,β3p} is optimal for the statement of Theorem 4.2.

6. Conformal parametrization

In this section, we prove the estimate for the conformal factor needed in the proof

of Theorem 3.1, thereby extending results of [10].
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Theorem 6.1. Let f : R2 → Rn , n = 3, 4, be a complete conformal immersion

with induced metric g = e2ugeuc and square integrable second fundamental form

satisfying
∫

R2
K dµg = 0 for K = Kg, (6.1)

∫

R2
|K | dµg ≤ 8π − δ for n = 3, (6.2)

∫

R2
|K | dµg +

1

2

∫

R2
|A◦|2 dµg ≤ 8π − δ,

∫

R2
|A◦|2 dµg < 8π,















for n = 4, (6.3)

for some δ > 0. Then the limit λ = limz→∞ u(z) ∈ R exists, and

‖u − λ‖L∞(R2), ‖Du‖L2(R2), ‖D2u‖L1(R2) ≤ C(δ)

∫

R2
|A|2 dµg. (6.4)

We shall prove this theorem by constructing a solution v : R2 → R of the problem

−2gv = K in R
2, and lim

z→∞ v(z) = 0, (6.5)

which satisfies the estimates

‖v‖L∞(R2), ‖Dv‖L2(R2), ‖D2v‖L1(R2) ≤ C(δ)

∫

R2
|A|2 dµg. (6.6)

The claim then follows easily. In fact, the function u solves−2gu = Kg, see (3.5),

hence the difference u − v is an entire harmonic function. But [10, Theorem 4.2.1,

Corollary 4.2.5], combined with (6.1), imply that u is bounded. Therefore u − v is

also bounded and reduces to a constant λ, which proves the theorem.

Proof of Theorem 6.1 for n = 3. The projection π : S3 → CP1, (z1, z2) <→ [z1 :

z2], is a Riemannian submersion for the Fubini-Study metric gFS on CP1. Intro-

duce the diffeomorphism P : S2 → CP1 induced by composing the standard chart

ψ : C → CP1, ψ(z) = π
( (z, 1)
√

|z|2 + 1

)

with the stereographic projection

T : S2\{−e3} → C, T (ζ, s) =
ζ

1+ s
.

One computes ψ∗gFS = (1+ |z|2)−2geuc = 1
4
(T−1)∗gS2 , which implies

P∗gFS =
1

4
gS2 . (6.7)
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As the Jacobian of the normal ν : (R2, g) → S2 along f is Jν = |K |, we get by

(6.2)
∫

R2
J (P ◦ ν) dµg =

1

4

∫

R2
|K | dµg ≤ 2π − δ/4.

Recalling that the Kähler form ω on CP1, as defined in [10] 2.2, equals twice

the volume form volFS with respect to the Fubini-Study metric, we get P
∗ω =

2P∗volFS = 1
2
volS2 by (6.7). Hence using ν∗volS2 = Kvolg = Ke2uvoleuc we

obtain from (6.1) that

∫

R2
(P ◦ ν)∗ω =

∫

R2
(K/2)volg = 0.

We may therefore apply [10] Corollary 3.5.7 to get a solution v : R2 → R of

−2v = ∗2(P ◦ ν)∗ω = Ke2u on R
2, with lim

z→∞ v(z) = 0,

where 2, ∗ are taken with respect to the standard metric on R2, and such that

‖v‖L∞(R2), ‖Dv‖L2(R2), ‖D2v‖L1(R2) ≤ C(δ)

∫

R2
|D(P ◦ ν)|2 dµg

=
C(δ)

4

∫

R2
|Dν|2 dµg

=
C(δ)

4

∫

R2
|A|2 dµg.

As −2gv = K by construction, the theorem follows for n = 3.

We remark that if we use instead of P the map P̃ identifying S2 with the Graßman-

nian G3,2 ⊆ CP2, then we have P̃∗gFS = gS2/2 instead of (6.7), which implies

only
∫

R2
J (P̃ ◦ ν) dµg =

1

2

∫

R2
|K | dµg,

so that instead of (6.2) we would need the stronger assumption

∫

R2
|K | dµg ≤ 4π − δ for n = 3.

For n ≥ 4 the Jacobian JG of the Gauß map G : (#, g) → Gn,2 ⊆ CPn−1 can in
general not be expressed in terms of the Gauß curvature K alone, more precisely it

was computed in [4] that in points where $H is nonzero one has

JG =
1

2

√

|K |2 +
1

2
| $H |2|B|2,
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where B is the component of A orthogonal to $H . For the proof of Theorem 6.1

for n = 4, we will use a correspondance G4,2 ↔ S2 × S2. Recall that an oriented

2-plane P in Rn with oriented orthonormal basis v,w is represented by

[(v + iw)/
√
2] ∈ G4,2 =

{

[z0 : . . . : zn−1]
∣

∣

∣

n−1
∑

k=0

z2k = 0
}

⊆ CPn−1. (6.8)

Alternatively, we can assign to P the 2-vector v ∧ w ∈ *2(R
n). For n = 4 the

Hodge operator ∗ : *2(R
4) → *2(R

4) is an involution, that is ∗2 = Id, and we

have a direct sum decomposition*2(R
4) = E+⊕E− into the±1 eigenspaces, with

corresponding projections 9±ξ = (ξ ± ∗ξ)/2. As the Hodge star is an isometry

the decomposition is orthogonal, and both spaces E± are three-dimensional with

orthonormal bases

e+12 := (e1 ∧ e2 + e3 ∧ e4)/
√
2, e−12 := (e1 ∧ e2 − e3 ∧ e4)/

√
2,

e+13 := (e1 ∧ e3 + e4 ∧ e2)/
√
2, e−13 := (e1 ∧ e3 − e4 ∧ e2)/

√
2,

e+14 := (e1 ∧ e4 + e2 ∧ e3)/
√
2, e−14 := (e1 ∧ e4 − e2 ∧ e3)/

√
2.

We orient the 2-spheres S2± = S5∩ E± by selecting e
±
13, e

±
14 as positive respectively

negative basis for Te±12
S2. One checks that this definition is independent of the

choice of a positive orthonormal basis e1, e2, e3, e4 for R4. Now we define N :

G4,2 → S2+ × S2− by

N

([

v + iw√
2

])

=
√
2
(

9+(v ∧ w),9−(v ∧ w)
)

=
1√
2

(

v ∧ w + ∗(v ∧ w), v ∧ w − ∗(v ∧ w)
)

, (6.9)

and put N± = 9± ◦ N : G4,2 → S2±. Clearly N is well-defined, smooth and

injective.

Proposition 6.2. With respect to the Fubini-Study metric on G4,2 and the product

metric on S2+ × S2−, the mapN : G4,2 → S2+ × S2− defined by (6.9) is diffeomorphic

and isometric up to a factor, more precisely

N ∗gS2+×S2− = 4gFS. (6.10)

Moreover, the Kähler form ω as defined in [10] has on G4,2 the representation

ω = (N ∗
+volS2+

+ N ∗
−volS2−)/2, (6.11)

where the sphere factors S2± are oriented as above.
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Proof. For an orthonormal system v,w ∈ R4, we put z = (v+ iw)/
√
2 ∈ S7 ⊆ C4

and check that z, z̄ is a complex orthonormal system in C4. Extending v,w to an

orthonormal basis v,w, τ1, τ2 of R4, we note that z, z̄, τ1, τ2 ∈ C4 is actually a

hermitian basis of C4. Now for α ∈ C and j = 1, 2 we have

d

dt

3
∑

k=0

(z + tατ j )
2
k |t=0 = 2α

3
∑

k=0

zk(τ j )k = 0,

since z̄ is perpendicular to τ j in C4. Thus if π : S7 → CP3, π(z) = [z], denotes

the Hopf projection, then by (6.8) we see that

Tπ(z)G4,2 = spanC{Dπ(z)τ1, Dπ(z)τ2}.

Now Dπ(z)i z = 0, and by definition of the Fubini-Study metric the restriction of

Dπ(z) to the horizontal space {z}⊥
C
is an isometry onto Tπ(z)(CP

3). In particular the

four vectors Dπ(z)τ j , Dπ(z)iτ j for j = 1, 2 are an orthonormal basis of Tπ(z)G4,2.

We calculate

DN (π(z)) Dπ(z)τ j =
√
2
d

dθ
(N ◦ π)

1√
2

(

(cos θ)v + iw + (sin θ)τ j

)

= 2
d

dθ

(

(cos θ)v + (sin θ)τ j
)

∧ w

= (τ j ∧ w + ∗(τ j ∧ w), τ j ∧ w − ∗(τ j ∧ w)),

and

DN (π(z)) Dπ(z)iτ j =
√
2
d

dθ
(N ◦ π)

1√
2

(

v + i(cos θ)w + (sin θ)τ j

)

= 2
d

dθ
v ∧

(

(cos θ)w + (sin θ)τ j
)

= (v ∧ τ j + ∗(v ∧ τ j ), v ∧ τ j − ∗(v ∧ τ j )).

Writing (v,w, τ1, τ2) =: (e1, e2, e3, e4) we see that D(N ◦π)(z)maps as follows:

e3 <→
√
2(−e+14, e−14), e4 <→

√
2(e+13,−e−13),

ie3 <→
√
2(e+13, e

−
13), ie4 <→

√
2(e+14, e

−
14).

(6.12)

In particular, DN (π(z)) maps an orthonormal basis of Tπ(z)G4,2 to twice an or-

thonormal basis of TN (π(z))(S
2 × S2), which proves (6.10). Furthermore, N is a

local diffeomorphism by the inverse function theorem, henceN (G4,2) ⊆ S2 × S2

is open. As N (G4,2) is compact, non-empty and S
2 × S2 is connected, we obtain

thatN is surjective. As we already saw thatN is injective, it is a global diffeomor-

phism.

The Kähler form ω on CP3 is defined in [10] by

ω(Dπ · ξ, Dπ · η) = 2gFS(Dπ · ξ, Dπ · iη) for ξ, η,∈ {z}⊥
C
.
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In Te±12
S2±, the rotation by +π/2 is given by J±e

±
13 = ±e±14, whence

volS2±
(ξ, η)=gS2±

(ξ, J±η) for ξ, η ∈ Te±12
S2±.

Using (6.12) we see that D(N±◦π)·iξ = J±D(N±◦π)ξ for any ξ ∈ spanC{τ1, τ2}.

Together with (6.10), we obtain for all ξ, η ∈ spanC{τ1, τ2}

(N ∗
+volS2+

+ N ∗
−volS2−)(Dπ · ξ, Dπ · η)

=
∑

±

volS2±

(

D(N± ◦ π) · ξ, D(N± ◦ π) · η
)

=
∑

±

gS2±

(

D(N± ◦ π) · ξ, J±D(N± ◦ π) · η
)

=
∑

±

gS2±

(

D(N± ◦ π) · ξ, D(N± ◦ π) · iη
)

= gS2+×S2−
(

DN · (Dπ · ξ), DN · (Dπ · iη)
)

= (N ∗gS2+×S2−)(Dπ · ξ, Dπ · iη)

= 4gFS(Dπ · ξ, Dπ · iη)

= 2ω(Dπ · ξ, Dπ · η),

and (6.11) follows.

Next for any immersion f : R2 → Rn we introduce a modified Gauß map by

ϕ := N ◦ G : R
2 → S2+ × S2−, (6.13)

and denote by ϕ± := 9± ◦ ϕ : R2 → S2± its corresponding projections.

Proposition 6.3. The pullback of the volume form on S2± via ϕ± is given by

ϕ∗
±volS2±

= (K ± R) volg, where R = 2〈A◦
11 ∧ A◦

12, ν1 ∧ ν2〉. (6.14)

Here we use an oriented orthonormal basis e1, e2 on (R2, g), and an oriented or-

thonormal basis ν1, ν2 of normal vectors along f . In particular we have

|R| ≤ 1

2
|A◦|2 and Jϕ± = |K ± R| ≤ |K | +

1

2
|A◦|2. (6.15)

Proof. We may assume that f is (locally) the inclusion map, writing e1,2 instead of

Df · e1,2; also we write e3,4 for ν1,2. It is easy to check that the definition of R is

independent of the choice of the (oriented) bases. We have G = π((e1+ ie2)/
√
2),

whence by (6.9)

ϕ± =
√
29±(e1 ∧ e2),
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Differentiating and using 〈De1e1, e1〉 = 〈De2e2, e2〉 = 0 we obtain

Dϕ± · ek =
√
29±

(

A(e1, ek) ∧ e2 + e1 ∧ A(e2, ek)
)

.

Writing Ai j = αi je3 + βi je4 and expanding yields

Dϕ± · ek =
√
29±

(

α1ke3 ∧ e2 + β1ke4 ∧ e2 + α2ke1 ∧ e3 + β2ke1 ∧ e4

)

= (α2k ± β1k)e
±
13 + (∓α1k + β2k)e

±
14.

Now e±13, e
±
14 is a positive respectively negative orthonormal basis for Te±12

S2, there-

fore

det(Dϕ±) = ± det

(

α21 ± β11 α22 ± β12
∓α11 + β21 ∓α12 + β22

)

.

By choice of the bases at a point we can assume that α12 = 0 and $H = He3 for H =

α11+ α22. Then β11 = −β22 =: β, and K = (H2− |A|2)/2 = α11α22− β2− β212.

Hence

det(Dϕ±) = det

(

β ±α22 + β12
∓α11 + β12 −β

)

= α11α22 − β2 − β212 ± (α11 − α22)β12

= K ± (α11 − α22)β12.

On the other hand from A◦
i j = Ai j − 1

2
$Hgi j we see that

A◦
11 ∧ A◦

12 =
((

α11 − 1

2
H

)

e3 + β11e4

)

∧ β12e4 =
1

2
(α11 − α22)β12 e3 ∧ e4.

This proves (6.14), and (6.15) follows easily.

Proof of Theorem 6.1 for n = 4. We have (ϕ∗
+volS2+

+ ϕ∗
−volS2−)/2 = Kvolg from

(6.14), as well as |Dϕ|2 = 4|DG|2 = 2|A|2 by (6.10) and [10] 2.3. Recalling the

discussion for n = 3, it is therefore sufficient to find a solution v : R2 → R of

−2v = ∗(ϕ∗
+volS2+

+ ϕ∗
−volS2−)/2 on R

2 and lim
z→∞ v(z) = 0, (6.16)

which satisfies the estimates

‖v‖L∞(R2), ‖Dv‖L2(R2), ‖D2v‖L1(R2) ≤ C(δ)

∫

R2
|Dϕ|2 dL2. (6.17)

Using (6.14), (6.1), (6.15) and (6.3), we obtain the following estimates, assuming

without loss of generality that both inequalities in (6.3) are strict,

∫

R2
Jϕ± dµg < 8π − δ and

∣

∣

∣

∣

∫

R2
ϕ∗

±volS2±

∣

∣

∣

∣

< 4π. (6.18)
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As explained in [10] Proposition 3.4.1, we may assume using approximation that

ϕ is smooth and constant outside a compact set, while keeping the assumptions

(6.18). Here, we do not assume anymore that ϕ is obtained as the Gauß map of

some surface. Our argument will essentially follow [10] 3.4 and 3.5.

Considering ϕ± as maps from S2 to S2± using the stereographic projection, we

compute
∫

R2
ϕ∗

±volS2±
= 4π deg(ϕ±) ∈ 4πZ,

hence we conclude from (6.18) that

deg(ϕ±) = 0. (6.19)

Defining G = N−1 ◦ ϕ : R2 → G4,2 ⊆ CP3, we get

∫

R2
G∗ω =

∫

R2
(ϕ∗

+volS2+
+ ϕ∗

−volS2−)/2 = 2π
(

deg(ϕ+) + deg(ϕ−)
)

= 0.

Let π : S7 → CP3 be the Hopf projection. By Proposition 3.4.3 in [10] the map

G has a lift F : R2 → S7, i.e. G = π ◦ F , whose Dirichlet integral is computed as
follows, using |DG|2 = |Dϕ|2/4 and G∗ω = (ϕ∗

+volS2+
+ ϕ∗

−volS2−)/2,

4

∫

R2
|DF |2 dL2 =

∫

R2
|Dϕ|2 dL2 + ‖ ∗ (ϕ∗

+volS2+
+ ϕ∗

−volS2−)‖2
W−1,2(R2). (6.20)

Here for w ∈ L1loc(R
2) the norm on the right hand side is

‖w‖W−1,2(R2) = sup
{

∫

R2
wψ dL2 : ψ ∈ C∞

0 (R2),

∫

R2
|Dψ |2 dL2 ≤ 1

}

.

By (6.19), the number of preimages card (ϕ−1
± {p}) must be even for almost every

p ∈ S2±, whence (6.18) implies

volS2±
(ϕ±(R2)) ≤ 1

2

∫

R2
Jϕ± dµg < 4π − δ/2.

Therefore, we may choose open sets U± ⊆ S2± with U± ⊇ ϕ±(R2) and

volS2±
(S2± −U±) ≥ δ/2, (6.21)

so that ϕ(R2) ⊆ U+ × U− ⊆ S2+ × S2−. We shall now construct one-forms ξ± on

U± with the properties

dξ± = volS2±
|U± and |ξ±| ≤ C

δ
on U±. (6.22)
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Using euclidean coordinates q = (x, y, z), we first define a one-form ξe3 on S
2 −

{e3} by

ξe3 = − xdy − ydx

1− z
or ξe3(q) · v = −〈e3 × q, v〉

1− 〈e3, q〉 ,

where × denotes the cross product. In polar coordinates x = sinϑ cosϕ, y =

sinϑ sinϕ and z = cosϑ , one readily checks that ξe3 = −(1+ cosϑ)dϕ and hence

dξe3 = sinϑ dϑ ∧ dϕ = volS2 on S2 − {e3},

where S2 is oriented by its exterior normal. Next for any p ∈ S2 we choose T ∈
SO(3) with T p = e3 and put ξp = T ∗ξe3 on S

2 − {p}. We have explicitely

ξp(q) · v = −〈p × q, v〉
1− 〈p, q〉 on S2 − {p},

in particular

dξp = volS2 on S
2 − {p} and |ξp(q)| ≤ 2

|p − q|
.

For E ⊆ S2 closed with volS2(E) ≥ δ/2 we now define on U = S2 − E the

one-form

ξE (q) = −
∫

E

ξp(q) dvolS2(p),

which satisfies

dξE = volS2 |U and |ξE (q)| ≤ 2

δ

∫

S2

2

|p − q|
dvolS2(p) ≤ C

δ
.

The forms ξ± as in (6.22) are obtained by choosing orientation preserving isome-

tries T± : S2± → S2, and putting ξ± = T ∗
±ξE± where E± = T±(S2± − U±). Now

define on U+ ×U− the one-form ξ = 9∗
+ξ+ + 9∗

−ξ−, and compute

dϕ∗ξ = (ϕ∗
+volS2+

+ ϕ∗
−volS2−)|U+×U−, and |ϕ∗ξ | ≤ C

δ
|Dϕ|.

As ϕ±(R2) ⊆ U±, we can estimate for any ψ ∈ C∞
0 (R2)

∣

∣

∣

∫

R2
∗(ϕ∗

+volS2+
+ ϕ∗

−volS2−)ψ dL2
∣

∣

∣
=

∣

∣

∣

∫

R2
d(ϕ∗ξ)ψ

∣

∣

∣

=

∣

∣

∣

∫

R2
(ϕ∗

+ξ+ + ϕ∗
−ξ−) ∧ dψ

∣

∣

∣

≤ C

δ
‖Dϕ‖L2(R2)‖Dψ‖L2(R2),
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hence we get by the definition of the W−1,2 norm and by (6.20)
∫

R2
|DF |2 dL2 ≤ C(δ)

∫

R2
|Dϕ|2 dL2. (6.23)

Now (6.11) and [10, 2.2] imply that

π∗N ∗(9∗
+volS2+

+ 9∗
−volS2−)/2 = π∗ω =

3
∑

k=0

idzk ∧ dz̄k .

From ϕ± = 9± ◦ ϕ and ϕ = N ◦ π ◦ F we therefore have

(ϕ∗
+volS2+

+ ϕ∗
−volS2−)/2 = F∗

3
∑

k=0

idzk ∧ dz̄k = 2

3
∑

k=0

det(DFk) dx ∧ dy.

As in [10, Proposition 3.3.1], we apply [2] to obtain the Hardy space estimate,

combining with (6.23),

‖ ∗ (ϕ∗
+volS2+

+ ϕ∗
−volS2−)/2‖H1(R2) ≤ C

∫

R2
|DF |2 dL2 ≤ C(δ)

∫

R2
|Dϕ|2 dL2.

Now [10, Theorem 3.2.1] yields the existence of a function v : R2 → R satisfying

(6.16) and (6.17), thereby proving the theorem also for n = 4.
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[8] E. KUWERT and R. SCHÄTZLE,Minimizers of the Willmore functional with precribed con-

formal type, preprint 2007.
[9] P. LI and S. T. YAU, A new conformal invariant and its applications to the Willmore con-

jecture and the first eigenvalue on compact surfaces, Invent. Math. 69 (1982), 269–291.
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[11] M. SCHMIDT, A proof of the Willmore conjecture, arXiv:math/0203224v2 (2002).
[12] L. SIMON, “Lectures on Geometric Measure Theory”, Proceedings of the Centre for Math-

ematical Analysis, Australian National University, Vol. 3, 1983.
[13] L. SIMON, Existence of surfaces minimizing the Willmore functional, Comm. Anal. Geom.

1 (1993), 281–326.
[14] A. J. TROMBA, “Teichmüller Theory in Riemannian Geometry”, ETH Lectures in Mathe-
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