
Electron. Commun. Probab. 21 (2016), no. 36, 1–19.
DOI: 10.1214/16-ECP4029
ISSN: 1083-589X

ELECTRONIC

COMMUNICATIONS

in PROBABILITY

Closeness to the diagonal for longest common
subsequences in random words

Christian Houdré* Heinrich Matzinger†

Abstract

The nature of the alignment with gaps corresponding to a longest common subse-
quence (LCS) of two independent iid random sequences drawn from a finite alphabet
is investigated. It is shown that such an optimal alignment typically matches pieces of
similar short-length. This is of importance in understanding the structure of optimal
alignments of two sequences. Moreover, it is also shown that any property, common
to two subsequences, typically holds in most parts of the optimal alignment whenever
this same property holds, with high probability, for strings of similar short-length.
Our results should, in particular, prove useful for simulations since they imply that
the re-scaled two dimensional representation of a LCS gets uniformly close to the
diagonal as the length of the sequences grows without bound.
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1 Introduction

Let x and y be two finite strings. A common subsequence of x and y is a subsequence
of both x and y, while a longest common subsequence (LCS) of x and y is a common
subsequence of maximal length.

It is well known that common subsequences can be represented via alignments with

gaps as illustrated, next, on some examples: First take the binary strings x = 0010 and
y = 0110. A common subsequence is 01, which can be represented as an alignment
with gaps as follows: The common letters are aligned together, while each letter not
appearing in the common subsequence is aligned with a gap. Several alignments can
thus represent the same common subsequence and in this first example, an alignment
corresponding to the common subsequence 01 is given by

x 0 0 1 0

y 0 1 1 0
(1.1)
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Longest common subsequences in random words

while another one is given by

x 0 0 1 0

y 0 1 1 0
(1.2)

Above, the LCS is not 01 but rather 010. An alignment corresponding to a LCS
is called an optimal alignment (OA) or is said to be optimal. Neither (1.1) nor (1.2)
represent optimal alignments, but an optimal alignment is given by:

x 0 0 1 0

y 0 1 1 0

which, again, is clearly not unique. Here the LCS of x and y is LCS(x; y) = 010, which
has length three, a fact denoted by |LCS(x; y)| = 3. Here is another example: let
x = christian and y = krystyaan. Then, LCS(x; y) = rstan and an alignment with gaps
representing the LCS is:

c h r i s t i a n

k r y s t y a a n
(1.3)

Again, all the letters which are part of the LCS are aligned with one another, while the
other letters are aligned with gaps. In the above alignment of x and y, x5x6x7x8x9 = stian

is aligned (with gaps) with y4y5y6y7y8y9 = styaan, and we say that the integer interval
[5, 9]N is aligned with [4, 9]N. Alternatively, we say that [5, 9]N gets mapped to [4, 9]N by
the alignment we consider, meaning that the following two conditions are satisfied:

i) The letters x5x6x7x8x9 are all aligned exclusively with gaps or with letters from
the string y4y5y6y7y8y9.

ii) The letters from y4y5y6y7y8y9 are all aligned with gaps or with letters from the
substring x5x6x7x8x9.

To emphasize our terminology, we see that in the alignment (1.3), [1, 4]N is aligned
with [1, 2]N ([1, 4]N is also aligned with [1, 3]N). In other words, in an alignment a piece
of x gets aligned with a piece of y if and only if the letters from the piece of x which
get aligned to letters get only aligned with letters from the piece of y and vice versa.
Longest common subsequences and optimal alignments are important tools used in
Computational Biology and Computational Linguistics for strings matching, e.g., see [6],
[20], [21], and [25].

Throughout this paper,X = X1 · · ·Xn and Y = Y1 · · ·Yn are two random strings/words

where (Xi)i≥1 and (Yi)i≥1 are two independent sequences of iid random variables with

values in a finite alphabet A and having the same law. (No other assumption, besides its

non triviality, is made on this common law.) Further, and again throughout, LCn denotes

the length of the LCSs of X and Y , i.e., LCn := |LCS(X1X2 · · ·Xn;Y1Y2 · · ·Yn)|.
To further put our framework in context, also note that 2(n − LCn) is a version of

the edit/Levenshtein distance used, e.g., in computer science. It is equal to the minimal
number of insertions and deletions to change either string/word into the other.

A well known result of Chvátal and Sankoff [7] asserts that, when scaled by n, ELCn

converges to a constant γ∗ ∈ (0, 1) (which depends on the size of the alphabet and on the
law of X1) given, via superadditivity, by γ∗ = supn≥1 ELCn/n. However, to this day, even
in the uniform binary case, the exact value of γ∗ is unknown. Moreover, Alexander [1]
determined the rate of convergence to γ∗ showing that there exists an absolute constant
KA, independent of n, of the size of the finite alphabet A, (and of the law of X1), such
that for all n ≥ 1,

γ∗n−KA

√

n log n ≤ ELCn ≤ γ∗n. (1.4)
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Longest common subsequences in random words

This law of large numbers (with rate) gives the first order behavior of LCn, and the
next problem of interest is to study the order of the variance (or more generally, of the
centered absolute moments) of LCn. This order has been found to be linear in the length
of the sequences in various instances (e.g., [10], [14], [18], [13]). This is, in particular,
the case for iid binary sequences with zeros and ones having very different probabilities
or for some classes of models “as close as one wants” to the uniform iid one [2]. In all
the known instances, it turns out that the order of the variance of LCn is thus linear in n

which is the order conjectured by Waterman [24], for which Steele [23] had previously
obtained a generic linear upper bound. However, the most important equiprobable iid
(say, binary) case remains open.

In the present paper our purpose is different and we study optimal alignments at
a macroscopic level. We present a general methodology showing that a property of
optimal alignments holds true, provided this property typically holds true for short-
strings alignments. To prove these results, we partition X into pieces of fixed length k

and, as n goes to infinity, show that typically, and further with probability exponentially
close to one, in any optimal alignment most of these pieces get aligned with pieces of Y
of similar length k. In other words, with high probability, there are no macroscopic gaps
in the optimal alignments.

Let us explain, on a further example, how alignments have to stay close to the diagonal.
Take the two related, English and German, words: X = mother and Y = mutter. The
longest common subsequence is mter, hence LC6 = 4 and the common subsequence
mter corresponds to the following two alignments:

m o t h e r

m u t t e r
(1.5)

and
m o t h e r

m u t t e r
(1.6)

Next, view alignments as subsets of R2 as follows: If the i-th letter of X gets aligned
with the j-th letter of Y , then the set representing the alignment is to contain (i, j). For
example, the alignment (1.5) can be represented as: (1, 1), (3, 3), (5, 5), (6, 6) with the
corresponding plot

r •
e •
t

t •
u

m •
m o t h e r

(1.7)

while the alignment (1.6) can be represented as: (1, 1), (3, 4), (5, 5), (6, 6) with the corre-
sponding plot

r •
e •
t •
t

u

m •
m o t h e r

(1.8)

Above, the symbol • indicates the aligned letter-pairs, and these points are said to
represent the optimal alignment. An optimal alignment can then be viewed as the graph
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Longest common subsequences in random words

of a function f defined as follows: Let f(0) = 0 and for i, j = 1, . . . , n, let f(i) = j if the
ith letter of the first sequence is aligned with the jth letter of the second sequence,
while between these values and till (n, n) let f be defined via a linear interpolation. Then
as shown in Section 4, with its notation, the function f = fp1,p2

: [0, n] → [0, n] stays
between the two lines with respective slope p1 and p2. Moreover, under a strict concavity
assumption on the limiting shape γ̃ (see the next section), fp1,p2

becomes uniformly close
to the identity as n tends to infinity. More precisely, let gn : [0, 1] → [0, 1] be defined via
gn(x) = f(nx)/n, then limn→+∞ sup0≤x≤1 |gn(x) − x| = 0. In other words, there are no
macroscopic gaps in any optimal alignment and any such alignment must remain close
to the main diagonal.

This closeness to the diagonal property has proved crucial in obtaining the first result

on the limiting law of LCn, under a lower bound on the order of the variance, see [9].

Broadly speaking, when not close to the diagonal, many terms contribute to our CLT

estimation but the corresponding set of random alignments has exponentially small

probability; while when alignments are close to the diagonal, the estimation comes from

only a few terms. The balance between these two cases leads to a central limit theorem.

This CLT contrasts with the case of two independent uniform random permutations

of {1, 2, · · · , n}, where the limiting distribution of the length of the longest common

subsequences is the Tracy-Widom distribution, see [9]. The other, more pathological,
instances, we are aware of and where a CLT holds true in a related problem, is for
the length of the longest increasing subsequences of a single random word, potentially
Markovian, where only one letter is attained with maximal probability, see [15], [16], [11],
[12]. (However, for two or more random words the limiting law is no longer Gaussian
[5].) This one word result contrasts, once more, with the single word permutation result
of Baik, Deift and Johnansson [4] where the limiting law is the Tracy-Widom one.

Note that the LCS problem can be represented as a directed last passage percolation
(LPP) problem with dependent weights. Indeed, let the set of vertices be

V := {0, 1, 2, . . . , n} × {0, 1, 2, . . . , n},

and let the set of oriented edges E ⊂ V × V contain horizontal, vertical and diagonal
edges. The horizontal edges are oriented to the right, while the vertical edges are
oriented upwards, both having unit length. The diagonal edges point up-right at a
45-degree angle and have length

√
2. Hence,

E := {(v, v + e1), (v, v + e2), (v, v + e3) : v ∈ V } ,

where e1 := (1, 0), e2 := (0, 1) and e3 := (1, 1). With the horizontal and vertical edges, we
associate a weight of 0. With the diagonal edge from (i, j) to (i+ 1, j + 1) we associate
the weight 1 if Xi+1 = Yj+1 and 0 (or −∞) otherwise. In this manner, we obtain that
LCn is equal to the total weight of the heaviest paths going from (0, 0) to (n, n). (An-
other directed LPP representation can be obtained via LCn = maxπ∈SI

∑

(i,j)∈π 1{Xi=Yj},
where SI refers to the set of all paths with strictly increasing steps, i.e., paths with both

coordinates strictly increasing from a step to another, from (0, 0) to the East, x = n, or
North, y = n, boundary. A third representation would be as above but where now the
paths going from (0, 0) to (n, n) have either strictly increasing steps or North or East
unit steps. Again to the strictly increasing steps the associated weight is 1{Xi=Yj} while
to the North as well as to the East unit steps is associated a weight value of 0. As a
final representation one could still proceed with strictly increasing paths but with the
requirement that one ends the paths with a 1.)

Note that the weights in our percolation representations are not “truly 2-dimensional”
and, in our opinion, this is the reason for the order of magnitude of the mean, variance
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as well as the limiting law in the LCS problem to be different from other first/last
passage-related models. To return to our specific results, they are the first studying
the transversal fluctuations of the maximal paths of LCSs. Such questions have been
of much interest in other percolation models. Let us only mention that Johansson [17]
showed that for a Poisson points model in the plane, typical deviations of a maximal
path from the diagonal is of order n2/3, and n2/3 is also the order of the transversal
fluctuations in the directed polymer model studied in Seppäläinen [22]. (We refer to
the respective bibliography of [17] and [22] for a much more complete and detailed
picture on transversal fluctuations. We finally also note that in view of the results of [9],
the transversal fluctuations of the LCSs of two independent random permutations of
{1, 2, . . . , n}, one uniform and one arbitrary, are exactly the same as those of the longest
increasing subsequences of a single uniform random permutation of {1, 2, . . . , n}.)

To finish this introductory section, let us briefly describe the rest of the paper. The
next section presents some preliminary results, examples, and states the main result of
the paper which is, in turn, proved in Section 3. Section 4 settles the closeness to the
diagonal result and shows that each maximal path corresponding to the LCSs stays close
to the diagonal. The last section explores the generic nature of short-strings alignments
and some of its computational consequences.

2 Preliminaries

Throughout, let n = km and let the integers

r0 = 0 < r1 < r2 < r3 < · · · < rm−1 < rm = n, (2.1)

be such that

LCn =
m
∑

i=1

|LCS(Xk(i−1)+1Xk(i−1)+2 · · ·Xki;Yri−1+1Yri−1+2 · · ·Yri)|, (2.2)

where |LCS(·; ·)| is the length of the corresponding longest common substrings. In
words, (2.2) asserts that there exists an optimal alignment aligning [k(i − 1) + 1, ki]N
with [ri−1 + 1, ri]N, for all i = 1, 2, . . . ,m.

The first goal of the present paper is to show that for k large but fixed, and n

large enough, any such generic optimal alignment is such that the vast majority of the
intervals [ri−1 + 1, ri]N have length close to k. Building on this, a second goal is to
show (see Section 5) that if a property P holds, with high probability, for string-pairs of
(short) length order k, then typically a large proportion of aligned string-pairs satisfy the
property P.

Let us deal with our first goal and show that with high probability the optimal
alignments satisfying (2.2), are such that most of their lengths ri − ri−1 are close to k.
Of course, we need to quantify what is meant by “close to k”. To do so, we first provide a
definition. For p > 0, let

γ̃(p) := lim
n→∞

E|LCS(X1X2 · · ·Xn;Y1Y2 · · ·Ynp)|
n(1 + p)/2

, (2.3)

where, when not integers, the indices np are understood to be rounded-up to the nearest
positive integers. This function γ̃ is just a re-parametrization of “the usual function”

γ(q) = lim
n→∞

E|LCS(X1X2 · · ·Xn−nq;Y1Y2 · · ·Yn+nq)|
n

,

q ∈ (−1, 1), i.e.,
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γ̃(p) = γ (q(p)) , (2.4)

with q(p) = (p− 1)/(p+ 1).
A superadditivity argument, as in Chvátal and Sankoff [7], shows that the above limits

do exist (and depend, for example, on the size of the alphabet but this is of no importance
for our purposes). For X and Y identically distributed, the function γ is symmetric about
the origin, while a further superadditivity argument shows that it is concave there and
so it reaches its maximum at q = 0 (see [3] for details). It is not known whether or not
the function γ is strictly concave around q = 0. From simulations this appears to be
the case but, at present, a proof is elusive. (Again, the LCS problem is a last passage
percolation problem, and for first/last passage percolation proving that the shape of
the wet region is strictly concave seems difficult and in many cases has not been done.)
Since q(p) = (p− 1)/(p+ 1) = 1− 2/(p+ 1) is strictly increasing in p, with q(1) = 0, if γ
were strictly concave around q = 0, then it would reach a strict maximum there. Thus, γ̃
would also reach a strict maximum at p = 1 but, without the strict concavity of γ, p = 1

might not be the unique point of maximal value.
However, strict concavity is not needed, concavity is enough, for our results to hold.

Indeed, (see Lemma 3.1) γ̃ is non-decreasing on [0, 1] and non-increasing on [1,∞) and
thus ad hoc methods will show that γ̃(p) is strictly smaller than γ̃(1) = γ∗, as soon as p is
farther away from 1 than a small given quantity. (If the unproven strict concavity is valid
then, below, p1 and p2 could be chosen as close to 1 as one wishes to.)

Before coming to the proof of the main theorem, it is thus important to show the
existence of, and provide estimates on, the aforementioned p1 and p2 chosen as close to
1 as possible. Let us first explore this question in the binary equiprobable case. Let γℓ
be any strict lower bound on γ∗ = limn→∞ E|LCS(X1 · · ·Xn;Y1 · · ·Yn)|/n. Then, if x > 0

is such that

(1− x)

(

H2

(

1− γℓ(2− x)

2(1− x)

)

− 1

)

+H2

(

x+ (1− x)

(

1− γℓ(2− x)

2(1− x)

))

= (1− x)

(

H2

(

1− γℓ
2

(

1 +
1

1− x

))

− 1

)

+H2

(

1− γℓ
2
(1 + (1− x))

)

< 0, (2.5)

where H2(x) = −x log2 x− (1− x) log2(1− x), 0 < x < 1, is the binary entropy function,
we claim that p1 := 1− x and p2 := 1/(1− x) are such that

γ̃(p1) < γ̃(1) = γ∗, γ̃(p2) < γ̃(1) = γ∗. (2.6)

Indeed, an easy upper bound on the probability that the length of the LCSs of X1 · · ·Xn

and Y1 · · ·Yn(1−x) is larger than n(1− η)(1− x), 0 < η < 1 is found as follows: First, take
a non-random string s of length n(1− η)(1− x). The probability that s is a subsequence
of Y1 · · ·Y(1−x)n does not depend on s (but only on the length of s), and so this probability
would be the same if s would consist only of ones. Therefore, the probability that s
is a subsequence of Y1 · · ·Yn(1−x) is the same as the probability that there are at least
n(1− x)(1− η) ones in Y1 · · ·Yn(1−x), which, in turn, is nothing but the probability for a
binomial random variable, with parameters (1− x)n and 1/2, to be greater or equal to
n(1−x)(1− η). But, via classical exponential inequalities, this last probability is bounded
above by

2n(1−x)(H2(η)−1). (2.7)

Now, the number of subsequences of X1 · · ·Xn of length n(1− η)(1− x) is given by:

(

n

n(η + x− ηx)

)

≤ 2nH2(η+x−xη).
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Combining this last inequality with (2.7) leads to

P
(

|LCS(X1 · · ·Xn;Y1 · · ·Yn(1−x))| ≥ (1− x)(1− η)n
)

≤ 2n((1−x)(H2(η)−1)+H2(η+x−ηx)).

(2.8)
Therefore, from (2.8), as soon as

(1− x)(H2(η)− 1) +H2(η + x− ηx) < 0, (2.9)

then, the probability that |LCS(X1 · · ·Xn;Y1 · · ·Yn(1−x))| is at least (1 − x)(1 − η)n is
exponentially small in n. In other words, the probability that the rescaled (by the average
length of the two strings) LCS is at least:

2(1− x)(1− η)

2− x
, (2.10)

is exponentially small in n. Now, to require the rescaled LCS value to be equal to γℓ,
choose γℓ equal to the quantity in (2.10), i.e., let

η = 1− γℓ(2− x)

2(1− x)
. (2.11)

So, for x given, (2.11) gives the value of η corresponding to γℓ. We next find values of
x for which the probability, that the rescaled LCS of X1 · · ·Xn and Y1 · · ·Yn(1−x) is at
least γℓ, is exponentially small in n. Indeed, in (2.9) it is enough to replace η by the
value given in (2.11). This leads to the condition (2.5), and when (2.5) is satisfied, the
probability that the LCS of X1 · · ·Xn and Y1 · · ·Yn(1−x) has a rescaled value of at least γℓ
is exponentially small in n. Therefore, in this case, the rescaled limit, that is

γ̃(1− x) = lim
n→∞

E|LCS(X1 · · ·Xn;Y1 · · ·Yn(1−x))|
n

,

has to be at most γℓ. Thus, in this case, if γℓ is a lower bound on γ̃(1), then

γ̃(1− x) ≤ γℓ < γ̃(1) = γ∗,

so that p1 = 1− x and p2 = 1/(1− x) satisfy (2.6).
Using γℓ = 0.7880, which is a lower bound on γ∗ obtained, in the binary case, by

Lueker [19], it is easily seen that (2.5) is negative for x = 0.28. So p1 = 0.72 and p2 = 1.39

satisfy the needed conditions. Using these values as well as the upper bound 0.8263

(see [19]) provide an estimate for the fixed length k for the pieces one would divide the
strings into (see, below, the statement of our first theorem).

The entropic method, on obtaining bound on p1 and p2, presented above carries over,
beyond the binary case, to arbitrary-size alphabets. However, in the non-uniform case
such bounds might be far from optimal and require the knowledge of the probability
associated with each letter. To further address this question, let us present a lemma,
with a somehow easier approach, to deal with the generic case.

Lemma 2.1. Let 0 < p1 = γ∗/(2− γ∗) < 1 and let 1 < p2 = (2− γ∗)/γ∗, then

γ̃(p1) < γ̃(1) = γ∗, γ̃(p2) < γ̃(1) = γ∗. (2.12)

Moreover, (2.12) continue to hold by taking p1 = γℓ/(2− γℓ) and p2 = (2− γℓ)/γℓ where

γℓ is any positive lower bound, such as
∑

α∈A(P(X1 = α))2, on γ∗.

Proof. First, note that when one sequence has length 0, then the LCS also has length 0,
and thus

γ(−1) = γ(1) = 0.
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Recall that the function γ is concave and symmetric about 0. Next, consider the LCS of
the string X = X1X2 · · ·X2n and the empty string Y . Then, take ǫn letters away from
X1 · · ·X2n and add that many letters to the Y string, so as to now have, instead of the
empty string, the string Y1Y2 · · ·Yǫn. Then, provided 0 < ǫ < 1 is a small enough constant,
it follows that with very high (in n) probability, the string Y1Y2 · · ·Yǫn is a substring
of X1 · · ·X2n−ǫn. Indeed, let T1 = inf{k ≥ 0 : X1 = Yk}, T2 = inf{k ≥ T1 : X2 = Yk},
T3 = inf{k ≥ T2 : X3 = Yk}, . . . Then, conditionally on X = x, T1, T2 − T1, T3 − T2, . . . are
independent geometric random variables with individual parameter depending on the
probabilities associated to the letters. But,

|LCS(X1 · · ·X2n−ǫn;Y1 · · ·Yǫn)| = ǫn,

if and only if Tǫn ≤ 2n− ǫn. Thus, since the geometric property holds for any x ∈ An,

P(|LCS(X1 · · ·X2n−ǫn;Y1 · · ·Yǫn|) = ǫn) ≥ 1− exp(−cn), (2.13)

where c > 0 is a constant depending neither on n nor on ǫ > 0 (provided ǫ > 0 is small
enough) but depending on the minimal parameter of the geometric random variables
(hence on the probabilities associated to the letters). Therefore, from the above, at
q = −1, the slope is 1, i.e., γ′((−1)+) = 1 and similarly γ′(1−) = −1. By concavity and
symmetry, for any q1 with

q1 < −(1− γ(0)), (2.14)

it therefore follows that
γ(q1) < γ(0),

and similarly for any q2 with
q2 > 1− γ(0), (2.15)

it follows that
γ(q2) < γ(0).

The bounds obtained above rely on the value of γ(0) = γ∗ which is unknown, but for
which upper and lower bounds (which depend on the distributions of the letters) do
exist (and are rather accurate for uniform distributions). In our case, a lower bound on
γ∗ is what is needed. The most trivial lower bound is obtained when aligning the two
strings, without gaps, and just counting the number of correctly aligned letter pairs,
more precisely, LCn ≥ ∑n

i=1 1{Xi=Yi}. Hence, by the iid and independence assumptions,

ELCn ≥
n
∑

i=1

P(Xi = Yi) = nP(X1 = Y1) = n
∑

α∈A

P((X1 = α))2. (2.16)

Now, converting to γ̃, and recalling that p(q) = (1 + q)/(1− q), (2.14) becomes

p1 <
γ(0)

2− γ(0)
, (2.17)

and in such a case, γ̃(p1) < γ̃(1). Similarly, (2.15) becomes

p2 >
2− γ(0)

γ(0)
, (2.18)

and then γ̃(p2) < γ̃(1). Finally, in both (2.17) and (2.18), one can replace γ(0) by any of
its positive lower bound, for example the lower bound resulting from (2.16).

So let us now assume that 0 < p1 < 1 < p2 are such that

γ̃(p1) < γ̃(1) = γ∗, γ̃(p2) < γ̃(1) = γ∗. (2.19)

The first result we next set to state, asserts that for k fixed and n large enough then
typically in any optimal alignment (2.2) most of the intervals [ri−1 + 1, ri]N (for i =

1, 2, . . . ,m) have their length, ri − ri−1, between kp1 and kp2. By most, it is meant that by
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taking k large, but fixed, and n large enough, the proportion of such intervals gets as
close to 1 as one wishes to.

To do so, let us introduce some notation. Let ǫ > 0, p1 > 0 and p2 > 0 be constants.
Let An

ǫ,p1,p2
be the (random) set of optimal alignments of X1 · · ·Xn and Y1 · · ·Yn satisfying

(2.2), for which a proportion of at least 1− ǫ of the intervals [ri−1 +1, ri]N, i = 1, 2, . . . ,m,
have their length between kp1 and kp2. More precisely, An

ǫ,p1,p2
is the event that for all

integer vectors (r0, r1, . . . , rm) satisfying (2.1) and for which (2.2) holds,

Card ( {i ∈ 1, 2, . . . ,m : kp1 ≤ ri − ri−1 ≤ kp2} ) ≥ (1− ǫ)m. (2.20)

As stated next, An
ǫ,p1,p2

holds with high probability.

Theorem 2.2. Let ǫ > 0. Let 0 < p1 < 1 < p2 be such that γ̃(p1) < γ̃(1) = γ∗ and

γ̃(p2) < γ̃(1) = γ∗, and let δ ∈ (0,min(γ∗− γ̃(p1), γ
∗− γ̃(p2))). Fix the integer k to be such

that (1 + ln k)/k ≤ δ2ǫ2/16, then

P
(

An
ǫ,p1,p2

)

≥ 1− exp

(

−n

(

−1 + ln k

k
+

δ2ǫ2

16

))

, (2.21)

for all n = n(ǫ, δ) large enough.

In words, and broadly, Theorem 2.2 asserts that for any ǫ > 0, there exists k large
enough, but fixed, such that if X is divided into segments of length k then, typically
(at least a fraction 1− ǫ of segments), and with high probability, the LCSs match these
segments to segments of similar length in Y .

3 Proof of the main theorem

The proof of Theorem 2.2 requires the introduction of a few more definitions. So
far we have looked at the integer intervals which are mapped by optimal alignments
to the integer intervals [k(i− 1) + 1, ki]N. The opposite stand is now taken: given (non-
random) integers r0 = 0 < r1 < r2 < · · · < rm = n, we request that the alignment
aligns [k(i− 1) + 1, ki]N with [ri−1 + 1, ri]N, for every i = 1, 2, . . . ,m. In general, such an
alignment is not optimal and, the best score an alignment can attain under the above
constraint is:

Ln(~r) := Ln(r0, r1, . . . , rm)

:=

m
∑

i=1

|LCS(Xk(i−1)+1Xk(i−1)+2 · · ·Xki;Yri−1+1Yri−1+2 · · ·Yri)|.

Therefore, Ln(~r) represents the maximum number of aligned identical letter pairs under
the constraint that X(i−1)k+1X(i−1)k+2 · · ·Xik gets aligned with Yri−1+1Yri−1+2 · · ·Yri , for
all i = 1, 2, . . . ,m. Note moreover that for a non-random (r0, r1, . . . , rm), the partial scores

|LCS(X(i−1)k+1X(i−1)k+2 · · ·Xik;Yri−1+1Yri−1+2 · · ·Yri)|,

are independent of each other and, in this context, concentration inequalities will
prove useful when dealing with Ln(~r). Next, let Rǫ,p1,p2

, be the (non-random) set of
all integer vectors (r0, r1, . . . , rm) satisfying (2.1) and (2.20), while Rǫ,p1,p2

, denotes the
(non-random) set of all integer vectors ~r = (r0, r1, . . . , rm) satisfying (2.1) but not (2.20).

Let us begin with a lemma.

Lemma 3.1. Let ǫ > 0. Let 0 < p1 < 1 < p2 be such that γ̃(p1) < γ∗ and γ̃(p2) < γ∗, and

let δ > 0 be such that δ < min(γ∗ − γ̃(p1), γ
∗ − γ̃(p2)). Let ~r = (r0, . . . , rm) ∈ Rǫ,p1,p2

, then

E (Ln(~r)− LCn) ≤ −δǫn

2
, (3.1)

for all n = n(ǫ, δ) large enough.
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Proof. Let p > 0, and let

γ̃(p) := lim
n→∞

E|LCS(X1X2 · · ·Xn;Y1Y2 · · ·Ynp)|
n(1 + p)/2

,

where, by superadditivity, this limit exists with, moreover,

2E|LCS(X1X2 · · ·Xn;Y1Y2 · · ·Ynp)|
n(1 + p)

≤ γ̃(p), (3.2)

for any n ≥ 1. Now, γ : q ∈ (−1, 1) → γ(q) ∈ (0,∞), defined via

γ(q) := lim
n→∞

E|LCS(X1X2 · · ·Xn−nq;Y1Y2 · · ·Yn+nq)|
n

,

is symmetric about q = 0 and, as already mentioned, is also concave (see [3]). Hence,

γ̃(p) = γ

(

p− 1

p+ 1

)

,

is non-decreasing up to p = 1 and non-increasing afterwards. Thus, choosing the interval
[p1, p2] to contain p = 1, it follows that for p /∈ [p1, p2],

γ̃(p) ≤ max(γ̃(p1), γ̃(p2)). (3.3)

Hence, for any p /∈ [p1, p2], combining (3.2) and (3.3) leads to:

2E|LCS(X1X2 · · ·Xk;Y1Y2 · · ·Ykp)|
k(1 + p)

≤ max(γ̃(p1), γ̃(p2)), (3.4)

and therefore,

2E|LCS(X1X2 · · ·Xk;Y1Y2 · · ·Ykp)|
k(1 + p)

≤ γ̃(1)− δ∗ = γ∗ − δ∗, (3.5)

where δ∗ := min(γ∗ − γ̃(p1), γ
∗ − γ̃(p2)).

Since the sequences (Xi)i≥1 and (Yi)i≥1 are stationary, and assuming that ri − ri−1 =

kp, the left-hand side of (3.5) becomes

2E|LCS(X(i−1)k+1X(i−1)k+2 · · ·Xik;Yri−1+1Yri−1+2 · · ·Yri)|
k + ri − ri−1

.

Thus, from (3.5), when (ri − ri−1)/k /∈ [p1, p2], then

γ∗ − 2E|LCS(X(i−1)k+1X(i−1)k+2 · · ·Xik;Yri−1+1Yri−1+2 · · ·Yri)|
k + ri − ri−1

≥ δ∗. (3.6)

Hence, from (3.6),

γ∗

(

k + ri − ri−1

2

)

− E|LCS(X(i−1)k+1X(i−1)k+2 · · ·Xik;Yri−1+1Yri−1+2 · · ·Yri)|

≥ δ∗
(

k + ri − ri−1

2

)

≥ δ∗
k

2
.

Letting M := {i : [k(i− 1) + 1, ki] gets matched with strings of length not in [kp1, kp2]},
we then have

∑

i∈M

(

γ∗
(k + ri − ri−1

2

)

− E|LCS(X(i−1)k+1X(i−1)k+2 · · ·Xik;Yri−1+1Yri−1+2 · · ·Yri)|
)

≥
∑

i∈M

δ∗
k

2
≥ δ∗

k

2
ǫm =

nδ∗ǫ

2
. (3.7)
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On the other hand,

∑

i∈M

(

γ∗
(k + ri − ri−1

2

)

− E|LCS(X(i−1)k+1X(i−1)k+2 · · ·Xik;Yri−1+1Yri−1+2 · · ·Yri)|
)

≤
m
∑

i=1

(

γ∗
(k + ri − ri−1

2

)

− E|LCS(X(i−1)k+1X(i−1)k+2 · · ·Xik;Yri−1+1Yri−1+2 · · ·Yri)|
)

= γ∗n− ELn(~r). (3.8)

Therefore, combining (3.7) and (3.8) leads to

γ∗n− ELn(~r) ≥
nδ∗ǫ

2
, (3.9)

as soon as (r0, r1, . . . , rm) ∈ Rǫ,p1,p2
. Now limn→+∞ ELCn/n = γ∗, while by hypothesis

δ∗ − δ > 0,

0 ≤ γ∗ − ELCn

n
≤ (δ∗ − δ)ǫ

2
. (3.10)

for all n large enough. (At this last stage, a more quantitative bound, depending on
n, could also be obtained using (1.4).) Combining (3.9) and (3.10) yields that for any
~r ∈ Rǫ,p1,p2

,

E (LCn − Ln(~r)) ≥
nδǫ

2
,

for all n large enough. The proof of the lemma is now complete.

Proof of Theorem 2.2. Clearly,

Card
(

Rǫ,p1,p2

)

≤
(

n

m

)

≤ nm

m!
≤

(en

m

)m

= (ek)m, (3.11)

by a well known and simple bound on the binomial coefficients.

Now, let δ < δ∗ := min(γ∗ − γ̃(p1), γ
∗ − γ̃(p2)). By definition LCn ≥ Ln(~r), and so for ~r

to define an optimal alignment requires:

Ln(~r) ≥ LCn. (3.12)

Hence, for the event An
ǫ,p1,p2

not to hold (see (2.20)), there needs to exist at least one

~r ∈ Rǫ,p1,p2
for which (3.12) is satisfied. Thus,

(An
ǫ,p1,p2

)c =
⋃

~r∈Rǫ,p1,p2

{Ln(~r)− LCn ≥ 0},

and

P((An
ǫ,p1,p2

)c) ≤
∑

~r∈Rǫ,p1,p2

P(Ln(~r)− LCn ≥ 0). (3.13)

When ~r ∈ Rǫ,p1,p2
, it follows from Lemma 3.1 that:

E (Ln(~r)− LCn) ≤ −δǫn

2
,

and so

P(Ln(~r)− LCn ≥ 0) ≤ P

(

Ln(~r)− LCn − E (Ln(~r)− LCn) ≥
δǫn

2

)

, (3.14)
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for all n large enough. Now, the difference Ln(~r)−LCn changes by at most plus or minus
two, when any one of the iid entries X1, X2, . . . , Xn, Y1, Y2, . . . , Yn is changed. Therefore,
Hoeffding’s martingale inequality, applied to the right-hand side of (3.14), gives

P (Ln(~r)− LCn ≥ 0) ≤ P

(

Ln(~r)− LCn − E (Ln(~r)− LCn) ≥
δǫn

2

)

≤ exp

(

−δ2ǫ2

16
n

)

.

(Recall that Hoeffding’s martingale inequality asserts that if f is a function of j variables,
such that changing any single of its entries changes f by at most ±∆, ∆ > 0, and if
Z1, Z2, . . . , Zj are independent random variables, then

P (f(Z1, Z2, . . . , Zj)− Ef(Z1, Z2, . . . , Zj) ≥ z) ≤ exp

(

− 2z2

j∆2

)

,

provided the expectation exists.) Combining this last inequality with (3.13), one obtains:

P((An
ǫ,p1,p2

)c) ≤ Card(Rǫ,p1,p2
) exp

(

−δ2ǫ2

16
n

)

. (3.15)

But, from (3.11),

P((An
ǫ,p1,p2

)c) ≤ (ek)m exp

(

−δ2ǫ2

16
n

)

= exp

(

−n

(

−1 + ln k

k
+

δ2ǫ2

16

))

. (3.16)

Therefore, the proof of Theorem 2.2 is complete.

4 Closeness to the diagonal

Let us begin with a definition. LetDn
ǫ,p1,p2

be the event that all the points representing
any optimal alignment of X1X2 · · ·Xn with Y1Y2 · · ·Yn are above the line y = p1x−p1nǫ−
p1k, and below the line y = p2x+ p2nǫ+ p2k.

Theorem 4.1. Let ǫ > 0. Let 0 < p1 < 1 < p2 be such that γ̃(p1) < γ∗ and γ̃(p2) < γ∗, and

let 0 < δ < min (γ∗ − γ̃(p1), γ
∗ − γ̃(p2)). Fix the integer k to be such that (1 + ln k)/k ≤

δ2ǫ2/16, then

P(Dn
ǫ,p1,p2

) ≥ 1− 2 exp

(

−n

(

−1 + ln k

k
+

δ2ǫ2

16

))

, (4.1)

for all n = n(ǫ, δ) large enough.

Proof. Let Dn
a be the event that any optimal alignment of X1X2 · · ·Xn with Y1Y2 · · ·Yn is

above the line y1 := y1(x) = p1x− p1nǫ− p1k; and let Dn
b be the event that any optimal

alignment of X1X2 · · ·Xn with Y1Y2 · · ·Yn is below the line y2 := y2(x) = p2x+ p2nǫ+ p2k.
Clearly, Dn

a ∩Dn
b = Dn

ǫ,p1,p2
, hence

P((Dn
ǫ,p1,p2

)c) ≤ P((Dn
a )

c) + P((Dn
b )

c), (4.2)

and the result will be a consequence of the following two inclusions:

An
ǫ,p1,p2

⊂ Dn
a , An

ǫ,p1,p2
⊂ Dn

b , (4.3)

where An
ǫ,p1,p2

is as in Theorem 2.2. Let us prove the first inclusion in (4.3). To start,
assume that x is an integer multiple of k, i.e., let x = uk, u ∈ N. Next, and at first, let
us consider the case where x ≤ nǫ, i.e., that p1x − p1nǫ ≤ 0. Any alignment (and, in
particular, any optimal alignment) we consider, aligns any x ∈ [0, n]N with [0, n]N. Hence,
for every x ≤ nǫ, the condition is always verified, that is any optimal alignment aligns x
with a y which is at least equal to p1x− p1nǫ. Let us now consider the case where x ≥ nǫ.
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When the event An
ǫ,p1,p2

holds, then any optimal alignment aligns all but a proportion ǫ

of the interval [(i− 1)k + 1, ik]N, i ∈ {1, . . . ,m} to integer intervals of length greater or
equal to kp1. The maximum number of integer intervals which could be matched with
integer intervals of length less than kp1 is thus ǫm. In the interval [0, x]N there are u

intervals from the partition [(i− 1)k+1, ik]N, i ∈ {1, . . . ,m}. Therefore, at least u− ǫm of
these intervals are matched to intervals of length no less than kp1, implying that, when
the event An

ǫ,p1,p2
holds, x gets matched by the optimal alignment with a value no less

than (u− ǫm)kp1 = p1x− p1ǫn, since x = uk and n = mk. This finishes the case where x

is an integer multiple of k. If x is not an integer multiple of k, let x1 denote the largest
integer multiple of k which is smaller than x. By definition,

x− x1 < k. (4.4)

But, the two-dimensional alignment curve cannot go down, hence x gets aligned with
a point which cannot be below the point where x1 gets aligned to. But, since x1 is an
integer multiple of k, it gets aligned with a point which is greater or equal to p1x1 − p1ǫn.
Using (4.4), it follows that

p1x1 − p1ǫn ≥ p1x− p1ǫn− p1k,

and this shows that when the event An
ǫ,p1,p2

holds, then x gets aligned above or on
p1x − p1ǫn − p1k. This finishes proving that the event An

ǫ,p1,p2
is a sub-event of Dn

a .
Therefore, by (2.21),

P ((Dn
a )

c) ≤ P
(

(An
ǫ,p1,p2

)c
)

≤ exp

(

−n

(

−1 + ln k

k
+

δ2ǫ2

16

))

.

Similarly, and symmetrizing the above arguments,

P ((Dn
b )

c) ≤ P
(

(An
ǫ,p1,p2

)c
)

≤ exp

(

−n

(

−1 + ln k

k
+

δ2ǫ2

16

))

,

finishing, via (4.2), the proof of the theorem.

Theorem 4.1 should prove useful in reducing the time to compute the LCS of two
random sequences. Indeed, first by (4.1), when rescaled by n, the two-dimensional
representation of an optimal alignment is, with high probability and up to a distance
of order ǫ > 0, above the line x → p1x and below the line x → p2x. Moreover, ǫ > 0

can be taken as small as we want, leaving it fixed though when n goes to infinity. Next,
simulations seem to indicate that the mean curve γ̃ is strictly concave at p = 1. If strict
concavity indeed hold, then p1 and, say, p2 = 1/p1, can be taken as close to 1 as we want,
and still satisfy the conditions of the theorem. That is, taking ǫ as close to 0 as we want
and p1 as close to 1 as we want, the re-scaled two-dimensional representation of the
optimal alignments would get uniformly as close to the diagonal as we want, as n grows
without bound.

Figure 1 is the graph of a simulation with two iid binary sequences of length n = 1000.
All the optimal alignments are contained between the two graphs below and are thus
seen to all stay extremely close to the diagonal. The maximal vertical distance between
two optimal paths is 26 and, for this vertical distance, the maximal horizontal stretch
between which the two optimal paths split and then meet again is 112.

5 Short string-lengths properties are generic

Often, a desirable property we want string-pairs to verify, e.g., a similar number
of a given symbol or pattern, the presence of dominant matches, only holds with high
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Figure 1: n = 1000, uniform Bernoulli sequences

probability and if the two strings have their lengths not too far away from each other.
Moreover, short strings are also often used as “seeds” to find longer or more global
similarities and homologous properties ([21] contains many examples of such instances
in applied problems). It is our purpose now to attempt to quantify such a generic
phenomenon.

To to so, let P be a relation assigning to every pair of strings (x, y) the value 1 if
the pair (x, y) has a certain property, and 0 otherwise. Hence, if A is the alphabet we
consider,

P : (∪kAk)× (∪kAk) → {0, 1},

and if P(x, y) = 1, the string pair (x, y) is said to have the property P.
Let now ǫ > 0, be fixed, and let ~r = (r0, r1, . . . , rm) satisfy the condition (2.1). Let also

Bn
P(~r, ǫ) be the event that there is a proportion of at least 1− ǫ of the string pairs

(X(i−1)k+1 · · ·Xik;Yri−1+1 · · ·Yri) (5.1)

satisfying the property P, i.e.,

Bn
P(~r, ǫ) =

{

m
∑

i=1

P(X(i−1)k+1....Xik;Yri−1+1 · · ·Yri) ≥ (1− ǫ)m

}

. (5.2)

Next, let Bn
P(ǫ) be the event that for every optimal alignment the proportion of aligned

string pairs (5.1) satisfying the property P is at least 1− ǫ, i.e., Bn
P(ǫ) holds if and only

if for every ~r = (r0, r1, . . . , rm) satisfying (2.1) and such that LCn = Ln(~r), the event
Bn

P(~r, ǫ) holds. Finally, assume that as soon as ri − ri−1 ∈ [kp1, kp2], the probability that
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the string-pairs (5.1) have the required property is at least 1−q, q ∈ [0, 1]. Hence, assume
that for every integer ℓ ∈ [kp1, kp2]:

P ( P(X1 · · ·Xk;Y1Y2 · · ·Yℓ) = 1 ) ≥ 1− q.

We investigate, now, how small q = q(k) needs to be in order to ensure that a large
proportion of the aligned string pairs (5.1) has the property P (for every optimal align-
ment). Recall that An

ǫ,p1,p2
is the event that every optimal alignment aligns a proportion

of at least 1 − ǫ of the sub-strings X(i−1)k+1 · · ·Xik with sub-strings of Y with length
in [kp1, kp2]. Recall also that Rǫ,p1,p2

is the set of integer vectors ~r = (r0, r1, . . . , rm),
satisfying (2.1) and such that there is at least (1 − ǫ)m of the differences ri − ri−1 in
[kp1, kp2].

Below, we deal with a small modification of the event Bn
P(~r, ǫ). For this, let B̃

n
P(~r, ǫ)

be the event that among the aligned string pieces (5.1) there are no more than mǫ which
do not satisfy the property P and have their length ri − ri−1 in [kp1, kp2]. Clearly, for
ǫ1 > 0, ǫ2 > 0,

An
ǫ1,p1,p2

∩





⋂

~r∈Rǫ1,p1,p2

B̃n
P(~r, ǫ2)



 ⊂ Bn
P(ǫ1 + ǫ2),

and so
P((Bn

P(ǫ1 + ǫ2))
c) ≤ P((An

ǫ1,p1,p2
)c) +

∑

~r∈Rǫ1,p1,p2

P((B̃n
P(~r, ǫ2))

c). (5.3)

Next,

P((B̃n
P(~r, ǫ2))

c) ≤
(

m

ǫ2m

)

qǫ2m ≤ exp(He(ǫ2)m)qǫ2m,

where He is the base e entropy function, given by He(x) = −x lnx− (1− x) ln(1− x), 0 <

x < 1. Hence,
P((B̃n

P(~r, ǫ2))
c) ≤ qǫ2m exp(He(ǫ2)m). (5.4)

Using (5.4) into (5.3) and, proceeding as in (3.11), noting that Rǫ,p1,p2
has at most (ek)m

elements, lead to

P((Bn
P(ǫ1 + ǫ2))

c) ≤ P((An
ǫ1,p1,p2

)c) + (ek)mqǫ2m exp(He(ǫ2)m). (5.5)

Taking q(k) = 1/(2ek)1/ǫ2 , finally yields

P((Bn
P(ǫ1 + ǫ2))

c) ≤ P((An
ǫ1,p1,p2

)c) + exp((He(ǫ2)− ln 2)m) . (5.6)

But, for ǫ2 < 1/2, He(ǫ2) < ln 2, and then exp((He(ǫ2)− ln 2)m) is exponentially
small in m. Now, our main theorem provides an exponentially small lower bound on
P((An

ǫ1,p1,p2
)c). Therefore, (5.6) asserts that a high proportion of the aligned string pairs

(5.1) has property P, in any optimal alignment, as soon as for pairs (5.1) with similar
length, q(k) ≤ 1/(2ek)1/ǫ2 , where

q(k) := max
ℓ∈[kp1,kp2]

P(the pair (X1 · · ·Xk;Y1 · · ·Yℓ) does not satisfy property P).

These assertions are summarized in the next theorem, which is obtained by letting,
above, ǫ1 = ǫ2 = ǫ/2, using also Theorem 2.2.

Theorem 5.1. Let 0 < ǫ < 1. Let 0 < p1 < 1 < p2 be such that γ̃(p1) < γ∗ and γ̃(p2) < γ∗,

and let 0 < δ < min (γ∗ − γ̃(p1), γ
∗ − γ̃(p2)). Finally, let the integer k ≥ 1 be such that

max
ℓ∈[kp1,kp2]

P((X1 · · ·Xk;Y1 · · ·Yℓ) does not satisfy property P) ≤ 1

(2ek)2/ǫ
.
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Then, for any optimal alignment ~r (i.e., such that LCn = Ln(~r)), the proportion of

string pairs (X(i−1)k+1 · · ·Xik;Yri−1+1 · · ·Yri) satisfying property P is at least 1− ǫ with

probability at least equal to:

1− P((An
ǫ/2,p1,p2

)c)− exp
((

He

( ǫ

2

)

− ln 2
)

m
)

,

and thus at least equal to:

1− exp

(

−n

(

−1 + ln k

k
+

δ2ǫ2

64

))

− exp
(n

k

(

He

( ǫ

2

)

− ln 2
))

,

for all n = n(ǫ, δ) large enough.

Hence, from the above statement, the probability that less than a proportion 1− ǫ of
string pairs (5.1) have property P in every optimal alignment is exponentially small in n

(while holding k, ǫ and δ fixed) as soon as

k >
64(1 + ln k)

ǫ2δ2
, (5.7)

and

max
ℓ∈[kp1,kp2]

P((X1 · · ·Xk;Y1 · · ·Yℓ) does not satisfy property P) ≤ 1

(2ek)2/ǫ
. (5.8)

The above theorem is very useful for showing that when a property holds for aligned
string pairs with similar lengths, say of order k, then the property typically holds in
most parts of the optimal alignment. From our experience, for most properties one is
interested in, such as the study of dominant matches in optimal alignments, when p1 and
p2 are close to 1, but fixed, then the probability that

(X1 · · ·Xk;Y1Y2 · · ·Yℓ)

does not satisfy this property is approximately the same for all ℓ ∈ [kp1, kp2]. In other
words, the behavior of the alignment of X1 · · ·Xk with Y1 · · ·Yℓ, does not depend much
on ℓ as soon as ℓ is close to k and k is fixed. From (5.8), what is needed there is a bound,
on the left hand-side probability, smaller than any inverse polynomial-order in k. (At
least to be able to take ǫ as close to 0 as one wants to.) If instead ǫ > 0 is chosen small
but fixed, then an inverse polynomial bound with a very large exponent will do). So,
if this probability is, for example, of order k− ln k or e−kα

for some constant α > 0, the
condition (5.8) is satisfied by taking k large enough. Similarly, condition (5.7) is always
satisfied for k large enough.

We could also envision using Monte Carlo simulation to find a bound for the probability
on the left of (5.8). For that purpose, assume that ǫ = 0.2 and take δ = 0.1. Then, by
(5.7), k must be at least 2518253. The probability that strings of length approximately
k do not satisfy property P must be at most (2ek)−10 ≈ (13690642)−10, so a probability
smaller than 10−70. However, this is hardly feasible, indeed, to show that a probability is
as small as 10−70, one would need to run an order of 1070 simulations.

Further Improvements

There are several ways to improve our various bounds. First, we took
(

n
m

)

as an
upper bound for the cardinality of Rǫ,p1,p2

and this can be improved. Indeed, note that
if ~r = (r0, r1, . . . , rm) ∈ Rǫ,p1,p2

, then at least (1− ǫ)m of the lengths ri+1 − ri are in the
interval [kp1, kp2]. To determine these lengths we have at most

((p2 − p1)k)
m (5.9)
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choices. Then, there can be as many as ǫm of the lengths ri+1 − ri, which are not in
[kp1, kp2]. Choosing those lengths is like choosing at most ǫm points from a set of at most
n elements. Hence, we get as upper bound

(

n
ǫm

)

which, in turn, can be upper bounded
by, say,

(

ek

ǫ

)ǫm

, (5.10)

or via the entropy bound exp(nHe(ǫ/k)). Finally, we have to decide which among the m

lengths ri − ri−1 have their length in [kp1, kp2] and which have not. That choice is further
bounded via:

(

m

ǫm

)

≤ exp(He(ǫ)m). (5.11)

Combining the bounds (5.9), (5.10) and (5.10), yields

Card (Rǫ,p1,p2
) ≤

(

(p2 − p1)k

(

ek

ǫ

)ǫ

exp(He(ǫ))

)m

. (5.12)

With this better bounding of the cardinality of Rǫ,p1,p2
, the inequality (5.5) becomes:

P((Bn
P(ǫ1 + ǫ2))

c) ≤ P((An
ǫ1,p1,p2

)c)

+

(

(p2 − p1)k

(

ek

ǫ1

)ǫ1

exp(He(ǫ1))

)m

qǫ2m exp(He(ǫ2)m), (5.13)

which when combined with Theorem 2.2 yields that

P((Bn
P(ǫ1 + ǫ2))

c) ≤ exp

(

−n

(

−1 + ln k

k
+

δ2ǫ21
16

))

+

(

(p2 − p1)k

(

ek

ǫ1

)ǫ1

exp(He(ǫ1))q
ǫ2 exp(He(ǫ2))

)m

. (5.14)

Again, this last expression is exponentially small in n (assuming k fixed) if the
following two conditions are satisfied:
(i)

k >
16(1 + ln k)

ǫ21δ
2

, (5.15)

(the smallest integer k satisfying (5.15) with ǫ1 = 0.2 and δ = 0.1 is now 570146) and
(ii)

q(k) <
1

(

(p2 − p1)k
(

ek
ǫ1

)ǫ1
exp(He(ǫ1) +He(ǫ2))

)1/ǫ2
; (5.16)

and combining these last two conditions yields:

q(k) <





ǫ21δ
2

(p2 − p1)16(1 + ln k)
(

ek
ǫ1

)ǫ1
exp(He(ǫ1) +He(ǫ2))





1/ǫ2

. (5.17)

Typically ǫ1 + ǫ2 should be of a given order. So, let us maximize the right-hand
side of (5.17) under the constraint ǫ = ǫ1 + ǫ2. To do so, note that the power 1/ǫ2
has a much more minimizing influence than the expression ǫ21 in the numerator, while
1 ≤ exp(He(ǫ1)+He(ǫ2)) ≤ 2 and so this last quantity does not have much of an influence.
Also, note (ek/ǫ1)

ǫ1 is somewhat negligible compared to ek. So, at first, let us disregard
the quantities (ek/ǫ1)ǫ1 and exp(He(ǫ1)) +He(ǫ2)), and let

g(k, ǫ1, ǫ2) :=

(

ǫ21δ
2

(p2 − p1)16(1 + ln k)

)1/ǫ2

.

ECP 21 (2016), paper 36.
Page 17/19

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP4029
http://www.imstat.org/ecp/


Longest common subsequences in random words

Clearly, g(k, ǫ1, ǫ2) is larger than the bound on the right-hand side of (5.17) and when
all the parameters p1, p2 and δ are held fixed, g(k, ǫ1, ǫ2) is decreasing in both ǫ1 and ǫ2.
However, ǫ2 “has more decreasing influence” than ǫ1. Therefore, given ǫ and given that
all the parameters are fixed (including k), maximizing g(k, ǫ1, ǫ2) under the constraint
ǫ1 + ǫ2 = ǫ, ǫ1, ǫ2 > 0 lead to a quantity where ǫ2 is quite a bit larger than ǫ1.

Could Monte Carlo simulations be realistic with ǫ = 0.1 and the bounds which we
have? The answer is no. Indeed, at first, δ/(p2 − p1) gets better when |p2 − p1| increases
since the derivative of γ̃ at p = 1 is zero. When the interval [kp1, kp2] becomes too
large however, then the property might no longer hold with high probability for all pairs
(X1 · · ·Xk, Y1 · · ·Yℓ), with ℓ ∈ [kp1, kp2]. So, we will take [p1, p2], as large as possible, so
this property still holds with high probability for all the string pairs mentioned before.
With such a choice, δ/(p2 − p1) can be treated as a constant. Somewhat, optimistically,
say that the constant is less than 1/3. Now if ǫ = 0.1, then ǫ1, ǫ2 ≤ 0.1. In that case,

g(k, ǫ1, ǫ2) ≤ g(k, 0.1, 0.1) ≤
(

0.01δ

3× 16(1 + ln k)

)10

.

Returning to (5.15) and taking δ = 0.2, we find that k must be larger than 1010, so that
ln k is bigger than 20. With this in mind, and in the present case where ǫ1 + ǫ2 = 0.1, we
find that g(k, ǫ1, ǫ2) is smaller 10−56, so there is still little hope to perform Monte Carlo
simulation here.

Monte Carlo simulation with ǫ1 = 0.1 and ǫ2 = 0.2: Take also δ = 0.2 and δ/(p2 −
p1) = 1/2. With these values, and using (5.15), then k must be somewhat larger than
102 · 10 · 8 ln(24000) ≈ 105. Then, by (5.16), q(k) should also be less than

(

102 · 10 · 11 · 8
)−5 ≈ 10−25.

This is still a difficult order for Monte Carlo simulation and if we had ǫ2 = 0.3 instead,
then we would get a bound 10−15 which remains a difficult order.

When only dealing with the inequality (5.16), things look somewhat better. Take
k = 1000 and (p1 − p1)k = 100, then the bound on q(k) is of order about 10−5 which is
feasible with Monte Carlo. So, if we could find another method than the one described
here to make sure that most of the pieces of stringsX(i−1)k+1X(i−1)k+2 · · ·Xik are aligned
with pieces of similar length we would end up in a favorable setting.

Acknowledgments: Many thanks to the referee for a thoughtful and detailed reading
of this manuscript.
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