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ABSTRACT

Recent research on pattern discovery has progressed from
mining frequent itemsets and sequences to mining struc-
tured patterns including trees, lattices, and graphs. As a
general data structure, graph can model complicated rela-
tions among data with wide applications in bioinformatics,
Web exploration, and etc. However, mining large graph pat-
terns is challenging due to the presence of an exponential
number of frequent subgraphs. Instead of mining all the
subgraphs, we propose to mine closed frequent graph pat-
terns. A graph g is closed in a database if there exists no
proper supergraph of g that has the same support as g. A
closed graph pattern mining algorithm, CloseGraph, is devel-
oped by exploring several interesting pruning methods. Our
performance study shows that CloseGraph not only dramat-
ically reduces unnecessary subgraphs to be generated but
also substantially increases the efficiency of mining, espe-
cially in the presence of large graph patterns.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications -
Data Mining

General Terms

Algorithms, Performance, Experimentation

Keywords

frequent graph, graph representation, closed pattern, canon-
ical label

1. INTRODUCTION

Frequent graph pattern mining raised great interest in
data mining community recently. Many scientific and com-
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mercial applications require the discovery of structural pat-
terns in large data sets, which go beyond sets, sequences,
and trees towards lattices, graphs, and other complicated
structures. Certainly, as a general data structure, graph can
meet the demands of modelling complicated relations among
data. We have witnessed several algorithms developed for
this challenging problem [10, 11, 16, 15, 3].

Frequent graph pattern mining shares a common prob-
lem which also exists in frequent itemset and sequence min-
ing. Based on the Apriori principle [1], a frequent n-edge
labeled graph may contain 2" frequent subgraphs. This
raises a serious problem for mining complete subpatterns:
A graph pattern with 64 edges, which is not unusual in
molecule structures and chemical compounds, may gener-
ate 254 frequent subgraphs, although most subgraphs actu-
ally deliver nothing interesting but redundant information
if all of them share the same support. For example, among
422 chemical compounds that are confirmed to be active in
an AIDS antiviral screen dataset provided by Developmen-
tal Theroapeutics Program in NCI/NIH, there are nearly
1,000,000 frequent graph patterns if the minimum support
is 5%. This makes the further analysis on frequent graphs
nearly impossible.

In the context of itemset and sequence mining, an inter-
esting solution, called mining closed frequent itemsets and
sequences [13], has been proposed to overcome this diffi-
culty [14, 4, 18, 17]. A frequent pattern I is closed if there
exists no proper super-pattern of I with the same support
in the dataset. The counterpart alternative in graph min-
ing, mining closed frequent graphs, may lead to a promising
direction as well. For example, for the dataset mentioned
above, among these 1 million frequent graphs, only about
2,000 are closed frequent graphs. If further analysis (such as
classification or clustering) is performed on the set of closed
graphs instead of on the whole set of frequent graphs, it will
achieve the same accuracy with less redundancy and better
efficiency. However, until recently, this crucial alternative
has not been touched. This is, based on our analysis, partly
because of the complexity in graphs.

The goal of this paper is to develop an efficient method
for mining closed graph patterns. Previous studies in closed
itemset mining [14, 4, 18] and subsequence mining [17] have
demonstrated that such mining may lead to more efficient
methods than mining all patterns by developing some so-
phisticated techniques to prune the pattern search space.
However, some elegant properties of itemsets and sequences
do not hold in graphs. For example, our recently discov-
ered property about equivalence of projected database in



sequential pattern mining [17] can hardly be applied in the
graph mining if we do not use a huge amount of extra stor-
age and computation. Thus, it requires exploring different
approaches to accommodate the specific properties in graph
patterns.

There are two general approaches in efficient graph pat-
tern mining. The first, represented by [10, 11, 15], extends
the Apriori-based candidate generation-and-test approach [1]
to graph pattern mining. The detailed algorithms distin-
guish themselves in using different building blocks: vertices
in [10], edges in [11], and edge-disjoint paths in [15]. The
second approach, represented by [16, 3], adopt a pattern-
growth philosophy [8] by growing patterns from a single
graph directly. It adopts space-efficient depth-first search.
Such a method avoids two costly operations: (1) joining two
k-edge frequent graphs to generate (k + 1)-edge graph can-
didates, and (2) checking the frequency of these candidates
separately. These two operations usually are the perfor-
mance bottlenecks of the Apriori-like algorithms.

In [16], we demonstrated that gSpan, a new graph min-
ing algorithm based on the pattern-growth approach, out-
performs FSG[11], the reported best algorithm in the cate-
gory of the Apriori-based, candidate generation-and-test ap-
proach. However, it is still challenging to develop an efficient
closed graph mining algorithm based on gSpan since gSpan
builds a very strict order in graph patterns. In this paper,
we present CloseGraph (Closed Graph pattern mining), the
first algorithm for mining closed frequent graph patterns,
and show that CloseGraph is highly efficient. It outperforms
gSpan by a factor of 4 to 10 when the frequent graphs are
large (for example, graphs with more than 32 edges). The
success of the method is based on the development of the
novel concepts of equivalent occurrence and early termina-
tion that help CloseGraph prune the search space substan-
tially with small additional cost. We also illustrate some
cases where early termination may fail and miss some pat-
terns. By detecting and eliminating these cases, we guar-
antee the completeness and soundness of the closed graph
patterns discovered by CloseGraph.

The remaining of the paper is organized as follows. Sec-
tion 2 introduces the concept of closed frequent graph pat-
tern mining and the notations to be used throughout the
paper. A search framework is illustrated in Section 3. In
Section 4, the methods for testing equivalent occurrence,
early termination, as well as failure detection are presented.
Section 5 formulates the algorithm of CloseGraph. We report
our performance result in Section 6, discuss the extension of
our method and related work in Section 7, and conclude our
study in Section 8.

2. PRELIMINARY CONCEPTS

As a general data structure, labeled graph can be used to
model complicated patterns among data such as relationship
patterns. A labeled graph has labels associated with its edges
and vertices. We denote the vertex set of a graph g by V(g),
the edge set by E(g). A label function, !, can map a vertex
or an edge to a label. A graph g is a subgraph of another
graph g’ if there exists a subgraph isomorphism from g to
g

DEFINITION 1  (SUBGRAPH ISOMORPHISM). A subgraph
isomorphism is an injective function f : V(g) — V(g'), such
that (1)Vu € V(g), l(u) = U'(f(w)), and (2)¥(u,v) € E(g),

(f(u), f(v)) € E(g') and I(u, v) =1'(f(u), f(v)), wherel and
I are the label function of g and g' respectively.

If g is a subgraph of g', then ¢’ is a supergraph of g, de-
noted by g C ¢’ (proper supergraph, if g C g'). Given a
labeled graph dataset, D = {G1,Gb2,...,Gn}, support(g)
(or frequency(g)) denotes the percentage (or number) of
graphs (in D) in which g is a subgraph. The set of frequent
graph patterns, F'S| includes all the graphs whose support
is no less than a minimum support threshold, min_sup. The
set of closed frequent graph patterns, CS, is defined
as follows, CS = {g|g € FS and 3g' € FS such that g C
g’ and support(g) = support(g')}. Since CS includes no
graph that has a proper supergraph with the same sup-
port, we have CS C F'S. The problem of closed frequent
graph mining is to find the complete set of C'S in the graph
dataset D with a given min_sup.

Since most of interesting graph patterns are connected
graphs, we first study mining labeled connected undirected
graphs without multiple edges. Extensions of our method
for mining other kinds of graph structures such as unlabeled
graphs, graphs with self-loops and multiple edges, directed
graphs, disconnected graphs, and so on, will be examined in
the discussion section.

EXAMPLE 1. Figure 1 is a sample labeled graph dataset,
D, where three labeled graphs are presented. Among these
graphs, each verter and edge are assigned a label. Let min_sup
be 2. The alphabetic order is taken as the default lexicograph-
ical order.

Figure 1: A Sample Graph Dataset D

A graph g can be extended by adding a new edge e. Let
the new graph denoted by g ¢, e. Edge e may or may not
introduce a new vertex to g. If e introduces a new vertex, we
denote the new graph by go.se, otherwise, gozpe. Algorithm
1 illustrates a naive frequent graph mining algorithm. It
finds all the frequent graphs, closed or non-closed. For each
discovered graph g, it performs the extension recursively
until all the frequent graphs with g embedded are discovered.
Line 4 shows the termination condition: When the support
of a graph is less than min_sup, it is unnecessary to extend
it any more.

NaiveGraph is simple, but not efficient. The key issue is
the inefficiency of extending g to g ¢, e: The same graph
can be extended in different ways. For an m-edge graph,
it may have n different ways to be formed from (n — 1)-
edge graphs if we do not consider isomorphism. We call
a graph that is discovered again a duplicate graph. Line
1 in Algorithm 1 gets rid of duplicate graphs. The num-
ber of duplicate graphs may be huge. It raises some severe
problems. First, the generation and support computation
of duplicate graphs waste time. Second, it is nontrivial to
tell whether a graph is a duplicate. Generally, we have to



Algorithm 1 NaiveGraph(g, D, min_sup, S)

Input: A graph g, a graph dataset D, and min_sup.
Output: The frequent graph set S.

1: if g exists in S then return;
2: else insert g to S;
3: scan D once, find every edge e such that
g can be extended to g ¢, e and it is frequent;
4: for each frequent g o, e do
Call NaiveGraph(g ¢, €, D, min_sup, S);
6: return;

o

compute its canonical label and check whether it was dis-
covered before. Third, should we extend g if we find g is a
duplicate? If there exists at least one graph that can grow
only from this duplicate graph, we still need to extend it.
As we can see, these three interleaved problems affect the
efficiency of the algorithm. They suggest that g should be
extended as conservatively as possible in order to reduce
the generation of duplicate graphs. To satisfy this require-
ment, we developed gSpan [16] where an efficient canonical
labeling system and a lexicographic ordering in graphs are
built. gSpan has the following salient properties: (1) it re-
duces the generation of duplicate graphs; (2) it does not
need to search previous discovered frequent graphs in order
to detect duplicates; and (3) it never extends any duplicate
graph but still guarantees the completeness. CloseGraph is
built on gSpan and formulates the early termination condi-
tions to make gSpan “return” as early as possible in closed
graph mining. In the following two sections, we focus on
two major techniques used in CloseGraph: (1) right-most
extension and DFS (depth-first search) lexicographic order
for frequent graph generation; and (2) equivalent occurrence
and early termination for non-closed graph pruning.

3. LEXICOGRAPHIC ORDERING

This section introduces several techniques developed to
represent and extend graphs efficiently. It includes mapping
a graph to a DF'S code (a sequence), building a lexicographic
ordering among these codes, and mining DFS codes based
on this lexicographic order.

3.1 DFS Subscripting

When performing a depth-first search [5] in a graph, a
corresponding DFS tree can be constructed. Figure 2(a) is
a frequent subgraph for the sample dataset D in Figure 1.
Figure 2(a)-(d) are the same graph. The darkened edges in
Figure 2(b)-(d) construct three different DF'S trees for this
graph. When building a DFS tree, the depth-first discovery
of the vertices forms a linear order. We use the magnitude of
subscripts to illustrate this order according to their discovery
time [5]. ¢ < j means v; is discovered before v;. We denote
G subscripted with a DFS tree T by Gr. T is named a DFS
subscripting of G.

Given Gr, we call the first node traversed in G, vo, the
root, and the last node traversed, vy, the right-most vertes.
The straight path from v to v, is named the right-most
path. In Figure 2(b)-(d), three different subscriptings are
generated. The right-most path is (vg,v1,v3) in Figure 2
(b) and (c), and (vo, v1,v2,v3) in Figure 2(d).
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Figure 2: DFS subscripting

Given Gr, the forward edge (tree edge [5]) set contains all
the edges in the DF'S tree, denoted by E%, and the backward
edge (back edge [5]) set contains all the edges which are not
in the DFS tree, denoted by E%. For example, the dark-
ened edges in Figure 2(b)-(d) are forward edges while the
undarkened ones are backward edges. From now on, (v;, vj)
(simply written as (4, j)) is viewed as an ordered pair to rep-
resent an edge. If (v;,v;) € E(G) and ¢ < j, it is a forward
edge; otherwise, a backward edge. The forward edge of vi
means there exists a forward edge (7, j) and ¢ < j. The back-
ward edge of v; means there exists a backward edge (7, j) and
¢ > j. In Figure 2(b), (1, 3) is the forward edge of v1, but
not of vz, and (2, 0) is the backward edge of va.

3.2 Right-Most Extension

In Algorithm 1, NaiveGraph requires extending g in any
possible position, which will result in a huge number of du-
plicate graphs. We would like to show that there is a more
clever way to extend graphs. gSpan restricts the extension
as follows: Given g and a DFS tree T in g, e can be extended
from the right-most vertex connecting to any other vertices
on the right-most path (backward extension); or e can be ex-
tended from vertices on the right-most path and introduce
a new vertex (forward eztension). We call these two kinds
of restricted extension as right-most extension, denoted by
g or e (for simplicity, we omit T here). This restricted ex-
tension is different from g ¢, e described in NaiveGraph.

EXAMPLE 2. If we want to extend the graph in Figure
2(b), the backward extension candidates can be (vs,vo). The
forward extension candidates can be edges extending from
vs, V1, OT Vo with a new verter introduced.

Since we may have different DFS subscriptings for the
same graph, we want to select one from them as base sub-
scripting and conduct right-most extension on the base sub-
scripting. Otherwise, right-most extension cannot reduce
the generation of duplicate graphs because there are many
different subscriptings to extend from the same graph.

3.3 DFS Code

For each subscripted graph, we can map it into an edge
sequence. We build an order among these sequences and
select the subscripting that generates the minimum sequence
as its base subscripting. There are two kinds of orders in this
process: (1) edge order, which maps edges in a subscripted
graph into a sequence; and (2) sequence order, which builds
the order among sequences. We introduce edge order in this
subsection and sequence order in the next subsection.

Intuitively, the DFS tree has defined the discovery order
of forward edges. For the graph shown in Figure 2(b), the



forward edges are discovered in the order (0, 1), (1, 2), (1, 3).
Now we can insert backward edges into the order. Given a
vertex v, all of its backward edges should appear just before
its forward edges. If v does not have any forward edge, we
put its backward edges just after the forward edge where
v is the second vertex. For vertex vy in Figure 2(b), its
backward edge (2,0) should appear just after (1,2) since v2
does not have any forward edge. Among the backward edges
from the same vertex, we can enforce an order: Given v; and
its two backward edges, (,71), (¢, j2), if j1 < j2, then edge
(4, j1) will appear before edge (4, j2). So far, we complete the
ordering of the edges in a graph. Based on this order, we
can translate a graph into a sequence. A complete sequence
for Figure 2(b) is (0,1), (1,2),(2,0), (1, 3).

Formally we can define a linear order, <r, in R? if we only
consider the subscripts of edges. e1 <r ez holds if one of
the following statements is true (assume eq = (i1,j1),€2 =
(12, 2)):

()61,62€ET7andj1 <j2 or i1 >1s A j1—j2

(ii)e1,e2 € E%, and 11 <t2o0riir =1i2 A j1 < ja.

(iii) e1 € ET, ez € ET, and i1 < jo.

(iv) e1, € ET, es € B2, and j1 < 4o.

ExXAMPLE 3. For simplicity, we represent an edge by a
5-tuple, (4,4,1i,1;,5y,1;), where l; and l; are the labels of v;
and v; respectively and l(; ;y is the label of the edge between
them. For example, (vo,v1) in Figure 2(b) is represented by
(0,1,X,a,X). Table 1 shows the edge order for the DFS
subscriptings in Figure 2(b)-(d).

edge | 70 [ 1 [ v

eo (0,1,X,a,X) | (0,1,X,a,X) | (0,1,Y,0,X)
e1 (1,2,X,a,2) | (1,2,X,5,Y) | (1,2,X,0a,X)
€2 (2:03Z:b5 ) (1,3,X,(I,Z) (2535X3b:Z)
€3 (1:35Xab7 ) (3,0,Z,b,X) (3,1,Z,G,X)

Table 1: DFS code for Figure 2(b)-(d)

DEFINITION 2
(ei) can be constructed based on <r, such that e; <T eijt+1,
where © = 0,...,|E| — 1. (e;) is a DFS code, denoted by
code(G,T).

Table 1 shows three different DFS codes generated by DFS
subscriptings in Figure 2(b)-(d). As one can see, actually
we build a one-to-one mapping between a subscripted graph
and a DFS code. When the context is clear, we treat a
subscripted graph and its DFS code as the same. All the
notations on subscripted graphs can also be applied to DFS
codes. The graph represented by a DFS code « is written
as ga-

3.4 DFS Lexicographic Order

We want to build an order among the DFS codes gener-
ated for a graph so that we can define a minimum DFS code
for this graph. Since we are dealing with labeled graphs,
the label information should be considered as one of the or-
dering factors, which can be used to break a tie when two
edges have the same subscript, but different labels. We let
<7 take the first priority, the vertex label [; take the sec-
ond priority, the edge label [(; ;) take the third, and the

(DFS CoDE). Given Gr, an edge sequence

vertex label I; take the fourth to determine the order of
two edges. For example, the first edges for the three DFS
codes shown in Table 1 are (0,1,X,a,X), (0,1,X,a,X),
and (0,1,Y,b, X) respectively. All of them share the same
(0,1) subscript. So <7 cannot tell the difference among
them. But using label information, following the order of
first vertex label, edge label, and second vertex label, we
have (0,1,X,a,X) < (0,1,Y,b,X). Based on this order,
given DFS codes a = (ao, a1, ..., am) and ﬂ (bo, b1, ..., bn),
if ag = bo, ..., at—1 = by—1 and a¢ < by (t < min(m,n)), then
we say a < ,8. According to this order cleﬁnl'clon7 we have
Yo < 71 < 2 for the DFS codes listed in Table 1.

The above discussion builds an order on the DFS codes of
the same graph. We can extend this order definition in the
DFS codes of different graphs. This ordering is one of our
key contributions in gSpan. The formal definition of DFS
code order is given as follows.

DErFINITION 3 (DFS LEXICOGRAPHIC ORDER). Suppose
Z = {code(G,T) |T is a DFS subscripting of G}, i.e., Z is a
set containing all DFS codes of all connected labeled graphs.
Suppose there is a linear order (<r) in the label set (L),
then the lezicographic combination of <t and <r is a linear
order (<) in R* x L x L x L (the space of (,,1i,1i j),1;))-
DFS Lexicographic Order is a linear order defined as fol-
lows. If a = code(Ga,Te) = (ao,a1,...,am) and B =
code(Gp,T3) = (bo,b1,...,bn),a,3 € Z, then a < B iff
either of the following is true.

(#) 3T, 0<t < min(m,n),ar =bg for k <t,ar < b

(it) ar =br for 0< k< m, and m < n.

EXAMPLE 4. Assume we have a 2-edge graph which has
a DFS code ((0,1,X,a,X)(1,2,X,b,X)). This graph is dif-
ferent from the graph in Figure 2(a). Using the DFS lezico-
graphic order, we can compare ((0,1,X,a,X)(1,2,X,b, X))
with any code in Table 1. It is greater than 7o, but smaller
than 1.

DEFINITION 4  (MINIMUM DFS CODE). Given G, Z(G)
= {code(G,T) | T is a DFS subscripting of G }. Based on
DFS lexicographic order, min(Z(G)) is called Minimum
DFS Code of G. If code(G,To) = min(Z(G)), we call Ty
the base subscripting of G.

Code 7o in Table 1 is the minimum DF'S code of the graph
in Figure 2(a). We use min(a) to denote the minimum DFS
code of the graph represented by code a. Minimum DFS
code can be considered as canonical label.

So far, we defined DFS code, minimum DFS code, and
base subscripting. For every graph, we only conduct the
right-most extension on its base subscripting and ignore
other possible subscriptings. From now on, the right-most
extension of G specifically means the right-most extension
on the base subscripting of G. Can this extension method
guarantee the completeness of the mining result? The an-
swer is “yes”. We first have the following result.

THEOREM 1 (COMPLETENESS). Performing right-most
extension in NaiveGraph guarantees the completeness of min-
ing result.

When performing the right-most extension in NaiveGraph,
it is possible that « is the minimum (i.e., representing a
base subscripting), but a ¢, e is not. In this case, should



we conduct the right-most extension on this non-minimum
DFS code (i.e., it is not a base subscripting)? The answer
is “no”.

LEMMA 1. Performing only the right-most extension on
the minimum DFS codes in NaiveGraph guarantees the com-
pleteness of the mining result.

We achieved these two major results in gSpan. The de-
tailed proof and implementation are available in [16]. Al-
gorithm 2 outlines the framework. The difference between
gSpan and NaiveGraph is the right-most extension and ter-
minating extension on non-minimum DF'S codes (Algorithm
2 lines 1-2). We replace the existence judgement in Algo-
rithm 1 Line 1-2 with the inequation s # min(s). Actually,
s # min(s) is more efficient to calculate. Line 5 requires
exhaustive enumeration of s in D. This exhaustive enumer-
ation will be utilized by CloseGraph.

Figure 3 shows the search space of gSpan, where each link
represents a possible right-most extension. The right-most
extension takes place when we extend (k — 1)-edge graphs
to the k-edge ones. If we find two DFS codes s and s’ rep-
resent the same graph and s < s’, by Lemma 1, we can
completely stop searching any descendant of s’. gSpan can
generate graphs strictly in DFS lexicographic order: graphs
with smaller minimum DFS codes will be discovered first.

2-edge

n-edge

Figure 3: Search Space

Algorithm 2 gSpan(s, D, min_sup, S)

Input: A DFS code s, a graph dataset D, and min_sup.
Output: The frequent graph set S.

1: if s # min(s), then
2 return;
3: insert s into S;
4: set C to ;
5: scan D once, find every edge e such that
s can be right-most extended to frequent s ¢, e;
insert s o, e into C;
: sort C in DFS lexicographic order;
: for each s¢, e in C do
Call gSpan(s o, e, D, min_sup, S);
: return;

© 0~

Although gSpan can achieve competitive performance com-
pared with other algorithms, it cannot help much when the
graph size is large. The exponential growth on the number
of frequent subgraphs makes the mining impossible. Cer-
tainly, it is inefficient to find the complete frequent graph

set first, and then filter it to obtain the closed ones. We
need to find an efficient method to mine the closed frequent
graphs directly.

4. EQUIVALENT OCCURRENCE

In CloseGraph, we want to find certain condition that if it
is satisfied, then for some s in Figure 3, all of its descendant
supergraphs will not be closed, and need not to be checked.
For such case, we can completely prune the search branch
of s. That is to say, in Algorithm 2 line 1, besides the orig-
inal condition of s # min(s), we probably can add another
condition that lets the recursive function return as “early”
as possible. In this section, we discuss a possible condi-
tion that we can utilize in CloseGraph. Later we will show
that the efficient implementation of this condition largely
relies on gSpan’s pattern-growth model and its exhaustive
enumeration method.

Let ¢(g,g’) represent the number of possible subgraph
isomorphisms of g in ¢, i.e., the number of different injective
functions existing in Definition 1.

DEFINITION 5 (OCCURRENCE). Given g and D = {G1,
Ga,...,Gyn}, the occurrence of g in D is the sum of the
number of subgraph isomorphisms of g in every graph of D,
i.e. Yo, p(g,Gs), denoted by Z(g, D).

EXAMPLE 5. For the graph g in Figure 2(a) and g1 in
Figure 1(1), ¢(g,91) = 2. As to g2 in Figure 1(2), ¢(g,92) =
1. For the sample dataset in Figure 1, Z(g, D) = 3.

Suppose ¢’ = g9 e, f is a subgraph isomorphism of g in
G, and f is a subgraph isomorphism of ¢’ in G. If Ap, pis a
subgraph isomorphism of g in ¢’, Vv, f(v) = f' (p(v)), then
we call f extendable and f' an extended subgraph isomor-
phism from f. Intuitively, if we have f, we can extend f to
f' since we extend g to g’ by adding one edge. We denote
the number of such extendable f by ¢(g,d’, G).

DEFINITION 6 (EXTENDED OCCURRENCE). Given g’ =
goge and D = {G1,G2,...,Gp}, the extended occurrence
of g in D w.r.t g is the sum of the number of extendable
subgraph isomorphisms of g (w.r.t g') in every graph among
D, i.e. 350, ¢(9,9', Gi), denoted by L(g,9', D).

Equivalent Occurrence. Given ¢’ = g o, e and D, if

Z(g,D) = L(g,g", D), we say that g and g' have the Equiv-

alent Occurrence, which means wherever g occurs in D, g’

occurs. Can we conclude that g" is not closed if g C g" and
/ " 9

9 Zg"

If it is true, actually we need only extend g’, instead of
g. We call this Early Termination since we terminate
searching the supergraphs of g except ¢g’. Since (g, G;) >
#(g9,9’,G:), we have Z(g,D) > L(g,g', D). When they are
equal, it can be concluded that wherever g occurs in G;, g’
must also occur exactly in the same place. Thus g must be
accompanied with e in any place where g occurs. Therefore,
some supergraph g’ of g without the edge e will not be
closed since we have support(g"”) = support(g" o, €). Here
is an example.

EXAMPLE 6. For the graph g1 in Figure 4(1), the occur-
rence of g1 in the sample dataset is Z(g1,D) = 2+1+4+0 = 3.
For the graph g2 in Figure 4(2), its extended occurrence
w.r.t. g1 is L£(g1,92,D) = 2+ 1+ 0 = 3, which is equal to



Z(g1, D). That means x-%z always accompanies g1 between
the vertices labeled with “x”. Thus, even without comput-
ing the support of the graph in Figure 4(3), we can conclude
that its support must be equal to the support of Figure 4(4).
Thus it is not closed. A further conclusion is that we need
not grow from Figure 4(1), but from Figure 4(2).

Z 4 X Z 4 X xby Z xby
S 8 ST RET
X X
) (2) ) “4)

Figure 4: Equivalent Occurrence

4.1 Failure of Early Termination

Unfortunately, Early Termination does not hold for every
supergraph of g. There are several cases where Early Termi-
nation cannot be applied. One of them is illustrated below.
We develop techniques to check these cases in order to make
Early Termination work correctly.

CASE 1. Suppose a dataset consists of two graphs shown
wn Figure 5(1) and 5(2). We want to find closed graphs
whose minimum support is 2. Let g be t-%y and g’ be
z-%y-tx. As we can see, y->x always occurs with x—>y.
Can we terminate extending g since Z(g, D) = L(g,4’, D) in
this case? We cannot. Otherwise, we will miss the pattern
shown in Figure 5(8). This graph cannot be extended from
z-2y-Lx. If we add edge y—2x into Figure 5(3), the new
graph will not be frequent any more. That means we cannot
only extend g' in this case. We say there is a failure of Early
Termination in g, y->x s the failure point.

aYbX X a ¥
de z d X
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Figure 5: Failure of Early Termination

Case 1 shows a situation where Early Termination does
not work. If we can eliminate this case, Early Termination
still works in the remaining cases. The following theorem
sets the condition where Early Termination can be applied.

THEOREM 2 (EARLY TERMINATION). Given g’ = g o,
e and D, I(9,D) = L(g,9',D), if Yh, g C h, g" ¢ h,
Z(h,D) = L(h,h oz €', D) or Z(h,D) = L(h,h oy e, D)
is true, then it is unnecessary to extend g except g’.

Proof.(draft) If Z(h, D) = L(h,h oz e, D) or Z(h,D) =
L(h,hozpe, D), then we can conclude that one of the follow-
ing must be true: (1) VG € D, if h C G, then hoy5e C G;

!Since h contains g, but not g’, e is the edge which can be
added into g in A to construct g’ in h. Therefore, h 0,5 €

and h o4 e will contain g'.
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Figure 6: Detect Failure of Early Termination

or (2) VG € D, if h C G, then h oz, e C G. Therefore, we
have either support(h) = support(h o5 e) or support(h) =
support(h oz €). In either way, h is not closed. Thus it is
unnecessary to extend g except g'. [ ]

4.2 Detecting Failure of Early Termination

Now the key problem is how to detect whether there exists
h which fails the condition of Theorem 2. Figure 6 shows our
approach to detect the occurrence of Case 1. It works in a
passive way, which means we do not actively look for h. In-
stead, at the beginning we assume there is no violation case
of Early Termination and just commit to it: Any frequent
graph with -2y embedded must contain z-%y-42 for the
dataset in Figure 5(1) and 5(2). Then we extend z %y z
to g1 shown in Figure 6. At this stage everything is fine. We
continue extending g; to g> and g1 to gs. We find g» and g3
are not frequent (their support is less than 2). However, we
find the extensions from g; to g2 and g; to gs add a common
edge z—%z, though g3 introduces a new vertex and g» does
not. It gives us a hint: If we decouple edge £—%y and y—2x,
we probably can grow a graph like Figure 5(3). Actually
we can break the edge y-2x (we say y—2x breakable) and
then introduce a forward edge z—%x, which invalidates our
commitment previously made that £ -2y and y—*z must be
together. We need to grow z—2y separately. It helps us find
a graph which is ignored if we just apply Early Termination.
There are other similar failure cases which can be handled
with care. The detection of these failure cases of Early Ter-
mination can guarantee the completeness of mining result.

Furthermore, since we only have interests in frequent graphs,
we can apply an additional requirement for the case shown
in Figure 6: The sum of support(g2) and support(gs) must
be no less than min_sup. Otherwise, it is impossible that
the support of the graph in Figure 5(3) will be greater than
or equal to min_sup.

S. CLOSEGRAPH: DESIGN AND IMPLE-
MENTATION

In previous sections, we discussed two techniques: Right-
most extension for frequent graph mining and Early Termi-
nation for closed graph mining. We put them together in
CloseGraph. In this section, we illustrate the major problems
we meet in formulating CloseGraph.

When we extend g by adding one more edge in gSpan, we
enumerate each occurrence of g in the graph dataset. Thus,
we only need to maintain a counter to calculate Z(g, D).
When we enumerate g, we search for the occurrence of g’ =
g9z e and update the support of g¢’. We add another counter
to calculate the extended occurrence of g’, £(g, g', D). Thus,
both Z(g, D) and L(g,g’, D) can be obtained nearly for free,
which is largely contributed by the pattern-growth model
and exhaustive enumeration method adopted by gSpan. In
the first glance, it seems trivial to apply Early Termination
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condition in gSpan. Actually, it is not.

The advantage of gSpan is its right-most extension ap-
proach in graph pattern growth. It reduces the generation of
duplicate graphs. As we know, gSpan performs depth-first
search and generates the DFS codes in DFS lexicographic
order. gSpan avoids extending g in all the possible ways.
It only conducts the right-most extension on the vertices in
the right-most path. That is, g is extended to g ¢, e instead
of g o, e. If there exist some supergraphs g’ that cannot be
right-most extended from g in gSpan, we will lose the trace
of £(g,g', D) for these supergraphs, which, to some extent,
will miss some opportunities to find the situations where
Early Termination can be applied.

CloseGraph proposes a trade-off between NaiveGraph and
gSpan. For each graph g, we check all the possible frequent
g', where ¢’ = g o, e, to obtain L(g,g’, D). However, we
only conduct the right-most extension of g. Certainly, we
must pay special attention to detect the failure cases of Early
Termination in CloseGraph.

Even if we implement CloseGraph in this way, we cannot
fully take advantage of Early Termination since we gener-
ate the graphs in DFS lexicographic order. Figure 7 shows
an example. Suppose g1, g2, g3, and g4 are generated in
that order and Z(g1,D) = £(g1,94,D). If we stop right-
most extending g1 and only extend g4, we may lose g3 (g2
is not closed) and some of its supergraphs forever. For ex-
ample, g3 cannot be generated from g4 2. Thus, we need
to extend g1 to g2, and so on. Therefore, Early Termina-
tion cannot be applied in this case if we strictly follow DFS
lexicographic order. However, in cases where g’ = g o, e,
Z(g,D) = L(g,9', D), and g > g', we can use Early Termi-
nation.

Besides using Early Termination to remove some non-
closed frequent graphs, we also need to get rid of the remain-
ing non-closed frequent graphs. One approach is whenever
we discover a frequent graph, we compare it with the pre-
viously discovered graphs to see whether it is closed. In
CloseGraph, the following lemma can help doing this in a
clever way.

LEMMA 2. Given graphs g and ¢, if g C g’ and support(g)
support(g'), then 3h, h = goze and h C ¢, s.t. support(g)
= support(h).

Lemma 2 shows that if we want to check whether a graph
is closed, we only need to check the support of its super-
graphs that have one more edge. We mentioned before
that CloseGraph checks all the possible frequent g', where
g = gose, to obtain L(g,g’, D). Therefore, support(g’) can
be obtained as a side-product when we calculate £(g, g', D).
If there exists a graph g’ such that support(g) = support(g'),
g is not closed. Otherwise, it is closed. Thus, CloseGraph

293 can be right-most extended from g4, but it will be ig-
nored since the DFS code of g3 generated in this way is not
the minimum DFS code of gs.

need not record any previously discovered graphs to prune
newly discovered non-closed graphs. A closed frequent graph
is output whenever it is found. This method is different from
CloSpan that we developed in [17], where a closed sequen-
tial pattern candidate set need to be stored in order to do
post-pruning.

CloseGraph works in three major steps recursively: (1) it
generates a frequent graph; (2) it applies Lemma 2 to check
whether this graph is closed; and (3) it checks the condi-
tion of Early Termination and its failure cases to determine
whether the graph should be extended.

Algorithm 3 CloseMining(D, min_sup, S)

Input: A graph dataset D and min_sup.
Output: The closed frequent graph set S.

1: remove infrequent vertices and edges;

2: S° « code of frequent graphs with single vertex;
3: 5+ S°

4: for each code s € S° do

5 CloseGraph(s, NULL, D, min_sup, S);

Algorithm 3 illustrates the framework which includes the
necessary preprocessing step. It removes infrequent vertices
and edges. Then it calls CloseGraph recursively by doing
depth-first search and right-most extension. The search or-
der of closed graphs is consistent with the DF'S lexicographic
order.

Algorithm 4 CloseGraph(s, p, D, min_sup, S)

Input: A DFS code s, its parent p,
a graph dataset D, and min_sup.
Output: The closed frequent graph set S.

—_

: if s # min(s), then

return;

3: if 3e',9' = gp oz € and ¢’ < g5 and Z(gp, D) = L(gp,g', D)
and gp is not a failure case of early termination then

4. return;

set C to @;

scan D once, find every edge e such that

s can be extended to frequent s o, e;

insert s o, e into C;

detect any possible failure of early termination in s;

if Bso, e € C, support(s) = support(s o, e) then
insert s into S

0: remove s o, e from C which cannot be

right-most extended from s;

11: sort C in DFS lexicographic order;

12: for each s¢, ¢ in C do

13: Call CloseGraph(s oy e, s, D, min_sup, S);

14: return;

»

5 ©®x

Algorithm 4 outlines the pseudo code of CloseGraph. The
framework of CloseGraph is similar to gSpan. However, it
performs a major improvement using the search space prun-
ing techniques developed above. That is, before conducting
the right-most extension on a discovered graph, CloseGraph
first checks whether there exists Early Termination in Al-
gorithm 4 line 3-4, which is a variance of the condition we



previously mentioned. If the condition is satisfied and g’
does not cause the failure of Early Termination, it is un-
necessary to continue extension of g, since all its possible
descendants must not be closed.

6. EXPERIMENTS AND PERFORMANCE
STUDY

A comprehensive performance study was conducted in our
experiments on both real and synthetic datasets. The real
data set we tested is an AIDS antiviral screen chemical com-
pound dataset 3. For the latter, we use a synthetic data
generator provided by Kuramochi and Karypis [11].

All the experiments are done on a 1.7GHZ Intel Pentium-
4 PC with 1GB main memory, running RedHat 7.3. Both
gSpan and CloseGraph are implemented in C++ with STL
library support and compiled by g++ with -O3 optimiza-
tion. CloseGraph shares the exact same routines and source
codes of the right-most extension, subgraph isomorphism
and minimum DFS code calculation with gSpan. Thus, the
performance curve mainly reflects the effectiveness of Early
Termination in CloseGraph. The mining result of CloseGraph
is cross-checked with gSpan. In each experiment, we also
show the performance of an Apriori-like algorithm, FSG [11].

We are interested in discovery of frequent structures. Ad-
ditional mining operations can be constructed on these fre-
quent structures: For example, finding contrast structures
which are frequent in one class but infrequent in another, or
using the frequent structures as features to label unclassified
structures.

The AIDS antiviral screen compound dataset from Devel-
opmental Theroapeutics Program in NCI/NIH is available
publicly. We select the most up-to-date release, March 2002
Release. The dataset contains 43,905 chemical compounds.
The results of the screening tests can be categorized into
three classes: CA.: confirmed active; CM: confirmed mod-
erately active; and CI: confirmed inactive. Among these
43,905 compounds, 422 of them belong to CA, 1081 are of
CM, and the remaining are in class CI.

We want to discover the frequent structures in the class
CA and CM compounds. We remove all the hydrogens in
these compounds. The most popular atoms in these two
datasets are C, O, N, S, etc. There are 21 kinds of atoms
in class CA compounds whereas 25 in class CM. Three
kinds of bonds are popular in these compounds: single-bond,
double-bond, and aromatic-bond. On average, each class
CA compound has 40 vertices and 42 edges. The maxi-
mum one has 188 vertices and 196 edges. Each class CM
compound has 32 vertices and 34 edges on average. The
maximum one has 221 vertices and 234 edges.

Figure 8(a) shows the runtime with min_sup varying from
10% to 5% on the class CA compound dataset. The number
of frequent graph patterns and closed frequent graph pat-
terns are shown in Figure 8(b). As we can see, CloseGraph
outperforms gSpan by a factor of 10 when min_sup is close
to 5%. Both of them are better than FSG. Meanwhile,
CloseGraph generates fewer patterns than gSpan. The ratio
between frequent graphs and closed ones is close to 100 : 1.
It demonstrates that closed pattern mining can deliver more
compact mining results. We also tested the performance of
WARMR [6], an ILP program. WARMR can not complete
the task in 2 hours for 10% minimum support. It takes

3http://dtp.nci.nih.gov/docs/aids/aids_data.html.
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Figure 8: Mining Patterns in class CA Compounds

208 seconds and 6400 seconds for 30% and 20% minimum
support. In both cases, it takes gSpan less than 2 seconds.
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Figure 9: Discovered Patterns in class CA

Figure 9 shows the largest graph patterns we discovered in
three different minimum support thresholds: 20% in Figure
9(a) (14 edges), 10% in Figure 9(b) (21 edges), and 5% in
Figure 9(c) (42 edges).

Next, we conduct experiments on class CM compounds.
The performance and the number of discovered patterns are
shown in Figure 10. The ratio between frequent graphs and
closed ones is around 10 : 1. The largest pattern with
5% support has 23 edges. That means the compounds in
class CA share larger and more common chemical frag-
ments. The compounds in class CM are more diverse and
do not converge on some specific structures. It explains
why CloseGraph does not achieve a similar speedup in this
dataset. However, gSpan needs extra cost to compute closed
frequent graphs, which is not shown in the figure. For exam-
ple, with 2.5% support, gSpan takes 5675 seconds to com-
pute the closed graphs while CloseGraph only takes 1713 sec-
onds.
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Figure 10: Mining Patterns in class CM Compounds

We then tested CloseGraph on a series of synthetic graph
datasets. The synthetic graph datasets are using a proce-
dure similar to that described in [1]. Table 2 shows major pa-
rameters in this generator and their meanings, as denoted in
[11]. The synthetic data generator works as follows: First, it
generates a set of L potential frequent graphs as seeds. They
have I edges on average. Then, it randomly picks several



seeds and merges them (overlaps these seeds as much as pos-
sible) to construct a new graph in the dataset. More details
can be referred to [11]. A user can set parameters to decide
the number of graphs (D) wanted and their average size (T').
For a dataset which has 10000 graphs, each graph has 20
edges on average, the potential frequent graph has 10 edges
on average, 200 potential frequent graphs, and 40 available
labels, we represent this dataset as D10kN40I10720L200.
In our experiments, L is set to 200 and L200 is omitted in
our legend specification.

abbr. | meaning

the total number of graphs in the dataset

the number of possible labels

the average size of graphs in terms of edges
the average size of potentially frequent graphs
the number of potentially frequent graphs

SREES

Table 2: Parameters for Synthetic Graph Generator

Figure 11 shows the runtime and mining result for the
dataset D10kN40I12T20. The synthetic graphs have 27 edges
and 16 vertices on average. Compared with the real dataset,
CloseGraph has a similar performance gain in this synthetic
dataset. We do not show the runtime of FSG in this dataset
and the following ones since the runtime of FSG is out of the
bound in each figure.
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Figure 11: Varying Support for D10kN40112T20

We then test the performance of CloseGraph by changing
some major parameters in the synthetic data. The impact
of different parameters is presented on the runtime of each
algorithm. Two parameters in Table 2 are selected as var-
ied ones: (1) the average size of potentially frequent graphs
(seeds), and (2) the average size of graphs in the dataset.
For each experiment, only one parameter varies with the
others fixed. The experimental results are shown in Figure
12.

The performance study clearly shows that CloseGraph per-
forms better than gSpan and FSG. Considering that it takes
extra computation to obtain closed frequent graphs from
mined frequent graphs in gSpan and FSG, the speedup achieved
by CloseGraph should be more significant.

7. DISCUSSION

In this section, we discuss the extensions of CloseGraph for
mining other kinds of graphs and the related work.

7.1 Mining Other Kinds of Graphs
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Figure 12: Performance vs. Varying Parameters

So far, we have proposed and investigated a general frame-
work, CloseGraph, for mining closed, labeled, connected, undi-
rected, frequent subgraph patterns. Here we show that the
framework can be extended to mine other kinds of graphs.

1. Mining unlabeled or partially labeled graphs. We build a
label set which contains the original label set (empty if
the graphs are all unlabeled) and a new empty label, ¢.
Label ¢ is assigned to all the vertices and edges that do
not have labels. With this transformation, CloseGraph
can directly mine unlabeled or partial labeled graphs.

2. Mining non-simple graphs. Non-simple graphs may have
self-loop (i.e., an edge joins a vertex to itself) and multi-
ple edges (i.e., several edges connect two same vertices).
In CloseGraph, we always first grow backward edges and
then forward edges. In order to accommodate self-loops,
the growing order can be changed to backward edges, self-
loops, and forward edges. Multiple edges can appear in
these three kinds of edges. If we allow two neighbored
edges in a DFS code to share the same vertices, actu-
ally the definition of DFS lexicographic order can accom-
modate multiple edges. Thus CloseGraph can mine non-
simple graphs efficiently too.

3. Mining directed graphs. We use a 5-tuple, (¢, 4, 1, l(; j), ;),

to represent an undirected edge. For directed edges, a new
state can be introduced to form a 6-tuple, (4, 5, d, ls, 1 jy, 1),
where d represents the direction of an edge. Let d = +1
represent the direction from i (v;) to j (v;), whereas
d = -1 be that from j (vj) to 7 (v;). Notice that the
sign of d is not related with the forwardness or backward-
ness of an edge. When growing a graph with one more
edge, we allow this edge to have two choices of d, which
only introduces a new state in the growing procedure and
need not change the framework of CloseGraph.

4. Mining disconnected graphs. There are two cases: (1) the

graphs in the dataset may be disconnected; (2) the graph
patterns may be disconnected. For the first case, we can
transform the original dataset by adding a virtual vertex
to connect the disconnected graphs in each graph. Then
we apply CloseGraph on the new graph dataset. For the
second case, we redefine the DFS code. A disconnected
graph pattern can be viewed as a set of connected graphs,
r = {90, 91,--.,9m}, where g; is a connected graph, and
0 < ¢ < m. Since each graph can be mapped to a min-
imum DFS code, a disconnected graph r can be trans-
lated into a code, v = (S0, S1,-..,8m), where s; is the
minimum DFS code of g;. The order of g; in r is ir-
relevant. We can enforce an order among s; such that
S0 < 81 £ ... £ Sm. 7y can be extended by either adding



one-edge Sm+1 (Sm < Sm+1) to the code or by extend-
ing Sm, ..., and so. This procedure can be repeatedly
conducted in a depth-first search way. When checking
the frequency of <y in the graph dataset, make sure that
go, g1, - - ., and g, are disconnected with each other.

5. Mining trees. By removing backward edges, CloseGraph
is ready to mine tree structures. The efficiency of this
dwarfed version of frequent graph mining was demon-
strated in [2]. It is expected that CloseGraph can achieve
high performance in tree-structure mining.

7.2 Related Work

There were many previous studies on discovering common
structure patterns among chemical compounds and proteins
[7]. They targeted different measures of structure similarity
and pair-wise algorithms to find max similarity between two
structures. In this paper, we investigated the issue of mining
frequent subgraphs among a large graph dataset. Dehaspe
et al. [6] applied inductive logic programming approach to
predict chemical carcinogenicity by mining frequent sub-
structures. Holder et al. [9] proposed SUBDUE to do ap-
proximate substructure pattern discovery based on the min-
imum description length principle and optional background
knowledge. These systems either do not demonstrate min-
ing efficiency or cannot discover the complete set of frequent
graphs. Inokuchi et al. [10] and Kuramochi and Karypis [11]
proposed Apriori-based algorithms to discover all frequent
substructures, and they also show that their methods mine
the complete set of structured patterns, and have better per-
formance than the previous ones. Recently, there are studies
by Vanetik et al. [15] and Borgelt et al. [3]. The former ap-
plies an Apriori-like algorithm, but uses edge-disjoint paths
as building blocks. [15] also introduces a new support defi-
nition in a graph. The framework proposed by [3] is similar
to gSpan. However, gSpan systematically solved several dif-
ficult problems, including efficient detection and elimination
of duplicate graphs.

Other related work in frequent substructure mining in-
cludes frequent tree structure mining [2, 19], discovering
frequent graphs with geometric constraints [12], and etc.

8. CONCLUSIONS

In this paper, we investigated the problem of mining closed
frequent graph patterns in large graph data sets, a critical
problem in graph pattern mining because mining all pat-
terns are inherently inefficient and redundant. Several new
concepts are introduced in this study including right-most
extension, equivalent occurrence, early termination and its
failure detection. A CloseGraph method is implemented and
our performance study demonstrates its high efficiency over
gSpan and FSG. To the best of our knowledge, this is the
first piece of work on closed graph pattern mining.

There are many interesting research problems related to
CloseGraph that should be pursued further. One possible
improvement over CloseGraph is the further improvement of
failure detection. In our experiments, we have found that
in order to detect one failure situation, we have to sacrifice
half of the performance. A better failure detection algorithm
may further improve the performance. Moreover, the incor-
poration of user-specified constraints in closed graph pattern
mining and the extension CloseGraph to mining other com-
plicated structured patterns are interesting topics for future
research.
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