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the exact and approximate post-office problem, and the problem of constructing

spanners are discussed in detail.
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is closest to p. Next, there is the fized-radius near neighbors problem. In this problem,
we are given the set S and a positive real number §, and we have to report all pairs of
points that are at distance at most § from each other. In the k closest pairs problem,
we are given S and an integer k, 1 < k < 2), and we have to report among all ("
distances the k smallest ones. We will also consider the k-point clustering problem, in
which we are given S and an integer k, 2 < k < n, and we have to find a subset of §
of size k that minimizes some closeness measure. Examples are finding k points whose
diameter or enclosmg circle is minimum. Finally, we consider different versions of the
dynamic closest pair problem, in which we have to maintain the closest pair if the set
S is dynamically changed by insertions and/or deletions of points.

The closest pair problem and its generalizations arise in areas like statistics, pattern
recognition (see the books by Andrews [8] and Hartigan [74]), and molecular biology.
As an example, a solution to the fixed-radius near neighbors problem is an essential
preprocessing step in the algorithm of Heiden at al.[75] for triangulating the contact
surface of a molecule. (See also Lenhof and Smid [85].)

Another application is given by Supowit [123]. He applies a dynamic closest pair
data structure to give an efficient implementation of a greedy minimum weight match-
ing algorithm. In this problem, we are given a set of n points, where n is even. Our
task is to match these points into n/2 pairs such that the sum of the lengths of the
distances of these pairs is minimized. The greedy algorithm matches a closest pair
and removes these two points from the set. Then, the closest pair of the resulting set
is matched, etc., until we have matched all points. In practice, this heuristic gives a
good approximation to the optimal matching.

The post-office problem: The post-office problem is due to Knuth [84]. It is stated
as follows.

Problem 1.2 Given a set S of n points in IRP, store it in a data structure such that
for any query point p € IRP, we can efficiently find its nearest neighbor, i.e., a point
p* € S that is closest to p,

d(p,p‘) = min{d(?} Q) S S}

The planar version of the post-office problem has been solved optimally, i.e., with
O(logn) query time and O(n) space. In the higher-dimensional case, however, it
seems impossible to give a data structure of size O(nlog®® n) that answer queries in
polylogarithmic time. Moreover, it is an open problem if there exists a dynamic data
structure for the planar problem having size O(n log®) n) and polylogarithmic query
and update times.

Therefore, we will consider two weaker versions of the problem. First, we consider
the post-office problem for “simple” metrics, such as the L;- or Le-metric. Second,
we consider the variant in which we do not have to find the ezact nearest neighbor p*
of the query point p, but are satisfied with an approzimate neighbor, i.e., a point ¢ € S
such that d(p,q) < (1 + €)d(p,p*), for some positive constant ¢. As we will see, for
both weaker versions, dynamic data structures can be designed having polylogarithmic
query and update times and having a size that is close to linear.



The post-office problem has applications in areas such as pattern recognition and
data compression. An important example is vector quantization, which is used for
compressing speech and images. (See Arya and Mount [10] and the references given
there.) Assume we take samples from a signal, and group them into vectors of length D.
Also assume that we have constructed a set S of “typical” code vectors in IR, based
on a training set of vectors. Then each new vector is encoded by the index of its
nearest neighbor in S. If there are n = 2'P code vectors, then we need rD bits to
encode such a new vector. Hence, the rate of this vector quantizer is equal to . If we
fix v, and let D grow, then the performance of this quantizer increases. However, then
the number of points n also increases, and we have to solve the post-office problem for
a large dimension D. Hence, it is important to have efficient (exact or approximate)
data structures for this problem.

Related problems: In the final part of this chapter, we will mention several related
results for proximity problems. In particular, we consider the problem of approximat-
ing the complete Euclidean graph. '

Let S be a set of points in IR”. Consider any graph having the points of S as its
vertices. The weight of an edge (p, ¢) in this graph is defined as the distance between
p and ¢. The weight of a path in the graph is defined as the sum of the weights of all
edges on the path.

Definition 1.1 Lett > 1 be any real constant. A graph having the points of S as its
vertices is called a t-spanner if for every pair p,q of points in S there is a path in the
graph between p and q of weight at most t times the distance between p and q.

Spanners were introduced to computational geometry by Chew [38]. Since then,
many papers have been published on the problem of efficiently constructing spanners
that have one or more additional properties. We will give an overview of the most
important results in this area.

Spanners in which the degree of each vertex is bounded by a constant can be used
as a data structure for the k closest pairs problem, or the fixed-radius near neighbors
problem. (See Arya and Smid [15].) To be more precise, given such a spanner and a
query integer k (resp. a query value § € IR), we can efficiently enumerate the k closest
pairs (resp. all pairs that have distance at most §.)

We introduce some notation that will be used throughout this chapter. If S is a
set of points in IR”, then d(S) denotes the minimum distance in S, i.e., the distance
of a closest pair. If p € IRP, then d(p,S) denotes the minimum distance from p to
any point of S\ {p}. Finally, if A and B are sets, then d(A, B) denotes the minimum
distance between any point of A and any point point of B.

If §.is a positive real number, then a §-grid is the subdivision of IR” into axes-
parallel cells with sides of length &, defined by the hyperplanes z; = j - §, where
1 <2 < D, and j ranges over the integers. The neighborhood of a cell is defined as
the cell itself plus the 3P — 1 cells that border on it. The neighborhood of a point p is
defined as the neighborhood of the cell that contains p.




We mentioned already that the dimension D is assumed to be a constant. This
implies that all constant factors that appear in Big-Oh notations depend on D, unless
stated otherwise. In general, such factors are of the form (cD)P, for some constant c.

2 The static closest pair problem

As mentioned already, many algorithms have been proposed for solving Problem 1.1,
i.e., the static closest pair problem. In this section, we give an overview of these
algorithms.

2.1 Preliminary remarks

Tt turns out that the complexity of the closest pair problem heavily depends on the
machine model. Most algorithms in this chapter can be implemented in the algebraic
computation tree model. (See Ben-Or [18].) In this model, the operations +, —, , / and
¥z, where k comes from a finite subset of the positive integers, take unit time. Note
that these operations perform ezact arithmetic on real numbers. Also, comparisons of
real numbers takes unit time. We remark that indirect addressing is not possible in
the algebraic computation tree model.

The closest pair problem has an Q(nlogn) lower bound in the algebraic computa-
tion tree model. Consider the following e-closeness problem: Given n + 1 real numbers
Z1,Z2,...,Tn and € > 0, decide if there are 7 # j such that |z; — z;| < €. Using the
lower bound technique of Ben-Or [18], it can be shown that the latter problem takes
Q(nlog n) time in this model. (See also Preparata and Shamos [98].) This implies the
same lower bound for the closest pair problem. In fact, Agarwal et al. [3] even prove
an §(nlog n) lower bound for the closest pair problem, if the n points are given as the
vertices of a simple polygon.

In this section, we will see several algorithms that solve the closest pair problem
in O(nlogn) time. If we use a more powerful machine model, then we can design
faster algorithms. More precisely, we have to add randomization, the non-algebraic
floor function, and the power of indirect addressing. (See Section 2.4.)

We close this section with an important sparseness lemma which is heavily used in
all closest pair algorithms. Basically the lemma says that any box having side lengths
that are small compared to the minimum distance of a point set contains only few
points of this set.

Lemma 2.1 Let S be a set of n points in IRP, let § be the distance of a closest pair
in S—in the L,-metric—and let c be a positive integer. Then any D-dimensional cube
having sides of length c§ contains at most (cD + c)P points of S.

Proof: The proof is by contradiction. Assume the cube contains more than (cD +c)?
points of §. Partition the cube into (cD+c)P subcubes with sides of length ¢é/(cD+c).
Then one of these subcubes contains at least two points of 5. These points, however,
have L,-distance at most the L.-diameter of a subcube, which is at most equal to
its L,-diameter, which in turn is equal to D - ¢§/(cD + ¢) < 8. This is clearly a
contradiction. ll



2.2 Algorithms that are optimal in the algebraic computa-
tion tree model

2.2.1 An algorithm based on the Voronoi diagram

The first optimal algorithm for solving the planar version of the closest pair problem
is due to Shamos [110] and Shamos and Hoey [111]. Their algorithm is as follows.
In O(nlog n) time, compute the Voronoi diagram of S. Then, for each edge e of this
diagram, compute the distance between the two points whose Voronoi regions share
e. This takes only linear time. The smallest distance found in this way determines
the closest pair of S. For details, we refer to [110, 111] and the chapter on Voronoi
diagrams in this handbook.

2.2.2 A divide-and-conquer algorithm

Bentley and Shamos [22] were the first who gave an optimal O(nlog n)-time algorithm
for the closest pair problem in any dimension D > 2. Their algorithm uses the divide-
and-conquer paradigm. (According to Bentley [21], the planar version of this algorithm
is due to Shamos, and the idea of using divide-and-conquer was suggested to him by
H.R. Strong.)

For simplicity, let us first consider the planar case. So, let S be a set of n points in
the plane. Compute the median m of the z-coordinates of the points of S. Partition §
into two subsets A and B of (almost) equal size such that all points of A (resp. B) are
on or to the left (resp. on or to the right) of the vertical line z = m. Using the same
algorithm recursively, solve the closest pair problem for the sets A and B separately.
Let &4 (resp. 6p) be the minimum distance in A (resp. B), and let § be the smallest
of these two numbers. To compute the closest pair in the overall set S, it remains
to find among all pairs (a,b) € A x B that have distance less than é the one having
minimum distance. Let A’ (resp. B') be the set of those points of A (resp. B) that are
to the right (resp. left) of the vertical line z = m — § (resp. z = m + §). Clearly, we
only have to consider points of A’ and B’. Sort the points of A’ and B’ according to
their y-coordinates. Then, scan along these points. For each point p = (p.,p,) of A’
(resp. B'), compare p with all points of B’ (resp. A’) whose y-coordinates are between
py — & and p, + §. If there is a pair of points in A x B that has distance less than 6,
then during the scan we will find the pair in A X B having minimum distance. This
pair is the closest pair in the set S. Otherwise, all pairs that are encountered in this
“merge step” have distance larger than § and, therefore, § is the minimum distance
in S.

It is not difficult to see that this algorithm correctly solves the closest pair problem.
Let T(n) denote the running time on a set of n points. Lemma 2.1 implies that in
the merge step each point of A’ U B’ is compared to at most a constant number of
points. ‘Therefore, T'(n) satisfies the recurrence relation T'(n) = 2T(n/2) + O(nlog n).
It follows that T'(n) = O(nlog®n). The merge step consists of two parts. First, there
is a sorting step, taking O(nlog n) time. In the second step, we scan along the points
of A' and B’. This takes only linear time.

The algorithm can be improved by making a presorting step. At the start of the
algorithm, we sort all points of S by their y-coordinates. After having computed the
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case, for each i and j such that d;; < §, we assign L; := |(li; +7:;)/2] + 1. Again, the
invariant is correctly maintained in this way.

Since we choose the weighted median, the set of all differences in (1) is reduced by
a factor of at least one quarter. Therefore, in a logarithmic number of iterations, the
algorithm has found a correct grid size. (Note that the algorithm does not necessarily
find 6*. Any grid size for which (i) and (ii) hold is good for our purposes.) After a
presorting step, each iteration can be performed in linear time. Therefore, the entire
algorithm takes O(nlogn) time.

There are some remarks to be made about the machine model used. We need
indirect addressing to access the entries of the arrays A;. It is not clear if this can be
avoided.

In the algorithm as presented, we also need the non-algebraic floor function in
order to count the maximum number of points in any grid cell. (We need the floor
function for determining the grid cell containing a given point.) This can be avoided
by using a degraded grid that has basically the same properties as a standard grid. We
can build and search in a degraded grid, however, without using the floor-function.

2.3.1 The degraded grid

To give an intuitive idea, in a standard é-grid, we divide D-space into slabs of width 4.
The grid is then defined by fixing an arbitrary point of IR? to be a lattice point of the
grid. So, if e.g. (0,...,0) is alattice point, then for 1 < i < D, a slab along the i-th axis
consists of the set of all points in D-space that have their i-th coordinates between
36 and (j + 1)é for some integer j. In a degraded é-grid, we also have slabs. The
difference is that slabs do not necessarily start and end at multiples of §. Moreover,
slabs have width at least &, and slabs that contain points of S have width exactly 6.
That is, while a §-grid may be defined independently of the point set by fixing an
arbitrary point of IR? to be a lattice point, the degraded é-grid is defined in terms of
the point set stored in it. We give a formal definition, treating the case D =1 first.

Definition 2.1 Let S be a set of n real numbers and let § be a positive real number.
Let ay,a,...,a; be a sequence of real numbers such that

1. foralll1<j<l, aj41 > a;+6,
2 forallpe S, a; <p<a,
8. for all 1 < j < 1, if there is a point p € S such that a; < p < aji1, then
a;41 =a;+ 0.
The collection of intervals [a; : aj41), 1 < j <1, is called a one-dimensional degraded

§-grid for S.

To construct a one-dimensional degraded §-grid, sort the elements of S. Let p; <
p2 < ... < p, be the sorted sequence. Let a; := p;. Let j > 1, and assume that
ai,...,a; are defined already.

If there is an element in S that lies in the half-open interval [a; : a; + ), then we
set a;41 = a; + 8. Otherwise, we set a;y; to the value of the smallest element in 5
that is larger than a;. This construction stops if we have visited all elements of 5.

8



We extend the definition of a degraded grid to higher dimensions.

Definition 2.2 Let S be a set of n points in IR? and let § be a positive real number.
For1<i< D, let S; be the set of i-th coordinates of the points in S. Let

[aij i @ijya), 1<3<,

be a one-dimensional degraded §-grid for the set S;. The collection of D-dimensional

cells
d

H[Gij,- :ai,ii+1)a where 1 < jg % 1,',

=1

is called a D-dimensional degraded §-grid for S.

See Figure 1 for an example. The following lemma follows immediately.

a11 a2 Qi3 @14 ais @16 a7
a24 - T . f
a ]
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Figure 1: Example of a degraded §-grid.

Lemma 2.2 Let p be a point of S and let B be the cell in the degraded §-grid for S
that contains p. Let ¢ be an integer. All points of S that are within distance cé from
p are contained in B and in the (2c + 1)P — 1 cells that surround B.

We now give a simple algorithm for constructing a D-dimensional degraded §-grid.
Assume the points of S are stored in an array S. For each 1 < i < D, sort the elements
of S;. Give each element in S; a pointer to its occurrence in S.

For each 1 < i < D, construct a one-dimensional degraded §-grid [as; : @i j41),
1 < j < [;, for the set S; using the algorithm given above. During this construction,
for each j and each element p,—which denotes the i-th coordinate of point p—such
that a;; < p; < @i j+1, follow the pointer to . Store with the point p in § the numbers

a;; a.nd J




At the end, each point in S stores with it two vectors of length D. If point p has
vectors (b1, bs,...,bp) and (j1,j2,---,jp), then pis contained in the cell with lower-left
corner (by,bs,...,bp). This cell is part of the j;-th §-slab along the i-th axis.

These vectors implicitly define the degraded é-grid. Note that each j; is an integer
in the range from 1 to n. Hence, we can sort the vectors (ji,j2,...,Jp) in O(n) time
by using radix-sort. This gives the non-empty cells of the degraded grid, sorted in
lexicographical order.

2.4 Randomized algorithms

In this section, we will give algorithms that solve the closest pair problem in o(n log n)
time. Of course, these algorithms are implemented on a machine model that is more
powerful than algebraic computation trees. Most algorithms of this section use ran-
domization, the floor function, and indirect addressing.

For most of these algorithms, the basic approach is similar to that of Section 2.3.
In a first step, a grid is constructed such that (i) the closest pair is either contained in
one grid cell or in two neighboring cells and (ii) the total number of pairs (p, g), where
p € S and g is contained in p’s cell or in any one of the neighboring cells is bounded
(with high probability, or in the worst case) by O(n). Then, in the second step, we
compute the closest pair by taking the minimum distance among all these pairs (p, ).
Using perfect hashing [65], this second step takes only O(n) expected time. Hence,
the main problem is how to find a good grid size.

2.4.1 Rabin’s algorithm

The oldest randomized closest pair algorithm dates back to 1976 and is due to Ra-
bin [100]. (In fact, [100] is considered as the seminal paper on randomized algorithms.)
This algorithm uses random sampling. Let S; be a random subset of S having size
n?/3_ and let § be the minimum distance in ;. Consider the grid with cells of size 8.
Let N be the total number of pairs (p,q), where p € S and g is contained in p’s cell
or in one of the 3P — 1 neighboring cells. Note that N is a random variable. Rabin
proves that N is bounded by O(n) with probability at least 1 — 2-7""  That is, with
a very high probability, é gives a good grid size.

How do we compute the value of §7 Rabin proposes to choose a random subset S;
of Sy of size |S1|*/® = n*/?, and to compute the minimum distance §’ of S; by a brute
force algorithm, taking O((n*/°)?) = O(n) time. Since with a very high probability, ¢’
gives a good grid size for the set $;, we can use §' to find § in O(n?/®) expected time.

Hence, the entire algorithm takes O(n) expected time. (We remark that when
Rabin wrote his paper, the implementation of the hashing procedure was left open.
Only in 1984, this gap was filled by the perfect hashing scheme of Fredman, Komlés
and Szemerédi [65].) Recently, Dietzfelbinger et al. [53] gave a complete description
of an implementation of Rabin’s algorithm. In particular, they provide all details of
the hashing procedure, and modify the algorithm so that only few random bits are
needed.

Fortune and Hopcroft [63] gave an alternative algorithm to find a good grid size.
They assume that a special operation Findbucket(§,p) is available which computes in
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unit time the cell in the é-grid that contains the point p. In this model, they give a
recursive algorithm that computes a good grid size in O(nloglogn) worst-case time.
Moreover, given this grid size, the closest pair can be computed in linear time. We
remark that if unbounded space is available, this gives a closest pair algorithm with
O(nlog log n) worst-case running time. | .

Here is a brief description of the algorithm that computes the good grid size. Start
with a grid size § equal to D/n times the side length of the smallest axes-parallel cube
containing S. Insert the points into the §-grid until one cell contains v/ points, or
all points have been inserted. For each cell containing more than one point, call the
algorithm recursively on these points. After all recursive calls have been completed,
set & to the smallest value returned by these recursive calls. Then start the algorithm
again with this new value of §. After all points of § have been inserted into the current
grid, call the algorithm recursively on all cells containing more than one point.

2.4.2 A sieve algorithm

Khuller and Matias [83] give a randomized sieve algorithm to find a good grid size.
Their algorithm iteratively discards points from S that are known to be “far away”
from all other points. Clearly, such points do not play a role for determining the closest
pair. Here is a description of the algorithm. Recall the notion of neighborhood in a
grid, as defined at the end of Section 1. We make a sequence of iterations. Initially, we
set Sy := S and ¢ := 1. During the i-th iteration, we pick a random point p; € S;, and
compute its nearest neighbor g; in S;—by brute force. Let d; be the distance between
p; and ¢;. Then—using perfect hashing—we store the points of S; in a d;/(4D)-grid
and determine the set A of all points of S; that do not contain any other points of S;
in their neighborhoods. Then, we set Si41 := S; \ A. If Siyy # 0, then we proceed
with the next iteration. Otherwise, the algorithm stops and outputs d;.

Consider the i-th iteration. Let p be a point of S;. The following two properties
hold.

1. If d(p, S;) < di/(4D), then p has another point of §; in its neighborhood and,
therefore, p belongs to S;;1.

2. If d(p, S;) > d;/2, then the neighborhood of p is empty and, hence, p does not
belong to Sit:.

First, we claim that d;;; < d;/2. This is proved as follows. Since p;y; € Sita,
there is a point ¢ € S; that is in the neighborhood of p;1;—in the d;/(4D)-grid.
Note that d(pi+1,9) < di/2. Also, g is contained in the set S;i;. As a result, we
have diyy = d(pis1,Si+1) < d(Pit1,9) < di/2. In particular, the sequence dy,dy,... is
decreasing.

Let £ be the number of iterations made by the algorithm, i.e., Sy # 0, but Sy, = 0.
We claim that d;/(4D) < d(S) < d;. The right inequality trivially holds, because d,
is a distance in S. To prove the left inequality, let P,Q be a closest pair in S. Let 3
(resp. j) be the index such that P € S;\ Siyy (resp. @ € S\ Sj41). Assume w.l.o.g.
that ¢ < j. Then Q € S; and d(§) = d(P,Q) = d(P,S:). Note that d(P,S;) >
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d;/(4D). (Otherwise, by the first property, P would belong to Sit .) Therefore,
d(S) > d;/(4D) > d,/(4D).

Hence, the algorithm computes a grid size d; that approximates the minimum
distance d(S) up to a constant factor. Given this grid size we can find the closest pair
using hashing techniques, in linear expected time.

We analyze the expected running time of the sieve algorithm. First note that using
perfect hashing, the i-th iteration takes O(]S;|) expected time. For 1 < i < L, let s;
be the expected size of S;. Moreover, define sgy1 := 8442 1= ... 1= 85 1= 0. (Note that
£ < n.) We will show that s; < s;41/2. This implies that s; < n/2-!. Hence, the
total expected running time of all iterations is proportional to

EQYISi) = X E(IS:]) < 3 /27" < 2n.
i=1 i=1 i=1
That is, the entire algorithm takes linear expected time.

It remains to show that s;;; < 8;/2. If 5; = 0, then also s;;; = 0 and the claim
holds. Assume that s; # 0. Consider the conditional expectation E(|Sis1| | [Si| = k).
Let r be a point of S; such that d(r,S;) > d;. Then the second property implies that
™ g S»£+10

Take the points in S; and label them r1,73,...,7% such that d(r;, S;) < d(rs, 8;) <
... < d(rx,S;). The point p; is chosen randomly from the set S;, so it can be any of
the r;’s with equal probability. Thus E(|S:41| | |Si| = k) < k/2, from which it follows
that sip1 = 5 B(Sisal | 1S:] = k) Pr(|Si] = &) < s:/2.

2.4.3 A randomized incremental algorithm

The final algorithm of this section is due to Golin et al. [70]. It follows the random-
ized incremental construction paradigm. (See Seidel [109].) Number the points of S
randomly p1, P2y -3 Pn- For 2 < i < m,let S;:= {p1,...,p;}. The algorithm computes
d(S:),d(Ss) . ..,d(Sn), in this order. Assume that § := d(S;) has been computed al-
ready. We assume that the points of S; are stored in a §-grid. To compute d(Sit1), we
do the following. Let p be the point of Si+; \ S;. If the minimum distance of S;y; is
less than &, then there must be points in the neighborhood of p’s cell. By Lemma 2.1,
there are at most a constant number of points in this neighborhood. We find all these
points using perfect hashing, and compute their distances to p. If all these distances
are at least equal to §, then we know that d(Siy1) = §. In this case, we just add the
point p to the grid, and proceed with the next iteration. Otherwise, the smallest new
distance found is equal to d(S;41). In this case, we store all points of S;41 in a new
d(Si41)-grid.

In the worst case, we have to build a new grid during each iteration, leading to a
quadratic running time. As we will show now, however, the expected running time of
this algorithm is only linear.

For the sake of analysis, assume we run our algorithm backwards. Then, one
iteration can be viewed by picking a random point p of S;1, deleting it, and possibly
“dismantling” the current grid. There are three possible cases. The first case is
where either the point p is not part of any closest pair of Si;i, or the set S;;; also
contains a closest pair p is not part of. In this case, the current grid is not dismantled
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when deleting p. Hence, this iteration takes constant expected time. The second
case is where the set S;;; contains several closest pairs which all contain the point p.
Then, the removal of p increases the minimum distance and, hence, the current grid
is dismantled, taking O(i + 1) expected time. Since p is a random point, this happens
only with probability 1/(i + 1). Hence, this iteration also takes constant expected
time. The remaining case is where the set S;;; contains exactly one closest pair and p
is part of it. Again, the removal of p increases the minimum distance and, hence, the
current grid is dismantled, in O(: + 1) expected time. Since p is a random point, this
happens only with probability 2/(z + 1). Hence, the iteration takes constant expected
time.

It follows that the entire algorithm takes linear expected time. It can be shown
that with high probability, the running time is bounded by O(nlog n/loglog n).

In [70], it is also shown that this algorithm can be implemented in the randomized
algebraic computation tree model, using degraded grids. Then the expected running
time increases to O(n log n), even with high probability. This is optimal in this model.
(See Schwarz [106].)

2.5 Extensions of the closest pair problem
2.5.1 The all-nearest-neighbors problem

Let S be a set of n points in IR®. Until now, we only looked at the problem of
computing the minimum distance in S. An obvious generalization is to compute for
each point p of S its nearest neighbor, i.e., another point of S that is closest to p.

Let us consider the planar case first. Shamos and Hoey’s algorithm of Section 2.2.1
can easily be extended to solve the all-nearest-neighbors problem optimally, i.e., in
O(nlog n) time using linear space. In [77], Hinrichs, Nievergelt and Schorn extend
their plane sweep algorithm that was given in Section 2.2.3 so that it solves the problem
within the same complexity bounds.

The all-nearest-neighbors problem turns out to be more complicated for higher di-
mensions. Bentley [19, 21] shows how his divide-and-conquer algorithm of Section 2.2.2
can be adapted such that it solves the D-dimensional problem in O(n log®~* n) time.
(In particular, this is optimal if D = 2.) An important property that is used in the
merge step is the fact that any point can be the nearest neighbor of at most a constant
number of other points. (See [19, 50] for a proof of this.)

The first O(nlogn)-time algorithm for the all-nearest-neighbors problem for an
arbitrary dimension D was given by Clarkson [39]. His algorithm uses randomization—
hence, the running time is expected—and the floor function. Vaidya [124] solves
the problem deterministically, in O(nlogn) time. His algorithm can be implemented
in the algebraic computation tree model and is, therefore, optimal. The algorithms
in [39] and [124] are based on carefully constructed subdivisions of IR® into axes-
parallel rectangles. Callahan and Kosaraju [30] defined the so-called well-separated pair
decomposition, which captures the important notions on which these two algorithms
are based. It is shown in [30] how such a decomposition can be used for solving several
proximity problems such as the all-nearest-neighbors problem. In view of this, we only
give the algorithm that is based on the well-separated pair decomposition.
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2.5.2 The well-separated pair decomposition

The well-separated pair decomposition appeared for the first time in Callahan and
Kosaraju [30]. (See [33] for the full version of this paper. Callahan’s Ph.D. Thesis [29]
contains a detailed discussion. We also mention that Salowe [103] already used this
notion implicitly.)

Intuitively, a well-separated pair decomposition of a point set S is a partition of the
set of all pairs p,q of distinct points into a collection of pairs of sets (A, B) such that
all distances between points in A and points in B are large compared to the distances
within 4 and B.

To define this notion more precisely, let s denote a fixed positive constant, called
the separation constant. Let X and Y be two sets of points, and let R(X) and R(Y)
be the smallest axes-parallel rectangles containing X and Y, respectively. The sets
X and Y are said to be well-separated if there are two D-dimensional balls Bx and
By having the same radius—say r—and containing the rectangles R(X) and R(Y),
respectively, such that the minimal distance between these balls is at least equal to s7.

Definition 2.3 Let S be a set of n points in IRP, and let s > 0 be any constant. A
well-separated pair decomposition (WSPD) of S is a set of pairs of nonempty subsets
of S,

{{Ala Bl}: {Az,Bz}, vy {Ama Bm}}a

such that
1. AnNB; =0, foralli=1,2,...,m.

2. For each unordered pair of distinct elements {a,b} of S, there exists a unique
pair {A;, B;} in the decomposition such that a € A; and b € B;.

3. A; and B; are well-separated, for alli=1,2,...,m.

The integer m is called the size of the WSPD. We now describe the algorithm of
Callahan and Kosaraju for constructing such a decomposition for which m = O(n).
They first construct a binary tree, called the fair split tree, which is recursively defined
as follows. If S consists of only one point, then the tree consists of one node. Assume
that S contains more than one point. Consider the smallest axes-parallel rectangle
R(S) that contains S, and let 7, 1 < ¢ < D, be the dimension along which this
rectangle has the longest side. Split R(S) into two rectangles by cutting the i-th
interval into two equal parts. Let S; and S, be the subsets of S that are contained in
these two new rectangles. (Note that both S; and S, are non-empty.) Then the fair
split tree for S comsists of a root, together with two subtrees which are fair split trees
for S; and S,, respectively.

The leaves of the fair split tree are in one-to-one correspondence with the points
of S. If v is a node of this tree, and S, is the subset of S that corresponds to the
leaves in the subtree of v, then we say that v represents S,.

Since the fair split tree need not be balanced—it may have depth as large as Q(n)—
a naive implementation of the recursive definition leads to a quadratic running time.
Callahan and Kosaraju show how to reduce the construction time to O(nlogn).
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Let a partial fair split tree be defined in the same way as the fair split tree, except
that sets represented by the leaves may have size larger than one. The main idea
of the efficient construction is to construct a partial fair split tree in which each leaf
represents at most n/2 points. Then, for each leaf, a fair split tree is constructed for
the points represented by this leaf, using the same algorithm recursively. To be more
precise, consider the set S. We make a sequence of splits. Each split results in two
non-empty subsets. The next split in the sequence is performed on the larger of these
two sets. Hence, if for j > 0, S; is the larger of the two sets that result after the j-th
split, then the (j + 1)-st split consists of splitting the smallest axes-parallel rectangle
containing S; into two equal parts along its longest side. We stop this process if the
set S; has size at most n/2.

If for each 1 < i < D, we have a list storing the points of S sotted by their i-th
coordinates, together with cross-references between these lists, then this sequence of
splits can be performed in O(n) time. Here, a key observation is that if we split along
the i-th dimension, then by walking from both ends of the i-th list, this split takes
time proportional to the size of the smaller of the two resulting subsets.

This algorithm correctly computes a fair split tree, in O(nlog n) time. For a
detailed proof, we refer the reader to {29, 30, 33].

We now sketch how to use the fair split tree in order to obtain a WSPD of §.
First, we need some notation. If A is a set of points, then /(A) denotes the length
of the longest side of the smallest axes-parallel rectangle that contains A. Let A and
B be two sets of points that are represented by two different nodes of the fair split
tree. Then we will write A < B if either I(4) < I(B), or I(A) = [(B) and the node
representing A precedes the node representing B in postorder. Extend this ordering
to < in the obvious way. If v is an internal node of the fair split tree, then we denote
by A, and B, the sets of points that are represented by the two children of v.

The WSPD is obtained by calling the procedure findpairs(A,, B,) for each inter-
nal node v of the fair split tree. This procedure does the following. If A, and B,
are well-separated, then findpairs(A,, B,) returns the pair {A,, B,} and terminates.
Otherwise, assume w.l.o.g. that B, < A,. (Otherwise, swap A, and B,.) Note that
A, contains more than one point, because otherwise we would have I(B,) = l(4,) = 0
and, therefore, A, and B, would be well-separated. Therefore, the node represent-
ing A, has two children. Call these v; and v,. Recursively call the procedures
findpairs(A,,, B,) and findpairs(A.,,,B,), and return the union of their outputs as
the output of findpairs(4,, B,).

The pairs that are reported by all these procedure calls gives a WSPD for the entire
set S. Note that each pair can be represented by just two pointers to the appropriate
nodes in the fair split tree.

To analyze the size of the computed WSPD and the running time of the algorithm
itself, we use the following claim which follows from a packing argument: If A is any
subset of S that is represented by some non-root node of the fair split tree, then we
denote by p(A) the subset that is represented by the parent of this node. The claim is
that if A is any subset that is represented by some non-root node, then the computed
WSPD contains at most a constant number of pairs of the form {4, B}, such that
B < p(A) < p(B). This implies that the WSPD that is computed has size O(n). Also,
the time needed to compute it—given the fair split tree—is bounded by O(n).
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Hence, given a set S of n points in IRP, we can in O(nlogn) time compute a
well-separated pair decomposition for S. We now show that this is optimal. First, we
need a lemma, whose proof is trivial.

Lemma 2.3 Assume the separation constant s is larger than two. Let {A,B} be a
pair in any WSPD of S. Assume there is a pair of points (a,b) such thata € A, be B,
and b is a nearest neighbor of a. Then A = {a}.

Let P,Q be a closest pair in S. Then this lemma implies that {{P},{Q}} is-a pair
in any WSPD of S. Hence, given any WSPD, we can find the closest pair in time
proportional to the size of the WSPD. This proves that computing any WSPD takes
Q(nlogn) time in the algebraic computation tree model.

How do we use the WSPD for solving the all-nearest-neighbors problem? By
Lemma 2.3, we only have to consider pairs of the WSPD, one of whose sets is a
singleton. An important observation is the following lemma, which is a generalization
of the fact that a point can be the nearest neighbor at most a constant number of
other points.

Lemma 2.4 Let A and B be sets of points in IR?, such that for all a € A, {a} and
B are well-separated. Also, assume that for all pairs a,a’ of distinct points in A, the
distance from a to the smallest sphere containing B is at most equal to the distance
between a and a'. Then the size of A is bounded by a constant that only depends on
the dimension D and the separation constant s.

For any node v of the fair split tree, let f(v) be the set of all points @ € S such
that the pair {{a}, By} is contained in the WSDP for some ancestor v’ of v. Also,
define N(v) as the set of all points a € f(v) such that the distance from a to the
smallest sphere containing B, is at most equal to the smallest distance between a and
any point of f(v). Then Lemma 2.4 implies that this set N(v) has size O(1).

We compute the sets N(v) top down. If v is the root of the fair split tree, then
N(v) is empty. Let u be any node with parent v. Then initially we set N(u) to the
union of N(v) and the set of all points a such that {{a}, B,} is a pair of the WSPD.
Then we remove elements that do not satisfy the definition of N(u). Computing N(u)
from N(v) takes constant time. Hence, overall we need linear time to compute all
these sets.

Let a be a point of S, let b be its nearest neighbor, and let v be the leaf of the fair
split tree that represents b. Then it is easy to see that a must be contained in the set
N(v). Hence, by considering all leaves, we find all nearest-neighbors, in linear time.
This proves that we can solve the all-nearest-neighbors problem in O(nlog n) time.

2.5.3 The k closest pairs problem

In this version of the problem, we are given a set S of n points in IR? and a an
integer k, 1 <k < (’2‘) , and we have to compute the k smallest distances in the set S.

The first algorithms for this problem are due to Smid [117]. He gives an incremental
algorithm using a space efficient variant of range trees [118] that solves the problem in
O(n*/3log n+n+Vk log k) time. For the planar case, this can be improved to O(nlog n+
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nvklog k) by using a straightforward generalization of the sweep algorithm given in
Section 2.2.3.

For the case where 1 < k < n, this result can still be improved by first computing
for each point its nearest neighbor and then selecting among these n pairs those k
whose distance is smallest. This gives a set of at most 2k points that contains the k&
closest pairs of the set S. We apply the above algorithms on this small set. The result
is an algorithm for solving the k closest pairs problem in O(nlogn + kvklog k) time.

Dickerson, Drysdale and Sack [51] give a simple algorithm for the planar case that
uses the Delaunay triangulation. Here is a description of their algorithm. Given a set
S of n points in the plane, compute the Delaunay triangulation DT of S. For each
point p of S, sort the edges of DT that are incident to p in increasing order of their
length. Also, sort all edges of DT by their length. Next, insert the k shortest edges
of DT into a heap. (If k is larger than the number of edges in DT, then insert all
edges into the heap.) Now we can start with enumerating the k closest pairs. For
i=1,2,...,k, do the following: Delete the pair, say (p,q), that is stored in the heap
and that has minimum distance, and report this pair as being the i-th closest pair.
For all Delaunay edges of the form (g, z) such that (i) d(g,z) < d(p, q) and (ii) the pair
(p,z) has not been reported, insert (p,z) into the heap. Similarly, for all Delaunay
edges of the form (z,v) such that (i) d(z,v) < d(p,q) and (ii) the pair (z,g) has not
been reported, insert (z,g) into the heap.

The correctness of this algorithm is based on the following property of the Delaunay
triangulation. Let p and ¢ be any two points of S. Then either (p, q) is an edge of DT,
or there are points 1, Z3, . . . , s such that (i) (p, 21), (€m, q) and (z;,2i41), 1 < i < m,
are edges of DT, (i) d(zi,zi41) < d(p,q) for 1 < i < m, (iii) d(p,z;) < d(p,q) and
d(zi,q) < d(p,q) for 1 < i < m, and (iv) d(p,2:1) < d(z1,9) or d(q,zm) < d(Zm,p)-
Using this property, Dickerson et al. show that if (p,g) is the i-th closest pair, then
the pair (p,q) will be contained in the heap by the time all distances smaller than
d(p,q) have been reported. They also show that the running time of the algorithm is
bounded by O(nlog n + klog k).

The efficiency of the algorithm of Dickerson et al. heavily depends on the fact that
the Delaunay triangulation has linear size. This does not hold for dimensions greater
than two. Dickerson and Eppstein [52], however, circumvent this by using the following
result of Bern, Eppstein and Gilbert [25]: Given a set S of n points in IRP, there is a
superset S’ of S having size O(n), such that the Delaunay triangulation DT’ of S’ has
size O(n) and bounded degree. Such a superset can be computed in O(nlog n) time.
Applying the algorithm given above to DT’ gives the k closest pairs of S. (Clearly,
the correctness proof is more complicated than in the planar case, because we use the
Delaunay triangulation of S’ instead of S. See [52].) The entire algorithm solves the
k closest pairs problem in O(nlogn + klog k) time. Note that this algorithm reports
the k closest pairs in sorted order. In [52], a variant is given that reports the k closest
pairs—in no particular order—in O(nlog n + k) time. This is optimal in the algebraic
computation tree model. We remark that Arya and Smid [15] have shown that the
algorithm of [51] also works if we replace the Delaunay triangulation by any bounded
degree spanner. (See Section 6.1.)

The first optimal algorithm for the k closest pairs problem is due to Salowe [104].
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He first combines a variant of Vaidya’s algorithm [124] with the parametric search
technique to compute the k-th smallest L, -distance. Then, again using a variant of
Vaidya’s algorithm, he enumerates all pairs of points that have distance at most equal
to Dé. The number of these pairs is bounded by O(n + k), and the k closest pairs in
S are among them. Hence, using a selection algorithm we get the k closest pairs. The
entire algorithm takes O(nlog n + k) time.

Although Salowe’s algorithm is optimal, it is rather complicated because it uses
the parametric search technique. Lenhof and Smid [86] give another algorithm that
does not use any complicated data structures. Their algorithm is basically the same
as the one presented in Section 2.3. Consider a degraded 6-grid for the set S. (See
Section 2.3.1.) Number the cells of this grid arbitrarily. Let n; denote the number of
points of S that are contained in the z-th cell, and let £(§) := 3; (’;‘)

The algorithm of Lenhof and Smid first computes a grid size § such that £ < ¥(§) <
3P(k + n/2). This grid size is computed in O(nlogn) time by a simple variant of the
search procedure sketched in Section 2.3. Then, a degraded (Dé)-grid is constructed
and all pairs of points that are contained in the same cell or in neighboring cells
are enumerated. The number of enumerated pairs is bounded by O(n + k) and they
include the k closest pairs. The total running time of this algorithm is O(nlog n + k).
We remark that indirect addressing is used and, therefore, the algorithm falls outside
the algebraic computation tree model. (The same approach solves the fixed-radius
near neighbors problem: Given § > 0, all pairs of points that are at distance at most
§ are enumerated in time proportional to nlogn plus the number of reported pairs.
See [85].)

The algorithms of [51] and [86] have been implemented by von Zilow [128]. It
turns out that the algorithm of [86] is faster than that of [51]. Also, the algorithm
of [86] performs very well for higher dimensions.

We finally mention that the well-separated pair decomposition (WSPD) can also
be used to solve the k closest pairs problem optimally. Recall that if A is a set of
points, then R(A) denotes the smallest axes-parallel rectangle that contains A. Let
{{4:1,B:1},{As, B:},...,{Am,Bn}} be a WSPD for 5, listed in increasing order of
d(R(A;), R(B:)). To report the k closest pairs, we first find the smallest index ¢ such
that 3°%_; |A;| - | B;| = k. Then, we compute all pairs {4, B} of the WSPD for which
d(R(A),R(B)) < (1 + 4/s)d(R(A:), R(B;)), where s is the separation constant. This
gives us a sequence of O(n+ k) pairs of points that contains the k closest pairs. Hence,
again using a selection algorithm, we find the k closest pairs. For details, see [29].

2.5.4 k-point clustering problems

In the previous sections, we used closeness measures that are based on distances among
pairs of points. In this section, we consider k-point clustering problems, in which the
closeness measure is defined by a subset of the points. To be more precise, given a
set S of n points in IR? and an integer k, 2 < k < n, we want to find a subset S’
of § of size k that minimizes some closeness measure. For example, we may want to
minimize the diameter of the k points, its smallest enclosing circle, it smallest enclosing
axes-parallel cube, etc. Clearly, different closeness measures lead to different optimal
k-point subsets.
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We mention some of the results in this area. Dobkin, Drysdale and Guibas [55]
use the following technique to find a k-point subset for which the perimeter of their
convex hull is minimized. First, they give a polynomial time algorithm for solving this
problem. Then, they give an improved algorithm that first constructs the (ck)-order
Voronoi diagram of the points of S, for some suitable constant c. They show that the
optimal k-point subset is contained in the set of ck points corresponding to a region
in this diagram. Hence, for each of the O(kn) regions, they apply their first algorithm
to the corresponding subset of size ck. Aggarwal et al. [5] improved this technique,
by showing that it suffices to consider only O(n) regions of the (ck)-order Voronoi
diagram. In [5], also closeness measures such as the diameter, enclosing square, or
perimeter of the enclosing rectangle are considered.

In Smid [121], a simple plane sweep algorithm is given for finding the k points in
a set of n planar points whose enclosing axes-parallel square is minimal. Efrat, Sharir
and Ziv [60] apply the parametric search technique for finding k points whose enclosing
circle is minimal. Matousek [89] gives a simpler algorithm for the same problem in
which he replaces parametric search by a randomized search technique.

Most algorithms for k-point clustering problems are inefficient for large values of .
In [90], Matousek gives algorithms that are especially efficient if k is close to n. These
are based on generalizing LP-type problems [113] to optimization problems with &
violated constraints.

Eppstein and Erickson [61] improve the general framework of [55, 5]. Their main
idea is to replace the expensive O(k)-order Voronoi diagram by sets of O(k) nearest
neighbors to each of the points of S. In this way, the number of O(k)-size subsets to
which an “expensive” algorithm is applied is reduced from O(n) in [5] to only O(n/k).

The framework was further improved by Datta et al. [49]. Consider a closeness
measure , and let S’ be the k-point subset that minimizes this measure. The technique
of [49] works provided the measure p satisfies the condition that the value of p(S') is
proportional to the size of the smallest axes-parallel D-dimensional cube that contains
k points of S. Examples for u(A) are the diameter of A, the radius of the enclosing ball
of A, the size of the enclosing axes-parallel cube and the circumference of the enclosing
rectangle. (The area of the enclosing rectangle does not satisfy this condition.)

The algorithm of [49] first constructs a degraded §-grid such that (i) there is a
cell that contains at least k points of S, and (ii) each cell contains at most 2Pk
points of S. This grid is computed in O(nlogn) time, by applying the same search
technique as in Section 2.3. Then, for each cell C' of this grid, the set S¢ of points
that are contained inside this cell or within a constant number of neighboring cells are
collected. If |S¢| > k, then we compute the optimal k-point subset of S¢ using some
other “expensive” algorithm. The k-point subset found in this way having minimum u-
value is the optimal subset of the entire set S. It is clear that in this way, the expensive
algorithm is called only O(n/k) times. A detailed description of the algorithm and
applications to several closeness measures is given in [49].
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3 The on-line closest pair problem

In this section, we give algorithms for the on-line closest pair problem. In this problem,
we have to maintain the closest pair of the set S under insertions of points. That is,
we want to design a data structure that efficiently updates the closest pair if points
are inserted into S. Given such a data structure, we can compute the closest pair of a
point set whose elements become available one after another. When we get the next
point, we just insert it into our data structure, and update the closest pair.

We saw that in the algebraic computation tree model, there is an ((nlog n) lower
bound for the static closest pair problem. This immediately implies an (log n) lower
bound per insertion for the on-line version of the problem. The main result of this
section is a data structure of linear size that matches this lower bound.

Let S be the current point set, let § be the minimum distance in S, and let p be
the point to be inserted. We assume w.l.o.g. that p is not contained in S. Clearly, if
the minimum distance in the new set SU {p} is less than §, p must be part of a closest
pair. Therefore, in order to update the closest pair, we have to perform the following
steps.

1. Find out if there is a point ¢ in S such that d(p,q) < 8. If there is no such point,
then the closest pair does not change during the insertion of p. Otherwise, find
a point g of S that is closest to p. In this case, (p,q) is the new closest pair.

2. Insert the new point p into the data structure.

Let B be the L,-ball with radius § centered at p. Lemma 2.1 implies that B
contains at most a constant number of points of S. Our strategy for implementing
the first step will be to find a subset S’ of S that contains all points of $ N B and
whose size is “small”. (Ideally, this size is bounded by a constant, although a size
logarithmic in |S| suffices.) Given this subset, we can trivially update the closest pair
by computing the distances between p and all points of S’. Finding the subset S’
efficiently is achieved by maintaining a subdivision of IR” into cells such that each cell
contains only “few” points, and the ball B overlaps only “few” cells. The set S’ is
then obtained by performing point location queries in this subdivision.

After having performed the first step, we add point p to the cell of the subdivision
that contains p and, if necessary, update the subdivision.

We now turn to concrete implementations of this insertion procedure.

3.1 Algorithms based on the logarithmic method

The first algorithms are based on applying Bentley’s logarithmic method [20]. This
application first appeared in Smid [119]. (See also Schwarz [106].)

Let S be the current set of points in IRP, and let n denote its size. Write n in the
binary number system, n = 3 ;>0 @ 2¢, where a; € {0,1}. Partition S (arbitrarily) into
subsets: for each i such that a; = 1, there is one subset S;, of size 2'. Moreover, for
each such i, there is a real number §; such that d(S) < §; < d(S;). The data structure

consists of the following.
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1. The closest pair of S and its distance 6.

2. For each i such that a; = 1, a §;-grid storing the points of 5;. We assume that the
non-empty cells of this grid are stored in a balanced binary search tree, sorted
lexicographically according to their “lower left” corners.

Now consider the insertion of a new point p. For each i such that a; = 1, we find the
cell of the &;-grid that contains p together with the 3° — 1 neighboring cells. Then we
compute the distances between p and all points of S; that are contained in these cells.
If we find a distance less than §, then we update é and the closest pair.

It remains to update the rest of the data structure. Let j be the index such that
dg = a; = —63_1—131141&3—-0 LetS -—{p}USgUSl US,_landS =il
We btuld a 6 ;-grid for the set S;, and dzscaxd the grids for the sets So, S15...,5;5-1
(thereby implicitly making these sets empty).

To prove the correctness of this algorithm, note that since d(S) < &, it suffices to
compare p with all points of S; that are in p’s neighborhood—in the é;-grid. Hence,
the closest pair is updated correctly. Also, the new value §; satisfies d(SU{p}) < é; <
d(S;), and for all 1 > j, we have d(S U {p}) < & < d(S;). Finally, the updated data
structure contains a grid storing 2 points for each i such that the binary representation
of n + 1 contains a one at position z.

We analyze the complexity of the insertion a]gonthm First note that since §; <
d(S;), the neighborhood of p in the &;-grid contains at most a constant number of
points of S;. Hence, we spend O(logn) time for each grid. Since the data structure
contains a logarithmic number of grids, the first part of the insertion algorithm takes
O(log® n) time.

Consider the second part of the algorithm, in which we build the é;-grid. This step
takes O(|S;|log |S;|) time, because of sorting. If we store the points in an appropriate
sorted order, however, then this grid can be built in O(|S;|) = O(27) time. (See (106,
107] for details.) Since j can take any value between zero and |logn], the insertion
time fluctuates widely. We claim, however, that the amortized time for the second step
is bounded by O(log n). '

To prove this claim, assume we start with an empty set S and perform a sequence
of n insertions. Let k; be the number of times that during these insertions, we build
a grid for a subset of size 2. Then k; is at most equal to the number of integers
consisting of at most 1 + |logn| bits whose j least significant bits are equal to one,
and whose (7 + 1)-st bit is equal to zero. That is, we have

k; < 2Uosnl=i < p /23,
The total time spent for the second step during the n insertions is bounded by
Logn) logn)
.93 | = R o9i| =
0 jgo k;=27) =0 ,Z; 57 27| = O(nlogn),

which proves the claim.
We have shown that the running time of the entire algorithm for maintaining the
closest pair is bounded by O(log®n) worst-case time plus O(logn) amortized time
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per insertion. Using standard techniques (see Overmars [96, pages 102-105]), we can
transform the data structure such that the second step takes logarithmic time in the
worst case. Hence, we have a data structure that maintains the closest pair in O(log® n)
worst-case time per insertion. The structure has size O(n).

Note that the first step of the algorithm takes O(log®n) time, whereas the second
step takes only O(log n) time. This suggests that an improvement is possible. Indeed,
instead of writing n in the binary number system, we use the number system with
base logn. (See Overmars [96, pages 108-115] or Schwarz [106].) In this way, both
steps take O(log® n/loglog n) time, whereas the space used remains linear.

Hence, we have a data structure of linear size that maintains the closest pair in
O(log® n/log log n) worst-case time per insertion. Note that the algorithm uses the
floor function in order to find the grid cell containing the new point p. By replac-
ing the grid by a degraded grid, the algorithm can be implemented in the algebraic
computation tree model.

It is still possible to improve the above data structure. Consider again the data
structure based on the representation of n in the binary number system. The main
observation is the following: If we insert a point p, then for each ¢ such that a; = 1,
we find the cell of the §;-grid that contains p (plus the neighboring cells). That is,
we perform point location queries in a logarithmic number of grids, but always with
the same query point p. In Schwarz and Smid [107], it is shown that the fractional
cascading technique [37] can be extended so that all these queries together can be solved
in O(log nloglogn) time. The main problem is that we have grids with different grid
sizes. Therefore, an ordering on the grid cells has to be introduced that is “compatible”
with all these sizes. In [107] such an ordering is defined. As a result, locating the point
p in all grids takes O(logn) comparisons. Since the ordering is quite complicated,
however, each comparison takes O(loglogn) time. Overall, we get a data structure
of size O(n) that maintains the closest pair in O(log nloglogn) amortized time per
insertion. Note that we need the floor function for this result. This can probably be
made worst-case, but the details will be tedious. It is not clear if the ordering on the
grid cells can also be defined if we use degraded grids instead of standard grids.

We finally mention an extension of the above data structure. The structure as
described above heavily uses the fact that we only insert points. It turns out, however,
that the structure can be adapted for dealing with semi-online updates, as defined by
Dobkin and Suri [57]. A sequence of updates is called semi-online if the insertions
are on-line—i.e., they arrive in an unknown order—but when a point is inserted, we
are told how many updates from the moment of insertion, it will be deleted. This
extra information about the deletions can be used to guarantee that when a point is
deleted, it is always contained in a grid storing a small subset. Because in a deletion
the minimum distance may increase, we store extra information in the data structure
for updating the closest pair efficiently. In this way, we get a data structure of size
O(n) that maintains the closest pair in O(log®n) worst-case time per insertion. For
details, we refer the reader to Dobkin and Suri [57] and Smid [115, 116, 119].
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3.2 An algorithm that is optimal for dimension two

In this section, we give a data structure that maintains the closest pair in O(log?n)
amortized time per insertion. The algorithms can be implemented in the algebraic
computation tree model and, therefore, the result is optimal for the planar case. The
results in this section appeared in Smid [122].

In the previous section, we maintained a sequence of subdivisions of IR?, where
each subdivision was a grid. Now we store the point set in only one subdivision that
is maintained in such a way that we do not need the floor function.

We will use the skewer tree, see Edelsbrunner, Haring and Hilbert [59]. This data
structure stores a collection of m non-overlapping axes-parallel D-dimensional rect-
angles, such that point location queries can be performed in O(lcrg"r’"l m) time. The
skewer tree uses O(m) space. In [122], it is shown that this data structure can be made
dynamic such that the following operations can be performed in O(log? m) amortized
time: Insert a rectangle into the collection, such that the rectangles in the new col-
lection are still non-overlapping; split a rectangle into two axes-parallel rectangles.
(Deletions and merges can also be supported, but then the complexity increases by a
factor of log log m because of the usage of dynamic fractional cascading [93].)

Let S be the current set of points, and let » denote its size. The data structure

consists of the following.
1. The closest pair in S and its distance §.

2. A subdivision of IR? into non-overlapping D-dimensional axes-parallel rectan-
gles. Each rectangle in this subdivision has sides of length at least §, and contains
at least one and at most (2D)P log”~! n points of S.

3. The rectangles of the subdivision are stored in a skewer tree. With each rectangle
R, we store a list of those points in S that are contained in R.

Assume we insert a new point p = (p1,...,pp) into S. We update the data
structure as follows. First, we perform 3P point location queries in the skewer tree,
with query points (p; + €1,...,Pp + €p), for €,...,ep € {—6,0,6}. Then we compute
the distances between p and all points of S that are contained in the rectangles that
are found. If we find a distance less than &, then we update § and the closest pair
accordingly. (See Figure 2.)

Next, we insert p into the list of the rectangle R it belongs to. If this updated
list contains at least (2D)P log®~' n points, we perform a sequence of at most D split
operations on R such that (i) the second property of the data structure is satisfied,
and additionally (ii) each of the new rectangles contains at most half of the points
that were contained in R. For the details of these split operations, we refer the reader
to [122]. (In the next section, we will describe the split operation for a slightly modified
subdivision. There, one split operation suffices.)

By the above mentioned property of dynamic skewer trees, it follows that the
entire insertion procedure takes O(log”~* n + log® n) amortized time. Consider a new
rectangle of the subdivision. At this moment, it contains at most (1/2)(2D)? log®*n
points. Therefore, if this rectangle is split, there must have been this many insertions
into it. During those insertions, no split operation is necessary. Hence, the amortized
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Figure 2: The 9 point location queries in the planar case.

insertion time of the entire data structure is bounded by O(log®~* n). It is clear that
it uses linear space.

3.3 An algorithm that is optimal for all dimensions

In this section, we give an optimal data structure for maintaining the closest pair
under insertions. This result is due to Schwarz, Smid and Snoeyink [108]. We will
use basically the same subdivision as in the previous section. The improvement stems
from the use of a better point location data structure.

During the sequence of insertions, we maintain a hierarchical collection of axes-
parallel D-dimensional rectangles. The data structure stores the following information.

1. The closest pair in S and its distance §.

2. A binary tree T representing the hierarchical collection. Each node of T stores
a rectangle. The rectangles stored in the leaves form a partition of IRP and they
represent the “current” subdivision. With each leaf, we also store a list of all
points of S contained in the corresponding rectangle. For each internal node
of T, the rectangle stored in it is equal to the union of the two rectangles stored

in its children.

3. The current subdivision consists of non-overlapping rectangles such that (i) each
rectangle has sides of length at least §, and (ii) each rectangle contains at least
one and at most (2D + 2)P points of S.

Note that in order to solve a point location query in the current subdivision, we can
walk down the tree T'. The query time is proportional to the height of T', which, as we
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will see, may be linear in n. Assume for the moment, however, that we use this query
algorithm.

To insert a new point p into S, we perform the same 3% point location queries as
in Section 3.2, and update the closest pair. Afterwards, we insert p into the rectangle
R containing it. If this rectangle now contains 1 + (2D + 2)P points, we split it as
follows.

Let R have the form [a;,b,] X ... X [ap, bp], and let 5§’ be the points of the new set
S that are contained in R. For 1 < i < D, compute the value m; (resp. M;) which is
the minimum (resp. maximum) i-th coordinate of any point of §’. Let ¢ be an index
such that M; — m; > 26. (It follows from Lemma 2.1 that such an index exists.) Let
¢; := m; + (M; — m;)/2. Then we split R into two rectangles

RI = [als bl] X...X [a'i—l': bi—l] X {al'jci] X [a'$'+11 bt'+1] X.oo X [a'Dsz]

and .
R. = [a1,by] X ... X [@ic1,bi1] X [e3, 5] ¥ [@:41,bi41] X ... X [ap,bD].

In the tree T, we give the leaf storing R two new children corresponding to R; and R,,
and give these two new leaves the appropriate lists of points.

It is not hard to see that this algorithm correctly maintains the closest pair. To
estimate the running time, we observe that we perform a constant number of point
location queries and at most one split operation. Since the tree T may have a linear
height, the worst-case running time of the insertion algorithm is O(n).

There are two possibilities to improve the running time. First, we can use a centroid
decomposition to represent the tree T as a balanced tree. A f-centroid is a node of T
whose removal results in three components each containing at most a fraction g of all
nodes. The centroid decomposition is obtained by repeatedly choosing such centroids
in each of the components. Guibas et al. [73] show how this decomposition can be
computed in linear time. Given this centroid decomposition, point location queries
can be solved in logarithmic time. To maintain it efficiently, we apply the partial
rebuilding technique. (See Lueker [88] and Overmars [96, Chapter IV].) In this way, a
split operation takes O(logn) amortized time. Hence, overall we get an algorithm for
maintaining the closest pair in O(log n) amortized time per insertion, and using O(n)
space. This version of the algorithm has been implemented by Hintz [78].

A second improvement is obtained by storing the hierarchical subdivision using
dynamic trees [114]. Cohen and Tamassia [43] give a general technique to maintain hi-
erarchical subdivisions such that point location queries and several other operations—
such as the split operation—take O(logn) time in the worst case. (For a detailed
discussion of the application of this technique to our problem, see Schwarz [106].)
Hence using this technique, we get our main result: A data structure that maintains
the closest pair in O(log n) worst-case time per insertion. This data structure uses lin-
ear space, and the algorithms fit into the algebraic computation tree model. Therefore,
this solves the on-line closest pair problem optimally.

We finally mention that the techniques presented in this section can be generalized
to get efficient on-line solutions to k-point clustering problems, for a large class of
closeness measures. (See Section 2.5.4, Datta et al. [49] and Schwarz [106].)
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4 The dynamic closest pair problem

We now turn to the fully dynamic closest pair problem. Here, we have to maintain
the closest pair in a point set if both insertions and deletions are allowed. Note that
intuitively, insertions are easier to handle than deletions: If a point is inserted, we only
have to check the neighborhood of this new point. On the other hand, if we delete a
point that is part of the closest pair, then we have to find the new closest pair.

4.1 The deletions-only case

Supowit [123] showed that the divide-and-conquer algorithm of Section 2.2.2 can be
turned into a data structure that maintains the closest pair if only deletions have to
be supported.

We sketch this structure for the planar case. Let S be a set of n points in the plane.
We store the points of S in the leaves of a balanced binary search tree, sorted by their
z-coordinates. For any node w of this tree, we denote by S,, the subset of S that is
stored in the subtree of w. Every internal node w contains additional information. Let
u and v be the left and right child of w, respectively.

We store with w the minimum distance d(S,) of the set S,, the value §, :=
min(d(S,),d(S.)), and a value m,, that is between the maximum z-coordinate in 5,
and the minimum z-coordinate in S,. Also, we store with w a tree T, storing all
points of S,, that are within distance §,, of the vertical line £ = m,,. The points are
stored in the leaves of this tree, sorted by their y-coordinates. Finally, we store with
w a heap H,, storing all distances d(a,b), where a and b are points of T,, that are
within 5 positions of each other in this tree. Note that d(S,,) is the minimum of 6,
and the smallest element in H,,.

We also maintain a heap H that contains the smallest elements of all heaps H,,. It
is clear that the smallest element stored in H is the minimum distance in the overall
set S.

To delete a point p, we search in the tree with its z-coordinate. For each node w
encountered, we update all relevant information. The important observation is that
the values d(S,,) and &, can only increase. Therefore, a point of S, will be inserted
into the tree T, at most once. If such a point is inserted into T, it causes a constant
number of updates in the heaps H,, and H.

Supowit shows that the data structure maintains the closest pair in O(log®n)
amortized time per deletion. Cleatly, the structure uses O(nlogn) space.

This result can be generalized to any dimension D, in much the same way as the al-
gorithm of Section 2.2.2 generalizes. The result is a data structure of size O(n log®~'n)
that maintains the closest pair in O(log” n) amortized time per deletion.

4.2 A fully dynamic data structure with sublinear update
time

Since a planar Voronoi diagram can be maintained in O(n) time per insertion and
deletion (see Overmars (95, 96] and Aggarwal et al. [4]), we can also maintain the
closest pair in a planar point set in O(n) time per update. The first fully dynamic

26



data structure that maintains the closest pair in sublinear time was given by Smid [117].
Tt is based on the following idea. Instead of maintaining only the minimum distance,
we start with the sorted list L of n smallest distances. If a point p is deleted then all
distances in L in which p “occurs” have to be deleted. It can easily be shown that there
are at most O(y/n) such distances. Hence, during ©(y/n ) deletions the list L will be
non-empty, and it will contain the minimum distance of the current set. Once L gets
empty, we compute a new list and continue as above. The initial list L can be computed
in O(nlog n) time. The distances that have to be deleted from L because of a deletion
can be found using a space efficient variant of the range tree. (See Smid [118].) Using
the same range tree, insertions of points can also be supported easily. The resulting
data structure maintains the closest pair in O(y/nlogn) amortized time per insertion
and deletion, and it uses O(n) space. Using standard techniques, the update time can
be made worst-case.

4.3 A solution with polylogarithmic update time

The first fully dynamic closest pair data structure having polylogarithmic update time
is due to Smid [120]. We describe it in detail here, because the same technique can
be used for solving other problems, such as dynamic k-point clustering problems and
constructing spanners. At this moment, it is not clear if other dynamic closest pair
data structures can be used for solving these other problems.

The description of the data structure given below follows Arya and Smid [15]; it is
simpler than that in [120]. For simplicity, we assume in this section that D = 2. The
data structure is based on the range tree, see Lueker [88] and Willard and Lueker [126].

Let S be a set of n points in the plane. Our data structure has the form of a
3-layered range tree. There is a balanced binary search tree—called the layer-1 tree—
storing the points of S in its leaves, sorted by their z-coordinates. Let v be any node
of this tree and let S, be the subset of S that is stored in the subtree of v. Then
v contains a pointer to the root of a balanced binary search tree—called a layer-2
tree—storing the points of S, in its leaves, sorted by their y-coordinates.

Before we can define the third layer of the data structure, we need to introduce
some notation. Let u be any node of a layer-2 tree. Let r be the root of this layer-2
tree. Then the node of the layer-1 tree that contains a pointer to r will be denoted
by u'. Moreover, let z, be a real number that is between the maximum z-coordinate
in the left subtree of u' and the minimum z-coordinate in the right subtree of '.
Similarly, let y, be a real number that is between the maximum y-coordinate in the
left subtree of u and the minimum y-coordinate in the right subtree of u. We denote
the point with coordinates (zy,%.) by ou. .

Now we can define the third layer of the data structure. Let u be any node of any
layer-2 tree, and consider the corresponding point o,. Let S, be the set of points that
is stored in the subtree of u. Moreover, for 1 < i < 4, let S,; be the subset of S, that
is contained in the i-th quadrant w.r.t. the point o,. Finally, for 1 < ¢ < 4, let S}; be
the subset of S,; consisting of the five points that are closest to o,, measured in the
L-metric. Then node u contains pointers to

1. four balanced binary search trees. For 1 < ¢ < 4, the i-th tree contains the
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points of S; in its leaves, sorted by their L-distances to the point o..

2. a variable 73(u) having value

mw)=d(Usl),

i=1
3. and, in case, 73(%) < 00, a pair of points of U; S; that realizes ns(u).

We are almost done with the description of the data structure. We saw that for
each layer-3 structure there is a corresponding 7s-value. Let 1 < i < 2 and let v be any
node of a layer-i tree. If v is a leaf then v stores a variable 7;(v) having value co. If v
is not a leaf, then let v; and v, be the left and right child of v, respectively. Also, let
ni+1(v) be the variable that is stored with the layer-( + 1) structure that corresponds
to v. Then node v stores a variable 7;(v) having value

7i(v) = min(7:(0), (vr)s 42 (20)), (2)

and, in case 7;(v) < oo, a pair of points that realizes 7;(v). This concludes the
description of the data structure.

Lemma 4.1 Let 5 be the value that is stored with the root of the layer-1 tree. Then
n = d(S5).

Proof: First note that all 7;(-)-variables have value either co or d(A) for some subset
A of S. Therefore, d(5) < .

The entire data structure contains many layer-3 structures as substructures. If we
can show that the 7;-variable of one of these layer-3 structures has value d(S5), then it
follows that 7 < d(S) and, hence, 7 = d(S).

We show that such a layer-3 structure exists. Consider the closest pair P,Q of S.
Let u; be the highest node in the layer-1 tree such that P and @ are contained in
different subtrees of u;. Similarly, let u; be the highest node in the layer-2 tree that
is pointed to by u; such that P and @ are contained in different subtrees of us.

Node u, contains a pointer to a layer-3 structure DS. We claim that the variable
ns that is stored with DS has value d(S). This will complete the proof of the lemma.

Consider the point o,,. We assume w.l.o.g. that this point is the origin of our
coordinate system. For 1 < i < 4, let S,,; be the set of points stored in DS that are
contained in the i-th quadrant. Note that P and Q are both contained in J; S,:. For
1 < i < 4, consider the subset S ; of S,,;. Note that 53 = d(U; §,,,;)- If we can show
that P and Q are both contained in U; S, ;, then we must have 53 = d(S5).

Assume this is not the case. Moreover, assume w.l.o.g. that P does not belong to
U: S.,, and that P lies in the first quadrant, i.e., all coordinates of P are positive.

Note that S} , contains five points. Let § be the maximum Lo-distance between
any point of S, ; and the origin. Then, S/ , is contained in the box [0 : §]*. Partition
it into four subboxes, each with sides of length §/2. One of these subboxes contains
at least two points of S. Hence, d(S) < 6.

Consider again point P. This point has L-distance at least § to the origin. Let
£ € {1,2} be an index such that P, i.e., the {-th coordinate of P, is at least equal to 6.
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Our choice of the nodes u; and u, implies that the {-th coordinate of Q is negative.
Hence, the distance between P and Q is greater than §, which implies that § < d(S5).
This is a contradiction. Hence, we have shown that P and Q are both contained in
U: Si,;- This completes the proof. B

Hence, this data structure stores the minimum distance of our point set S. To
insert or delete a point p, we search for the z-coordinate of p in the layer-1 tree. For
each node on the search path, we search for the y-coordinate of p in the corresponding
layer-2 tree. For each node encountered, we update the corresponding layer-3 structure.
Afterwards, we walk back along all these paths, and update the values 7;(-) according
to (2). To guarantee that the data structure remains balanced, we take the binary
trees from the class of BB[a]-trees, and use rotations. (See Mehlhorn [91, page 198].)
In this way, the amortized update time of the entire data structure is bounded by
O(log®n). It is easy to show that the structure uses O(n log?n) space. It turns out
that the orderings used in the layer-3 structures are similar enough so that dynamic
fractional cascading [93] can be applied. In this way, the amortized update time is
reduced to O(log? nloglogn). For details, the reader is referred to [120].

Using standard techniques, this result can be generalized to any fixed dimension D.
The result is a data structure of size O(nlog® n) that maintains the closest pair in
O(log? nlog log n) amortized time per insertion and deletion.

In Datta et al. [49], it is shown how the data structure presented in this section
can be extended to the dynamic k-point clustering problem, in which we maintain the
optimal k-point subset under insertions and deletions of points. (See also Section 2.5.4
and Schwarz [106].) Finally, Arya and Smid [15] use the data structure for constructing
spanners. (See Section 6.1.2.)

4.4 A randomized data structure with polylogarithmic up-
date time using linear space

The data structure of the previous section has polylogarithmic update time, but it
uses more than linear space. Therefore, after [120] appeared, the goal was to obtain
polylogarithmic update time using only O(n) space. This goal was achieved by Golin
et al. [69], in the randomized sense. Basically, they extend the static closest pair
algorithm of Khuller and Matias given in Section 2.4.2. As in the algorithm of Khuller
and Matias, the data structure is built by making a sequence of iterations. In order
to make the algorithm dynamic, however, we maintain information that is computed
during this sequence.

The data structure is defined by the following randomized procedure. Let Sy := §
and ¢ := 1. During the i-th iteration, we pick a random point p; € S;—called the
pivot—and compute its nearest neighbor g¢; in S;. Let d; be the distance between p;
and ¢;. Using perfect hashing, we store the points of S; in a d;/(4D)-grid. Then, we
determine the set S! consisting of all points of S; that do not contain any other points
of S; in their neighborhoods. Again using perfect hashing, we store the set S; in a




d;/(4D)-grid. For each point p € S}, we compute the value

£(7) = min (d,.,d(p, U s;-))-

1<5<i

We store all these values in a heap H;. If §; = S, then the algorithm stops. Otherwise,
we set Siy1 :=S;\ S! and i := i+ 1, and proceed with the next iteration.

The results of Sectxon 2.4.2 imply that d;y; < d;/2. Let { be the number of
iterations made by the algorithm. Then d;/(4D) < d(S) < d;. Finally, the entire
algorithm takes linear expected time.

It is not difficult to see that the minimum distance in the overall set S is equal to
the smallest element contained in any of the heaps H;, 1 < ¢ < {. However, we can
say more. First, we have

d3(p) = min (d;, d(p, S{_p U S{_p41 U - LS.

Hence, to compute such a value df(p), it suffices to perform a constant number of
search operations in only D + 1 grids (rather than in ¢ grids). Therefore, this value
can be computed in constant time.

Second, the minimum distance in S is equal to the smallest element contained in
any of the heaps Hy;_p, H_pi1,-..,He.

What happens if we insert a new point g into S? Our goal is to update the
data structure in such a way that at the end it “looks like” it has been built by the
above procedure. That is, the updated data structure should have the same statistical
properties as a data structure for S U {q} that has been built from scratch using the
above procedure.

Here is a brief and intuitive description of the insertion algorithm. By assumption,
p1—the pivot of §;—is a random element of S; = S. To generate a pivot for 51 U {q},
it suffices to retain p; as pivot with probability |S;|/(]|S1|+ 1) and to choose g instead
with probability 1/(]S;1| + 1). If ¢ is chosen, then we discard everything and build a
completely new data structure using the above procedure. In this case, the insertion
algorithm terminates. Note that this happens, however, only with probability 1/ (181 ]+
1) and so the expected cost is O(1).

Assume now that p; remains unchanged as the pivot. We now check if g;—the
nearest neighbor of p;—and, hence, d; have to be changed. It is known that g can be
the nearest neighbor of at most 3° points in S;. (See [50].) This means that d; changes
only if p, is one of these points. Since p; was chosen uniformly from S;, it follows that
the probability of di changing is at most 37/|S5:|. If d; changes, we use the above
algorithm to build a completely new data structure and terminate the procedure. The
expected cost of this is O(1).

We are left with the case where p;, ¢1 and d; remain unchanged. Let us denote
S U {q} by 5. We need to determine the set S, containing the points in S; = § that
contain some other points in their neighborhood. If ¢ does not contain points of S;
in its neighborhood, then it will go into 5!, and nothing further needs to be done. In
this case, we can terminate the procedure. Otherwise, S, contains g and possibly some
points from S!. The set of points which are deleted from 5] due to the insertion of ¢
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is called D;. Now we need to insert ¢ and D, into Sz, which gives rise to a set Dy,
such that D, U {q} is inserted into Ss, etc.

Hence, during the insertion algorithm, certain points move down some levels in the
data structure. It can be shown that the total number of points that move is bounded
by a constant. In particular, the total number of query and update operations in the
grids is bounded by O(logn), and the total number of update operations in the heaps
is bounded by a constant. Hence, if we implement the grids using dynamic perfect
hashing [54], the entire insertion algorithm takes O(log n) expected time.

The deletion algorithm is basically the reverse of the insertion algorithm. In par-
ticular, the points that move to lower levels during an insertion of ¢ move back to
their previous locations when g is deleted directly afterwards. For details, we refer
the reader to [69, 106]. There it is shown that the expected time for a deletion is also
bounded by O(log n), if we use dynamic perfect hashing.

The result is a randomized data structure that stores a set S of n points in IR”
such that the minimum distance d(S) can be found in O(1) time. The expected size
of this structure is O(n), and we can maintain it under insertions and deletions in
O(log n) expected time per update. The algorithms as presented here assume that the
floor function is available at unit cost. Also, because we use dynamic perfect hashing,
it is assumed that all points come from a bounded region in IRP.

Note that in this result randomization is only w.r.t. the coin flips that are made
during the algorithms. In particular, no assumption is made about the points that
are inserted and deleted (except that they come from a bounded region); these can be
arbitrary.

We can use degraded grids to remove the floor function from the machine model.
In this way, searching and updating a grid takes O(logn) time. As a result, we get a
randomized data structure having O(n) expected size that maintains the closest pair
in O(log® n) expected time per insertion and deletion. (The details of this modified
data structure are tedious, see [69, 106].) This data structure can be implemented
in the randomized algebraic computation tree model. We finally remark that for
the data structures presented in this section high probability bounds can be proved.
(See [69, 106].)

4.5 A deterministic solution with polylogarithmic update
time using linear space

The first deterministic data structure that maintains the closest pair in polylogarith-
mic time using only linear space is due to Kapoor and Smid [80]. They first give a
deterministic data structure for maintaining the closest pair that improves the result
of Section 4.3. Then they present a “space saving transformation”, which transforms
any dynamic closest pair data structure of super-linear size into another one that uses
less space. Applying this transformation several times leads to a dynamic closest pair
data structure using only linear space.

To describe the first result in [80], we need to introduce some notation. Let S be a
set of n points in IRP. For any point p € IR?, boz(p) denotes the smallest axes-parallel
cube centered at p that contains at least (2D + 2)P points of S\ {p}. In other words,
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the side length of boz(p) is twice the Loo-distance between p and its (1+ (2D +2)P)-th
(resp. (2D +2)P-th) L-neighbor, if p € S (resp. p ¢ S). Also, for any point p € R,
N(p) denotes the set of points of S\ {p} that are contained in the interior of boz(p).

The data structure is based on the following lemma, whose proof is straightforward.

Lemma 4.2 The set {(p,q) : p € S,q € N(p)} contains a closest pair of S.

This lemma implies that it suffices to maintain the distances d(p,q), p € S, ¢ €
N(p), in a heap. The smallest element contained in this heap is the minimum distance
in S. Note that the heap stores only a linear number of elements. In order to maintain
the heap—if points are inserted and deleted in S—we also have to maintain the set
{boz(p) : p € S}.

Let us see what has to be done when we insert a new point p into 5. We must
be able to compute boz(p), and the corresponding set N(p). These can be found
by computing the (2D + 2)P Le-neighbors of p. In Section 5.1.2, we will see that
the standard range tree can be used for this. We also have to find all boxes boz(g)
that contain p. (There are at most a constant number of such boxes.) Each such
box has to replaced by a smaller box—one that contains (2D + 2)P points of the
new point set. To support these operations, we can use the standard segment iree
(see [98]) or a dynamic variant of the skewer tree (see [59, 122]), extended to support
dynamic fractional cascading [93]. The efficiency of the query algorithms in these data
structures depends on the following fact: The set {boz(q) : ¢ € S} is of constant
overlap, in the sense that each box contains the centers of at most (2D + 2)P boxes in
its interior. These centers are precisely the points of N(g)U{g}. Using the same data
structures, we can efficiently update the heap when we delete a point from the set S.

Assume first that we use a segment tree to store the elements of the set {boz(g) :
g € S}. During the insertion or deletion of a point in §, we perform at most a
constant number of query and update operations in the range tree, the segment tree
and the heap. Therefore, the amortized update time of the entire data structure is
bounded by O(log?~* nloglogn). Moreover, the size of the data structure is bounded
by O(nlogP~* n). (See [80].)

To reduce the space complexity, some additional techniques are needed. We first
remark that in the solution just sketched both the range tree and the segment tree
use O(nlog”~*n) space. We need the range tree for computing the boxes boz(p).
Unfortunately, no linear space solution for the latter problem having polylogarithmic
query and update times is known. Hence, in order to reduce the space complexity,
we should avoid using the range tree. We can replace the segment tree by a skewer
tree—which uses only linear space. Then, however, the update time increases slightly.

In [80], a transformation is presented that, given any dynamic closest pair data
structure DS having more than linear size, produces another dynamic closest pair
structure that uses less space. The transformed data structure is composed on two
sets A and B that partition the current point set S. The boxes boz(p) of the points
in A remain fixed during a sequence of updates—hence we do not need the range tree
for this set—whereas the set B is stored in the dynamic data structure DS. To reduce
space, B is a subset of the entire set and contains points involved in o(n) updates
only. In order to guarantee a good amortized behavior, the entire data structure is
periodically rebuilt.
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The result is as follows. Let DS be any data structure for the dynamic closest pair
problem. Let S(n) and U(n) denote the size and (amortized or worst-case) update
time of DS, respectively. Let 1 < f(n) < n/2 be any non-decreasing integer function.
Assume that S(n), U(n) and f(n) are smooth. (A function g is called smooth if
g(©(n)) = ©(g(n)).) The transformation produces a data structure for the dynamic
closest pair problem having

1. size O(n + S(f(n))), and
9. an amortized update time of O(log” ™" n + U(f(n)) + (nlog n)/f(n)).

Applying this transformation twice to the above closest pair data structure, taking
f(n) = n/(logP 2 nloglogn) and f(n) = nloglog n/log n, respectively, we get a data
structure of size O(n) that maintains the closest pair in O(log”~* nlog log n) amortized
time per insertion and deletion, for D > 3.

For D = 2, we can apply the transformation k times for any constant k, with
appropriate choices for the function f. This gives data structures of sizes O(n) and
O(nlog n/(log log n)*), having amortized update times of O(log? n/(loglogn)*) and
O(log nlog log n), respectively.

4.6 A dynamic solution based on simplicial cones

This section describes a solution to the dynamic closest pair problem that is due to
Bespamyatnikh [26]. The main idea is to reduce the entire problem to certain range
searching problems, and then use standard data structures to solve the latter. (This
technique appeared for the first time in Gabow, Bentley and Tarjan [67]. They use it
for solving the post-office problem for “simple” metrics. See Section 5.1.1.)

For simplicity, we only consider the planar case. So, S denotes a set of n points in
the plane. Let k be a sufficiently large integer constant, and let § = 2x /k. Rotate the
positive z-axis over angles i+ 6, 0 < i < k. This gives k rays. Let C1,C5,...,Cs be
the cones that are bounded by any two successive rays. Also, for 1 < i < k, let [; be
a fixed ray that emanates from the origin and that is contained in C;.

For each 1 < i < k, we define an approximate distance function §;, as follows. Let
p and ¢ be two points in the plane. If ¢ — p is not contained in the cone C;, then
8:(p,q) := oo. Otherwise, if ¢ — p € C;, then &(p,q) is defined as the L.-distance
between the origin and the orthogonal projection of ¢ — p onto the ray I;. (Note that
in general, 8;(p,q) # 8i(¢,p).)

These distance functions have the following property. Let p, ¢ and r be three
points such that ¢ — p and r — p are both contained in the cone C;. Also, assume that
8:(p,7) < &i(p,q)- Then d(r,q) < d(p,q). (For a proof of this, see [14, 26, 101].)

For 1 < i < k, let E; be the set of all pairs (p,g) such that

8(p,q) = min{&(p,r) : 7 € S\ {p}},

and

6;'(%?) = m-in{ai(% 1") ‘T E S\ {Q}},




and let E := |J; E;. Then E is a set of size O(n) that, by the property just mentioned,
contains the closest pair. Hence, in order to maintain the closest pair, it suffices to
maintain the pairs of E in a heap, where the ordering is by their L,-distances.

Let p be any point in the plane, let 1 < i < k, and let C] be the cone C; translated
such that its apex is at p. A point ¢ € S\ {p} such that §;(p,g) is minimal can be
computed by selecting among all points that are between the two bounding rays of C}
a point that is furthest to the “left”, where we consider the ray /; as being “horizontal”.
Hence, we can use range searching techniques to compute such a point g.

Unfortunately, it seems to be difficult to maintain the set E efficiently. However,
Bespamyatnikh shows that a subset of E that still contains the closest pair can be
maintained such that during each insertion and deletion at most a constant number
of query and update operations on the range searching data structure have to be
performed.

This technique can be generalized to any fixed dimension D by using simplicial
cones of angular diameter 6. Each such cone is bounded by D hyperplanes and, hence,
again range searching methods can be applied. Moreover, a constant—depending on
the dimension D—number of such cones suffice. For an explicit construction of these
cones, see Bespamyatnikh [26] or Yao [127].

If we use the standard range tree, then we get a dynamic closest pair data structure
of size O(nlog”~! n) with an update time of O(log? ). On the other hand, if we use a
data structure due to Chazelle [36], then we get a data structure of size O(n log?~2n)
that maintains the closest pair in O(logD *1]oglog n) time per insertion and deletion.

4.7 A dynamic solution based on the well-separated pair
decomposition

We saw already in Sections 2.5.2 and 2.5.3 that the well-separated pair decomposition
(WSPD) can be used to solve several proximity problems. In order to apply it to
dynamic problems, we clearly need efficient ways to update the WSPD. Callahan and
Kosaraju [32, 29] show how to maintain the fair split tree of Section 2.5.2 in logarithmic
time per insertion and deletion, using linear space. The main idea is very similar to
one developed by Bespamyatnikh [27], and that will be described in the next section.
Therefore, we only give the latter solution.

One of the main problems in maintaining information such as the closest pair is the
fact that there may be points that are contained in many pairs. Callahan and Kosaraju
show how to get around this problem by introducing dummy points. They also present
an abstract framework that describes the main properties of algorithms that use the
WSPD, and show how to maintain computations in this framework. They show that
the problem of maintaining the closest pair fits into this framework. As a result, they
get a dynamic closest pair data structure of linear size and O(log® n) update time.

4.8 An optimal dynamic closest pair data structure

The problem of designing an optimal dynamic closest pair data structure was solved
in 1995 by Bespamyatnikh [27]: He shows how to maintain the closest pair in O(log n)
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worst-case time, using a data structure of size O(n). The algorithms belong to the
algebraic computation tree model and are, therefore, optimal.

An important ingredient used is a hierarchical subdivision of IR? into axes-parallel
rectangles. Before we can define this subdivision, we need some definitions.

Let B be an axes-parallel rectangle, and for 1 <1 < D, let s; be the side length of
B along the i-th dimension. We call B a c-bozif 1/3 < s;/s; < 3forall 1 <i,5 < D.

Let B = [a1,b1] X ... X [ap,bp] be a rectangle, let 1 < ¢ < D, and let ¢; €
[(2a; + b:)/3, (a; + 2b;)/3]. The two boxes that are obtained from B by replacing the
i-th interval by [a;, ;] and [c;, b;], respectively, are set to be obtained from B by a c-cut.

Let A and B be two axes-parallel rectangles. We say that A is an s-subboz of B if
they are equal or there exists a sequence By, By, By, ..., Bi, B, for some I > 1, such
that B = By, A = B, and for 1 < ¢ < [, the boxes B; and B are obtained from B;_,
by a c-cut.

The hierarchical subdivision is represented by a binary tree T. With each node
v in T, we store two boxes B(v) and SB(v). During the algorithms, the following

conditions are satisfied.
1. For any node v of T, B(v) and SB(v) are c-boxes.
For any node v of T', SB(v) is an s-subbox of B(v).

For any node v of T, SB(v) and B(v) contain the same points of S.

e P

If w is any internal node of T, and u and v are the two children of w, then the
boxes B(u) and B(v) are obtained from SB(w) by a c-cut.

5. For any leaf v of T, B(v) = SB(v) and these boxes contain exactly one point
of S.

If v is a leaf of T and p is the point of S that is contained in B(v), then B(p) will
denote the box B(v).

Let us see how we can maintain the tree T' if we insert and delete points in S.
Assume we want to delete the point p. Then, by walking down T, we find the leaf u
such that p € B(u). Let w be the parent of u, and let v be the other child of w. If v
is a leaf, then we set SB(w) := B(w) and delete the leaves u and v. Otherwise, if v is
not a leaf, then we delete the leaf u, set B(v) := B(w), and delete node w by making
v a child of w’s parent.

Insertions are more difficult to describe. Assume we want to insert a point pinto S.
Then we walk down T and stop if one of the following three cases occurs: (i) p is not
contained in B(r) where r is the root of T, (ii) we reach a leaf w and p is contained
in B(w), or (iii) we reach an internal node w and p is contained in B(w) but not
in SB(w).

We explain how the third case can be handled. (The other cases are easier.) Our
goal is to find a c-box A together with two boxes A; and A, obtained from A by a
c-cut, such that (i) A is an s-subbox of B(w), (ii) SB(w) is an s-subbox of A,, and
(iii) p is contained in A,. Given this box A, we update the tree T' as follows: Let w’
and w” be the two children of w. We give w two new children called  and v, and set
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SB(u) := SB(w), B(u) := A1, SB(w) := A, B(v) := SB(v) := A;. Finally, u gets v’
and w"” as its two children.

It is easy to see that in this way the tree T is correctly maintained. So it remains
to describe how the box A is computed. This is done by performing at most 2D
iterations. Initially, we set A := B(w). We maintain the invariant that (i) A is a c-box
and an s-subbox of B(w), (ii) SB(w) is an s-subbox of A and (iii) p is contained in A.
We describe one iteration.

Let 7 be an index such that the side of A along the i-th dimension is maximal. Let
[a:,b;] (resp. [d;, :]) be the interval of SB(w) (resp. A) along the i-th dimension. If a;
(resp. b;) is contained in the interval [(2d; + €:)/3,(d: + 2¢;)/3], then we set z; := q;
(resp. @; := b;). Otherwise, the definition of c-cut implies that the interval [a;, b;] does
not intersect the interval [(2d; + €;)/3,(d; + 2¢;)/3]. Assume w.l.o.g. that [a;,b;] is
contained in [d;, (2d; + €;)/3]. In this case, we set z; := max((2d; + €;)/3,2b; — d;).

Now we partition the box A along the i-th dimension using the value z;. If one of
the two resulting boxes contains both SB(w) and p, then we take this box as the new
A and proceed with the next iteration. Otherwise, SB(w) and p are contained in two
different subboxes of A. In this case, we have found the box A we were looking for,
and the iteration can terminate.

This completes the description of the hierarchical subdivision and the way it is
updated. The time needed to insert or delete a point into T is bounded by a constant
plus the time for walking down T in order to find the node in which the local changes
have to be made.

How do we use this tree T' for maintaining the closest pair? A pair (p,g) of points
in S is called a neighbor pair if p is the nearest neighbor of g, and g is the nearest
neighbor of p. We will maintain a set E consisting of O(n) pairs of points that contains
all neighbor pairs. Clearly, E then contains the closest pair. Hence, if we store all
distances between the pairs of E in a heap, then the smallest element in this heap is
equal to the minimum distance in S.

We denote the diameter of a box B, i.e., the maximum distance between any two
points of BNIR?, by diam(B). Also, the minimum (resp. maximum) distance between
a point p and any point of B NIR? is denoted by d™(p, B) (resp. d™(p, B)).

During the algorithm, the following invariant will hold: For any p,q € S, p # ¢,
such that the pair (p,q) is not contained in E, there is a node v in the tree T', such
that

1. B(p)N B(v) =0,

2. diam(B(v)) < 2 - diam(B(p)),
3. d™(p, B(v)) < 3 - diam(B(v)),
4. @ (p, B(v)) < d(p, q)-

It is clear that any such set E contains all neighbors pairs.

For each point p of S, let E, denote the set of all points ¢ € S such that the pair
(p, q) belongs to E. In order to guarantee that the set E that is maintained has linear
size, Bespamyatnikh proves the following result.
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Lemma 4.3 Let E be a set of edges for which the invariant holds. Let p be a poini
of S, and assume that E, contains more than (27D + 1)° elements. Then there is a
point q € E, such that the invariant also holds for the set E \ {(p,9)}

Hence, there is a set E that satisfies the invariant such that each point occurs in
at most a constant number of pairs of E. This set E clearly has linear size. Of course,
the problem is how to maintain such a set.

Assume we want to delete a point p from S. First, we delete all distances d(p, ),
q € E,, from the heap, and delete the set E, itself. Then, we update the tree T as
described above. Note that we delete two nodes from 7. Consider the deletion of a
node v. In order to restore the invariant, assume that before the deletion of p, the
pair (a,b) was not contained in E, because of the existence of node v. That is, we
have diam(B(a)) > diam(B(v))/2 and d™(a, B(v)) < 3-diam(B(v)). It follows from a
simple packing argument that the number of such points a is bounded by a constant.
We denote this set by A(v), i.e.,

A(v) == {a € § : diam(B(a)) > diam(B(v))/2 and d™(a, B(v)) < 3 - diam(B(v))}.

Using the tree T, this set can be computed by searching in the neighborhood of the box
B(v). Then for each point a in A(v), we again use T and search in the neighborhood
of a to compute its set E,, and insert the corresponding distances into the heap.

The algorithm for inserting a point p is similar. Now, we have to compute the set
E, and insert the new distances into the heap. At this moment, the invariant holds,
but there may be points that occur more than (27D + 1)P times in E. These points
must be in the neighborhood of p and, therefore, have been found already. For these
points, we remove the corresponding pairs from E and the heap.

To implement the algorithm efficiently, we use dynamic trees to represent the
tree T, in a similar way as in Section 3.3. For details, we refer the reader to [27].
There, it is shown that the entire algorithm for inserting or deleting a point takes
O(log ) time in the worst case. Moreover, the entire data structure uses linear space.

5 The post-office problem

We now turn to Problem 1.2, the post-office problem. Let S be a set of n points in
IRP. We can solve the post-office problem as follows. Construct the Voronoi diagram
of S. Then, given any query point p € IR?, its nearest neighbor is found by locating
the Voronoi region that contains p. The point of S associated with this region is p’s
nearest neighbor.

In order to implement this solution efficiently, we need fast algorithms for (i) con-
structing the Voronoi diagram, and (ii) solving point location queries. In the planar
case, the Voronoi diagram can be constructed in O(nlogn) time. Also, a data struc-
ture can be constructed in O(nlogn) time such that point location queries can be
solved in logarithmic time. The entire data structure uses linear space. This gives an
optimal solution for the planar post-office problem. In higher dimensions, the situation
is more complicated, because the Voronoi diagram of n points in IR? can have size

o(nlP/).
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For more details about the D-dimensional post-office problem, we refer the reader
to the chapter on Voronoi diagrams in this handbook. We just mention here that the
best results currently known either use a large amount of space, or their query time
is almost linear. More precisely, Clarkson [41] gives a randomized data structure that
finds a nearest neighbor of a query point in O(log n) expected time. This structure has
size O(n/P/?145) where § is an arbitrarily small positive constant. In [11], Arya and
Mount solve the problem with an expected query time of O(n~Y/[(P+1)/2]10g%() )
using O(nlog log n) space.

It seems that in dimension D > 2 it is impossible to obtain a solution for the post-
office problem having polylogarithmic query time while using O(n log®® n) space.
Moreover, even in the planar case there is no dynamic data structure known that has
polylogarithmic query and update times and that uses O(n log®® n) space.

In view of these negative results, it is natural to study weaker versions of the post-
office problem. Two such weaker versions have been considered in the literature. In
the first version, distances are measured in the “simple” L;- or L-metric instead of
the “complicated” L.-metric. In the second version, it suffices to find an approzimate
nearest neighbor of the query point rather than the ezact nearest neighbor. In the
next sections, we consider both versions of the post-office problem in detail.

5.1 The post-office problem for simple metrics
5.1.1 A solution based on the quadrant approach

In this section, we first consider the post-office problem for the L;-metric. The basic
approach is to reduce the problem to that of “range searching for minimum”. This
approach was used for the first time by Gabow, Bentley and Tarjan [67]. Later, it
was used again by Bespamyatnikh [26]. In fact, we used this approach already in
Section 4.6.

Let us describe the planar case first. Let p = (p1,p2) be any query point. Consider
the four quadrants defined by this point. Clearly, if we have the L;-neighbor of p in
each of these quadrants, then we can compute the overall L;-neighbor of p in constant
time. The L;-neighbor in, say, the north-east quadrant of p is determined as follows:
Among all points that are above the line y = p, and to the right of the line z = p,,
it is that point ¢ = (¢1,¢2) for which g; + g, is minimal. It follows that we can apply
standard range searching techniques to solve the problem.

The D-dimensional version of the L;-post-office problem is solved by using 27 data
structures. For 1 < i < 2P, the i-th data structure is used to find the L,-neighbor
of the query point p that is contained in its i-th quadrant. Gabow, Bentley and
Tarjan [67] give a static data structure for this problem that uses O(n log?~'n) space
and has a query time of O(log®~'n). Alternatively, we can use the standard range
tree to get a dynamic solution. This data structure also uses O(nlog”~'n) space.
Its query and update times are bounded by O(log” »). (Chan and Snoeyink [34] also
obtain the latter bounds, using a variation of the technique of [26, 67].) Finally, using
Chazelle’s data structure [36], we get a data structure of size O(nlog” 2 n) that has
query and update times of O(log”** loglogn).

The same approach works for the L,-metric. This is clear for D = 2, because this
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metric is obtained from the L;-metric by rotation and scaling. For the D-dimensional
case, Gabow, Bentley and Tarjan reduce the problem to 2D . D! subproblems of range
searching for minima. Bespamyatnikh [26] reduced this number to 2 - D!. Hence, for
this metric, the same complexity can be obtained as for the L;-metric.

5.1.2 A solution for the L, -metric that uses range trees

In this section, we show that the standard range tree [88, 126] can be used for solving
the Loo-post-office problem. The query algorithm is due to Kapoor and Smid [80].
Finding the Lo-neighbor of a query point p can be visualized by growing an axes-
parallel cube centered at p until its boundary hits at a point of 5. As we will see, this
growing process can be simulated by the range tree.

We describe the query algorithm for the planar case. Let S be a set of n points in
the plane. First, we recall the range tree. This data structure consists of a main tree,
which is a balanced binary search tree storing the points of S in its leaves, sorted by
their z-coordinates. If v is a node of this main tree, then S, denotes the subset of S
that is stored in the subtree of v. Every node v of the main tree contains a pointer to
the root of a balanced binary search tree—called a secondary tree—storing the points
of S, in its leaves, sorted by their y-coordinates.

Let p = (p1,p2) be any query point. We give an algorithm for computing the
Lo-neighbor of p among all points that are to the right of p. We call this neighbor
the right-neighbor of p. In a symmetric way, the Lo-neighbor to the left of p can
be computed. Clearly, given these two neighbors, we can determine the overall Lo-
neighbor of p in constant time.

In the first stage, we decompose the set of all points of S that are to the right of p
into O(log n) pairwise disjoint subsets: Initialize M := (). Starting in the root of the
main tree, search for the leftmost leaf storing a point whose z-coordinate is at least
equal to p;. During this search, each time we move from a node v to its left child, add
the right child of v to the set M. Let v be the leaf in which this search ends. If the
point stored in this leaf has a first coordinate that is at least equal to p;, then add v to
the set M. Number the nodes of the final set M as v1,v2,...,Vm, such that v; is closer
to the root than vi_y, 2 < i < m. It is easy to see that {r € §: 7 > p1} = UL, Su;-
Hence, at this moment, we know that one of the sets S, contains the right-neighbor
of p.

In the second stage of the algorithm, we make a sequence of at most m iterations.
To start this sequence, we initialize C := @, ¢ := 1, and stop := false. Then, as long
as 1 < m and stop = false, we do the following.

Search with p, in the associated structure of v;, and find the point, call it a, whose
y-coordinate is nearest to that of p. Then, find the point r that is stored in the
rightmost leaf in the main subtree of v;. Let § := r; — p; and let R be the rectangle
[p1,71) X [p2 — 8, p2 + 8]. If a is not contained in R, then insert this point into the set
C, and increase i by one. Otherwise, if ¢ € R, set v := v; and stop := true.

This concludes the description of the second stage. First assume that the variable
stop has value false after this stage has been completed. Then the set C contains the
right-neighbor of p. Hence, in this case we can complete the query algorithm by going
through the set C and taking the point having minimum L-distance to p.
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What happens if the variable stop has value true after the second stage? In this
case, the right-neighbor of p is either contained in C or in §,, and we proceed with
the third—and last—stage of the algorithm.

During the third stage, we again make a sequence of iterations. We maintain the
invariant that the set C' U S, contains the right-neighbor of p. As long as v is not a
leaf, we do the following.

Let w be left child of v. Search with p, in the associated structure of w, and find
the point, call it a, whose y-coordinate is nearest to that of p. Also find the point r
that is stored in the rightmost leaf in the main subtree of w. Let & := 7, — p; and let
R be the rectangle [p;,71] X [p2 — 8, p2 + §].

First assume that a is not contained in R. If the right-neighbor of p is contained
in the subtree of w, then it must be equal to a. Therefore, we insert a into the set C,
set v := right child of v, and proceed with the next iteration.

Now assume that a is contained in R. In this case, the right-neighbor of p is not
contained in the subtree of the right child of v. Therefore, we set v := w and proceed
with the next iteration.

After the last iteration, v is a leaf. Moreover, we know that the right-neighbor of
p is either contained in C or stored in v. Hence, we find this right-neighbor by going
through the set C U S, and taking the point having minimum L-distance to p.

This concludes the description of the algorithm for finding the right-neighbor of p.
For a correctness proof, the reader is referred to [80]. It is easy to see that each of
the stages can be implemented in O(log®n) time. Using fractional cascading [37),
this can be improved to O(logn). The range tree can be maintained dynamically
in O(log nloglogn) amortized time per insertion and deletion. Then, since we need
dynamic fractional cascading [93], the query time also becomes O(log n log log n).

The generalization to the D-dimensional Le,-post-office problem is straightforward.
We get a dynamic data structure of size O(nlog® ' n) having O(log” " nloglogn)
query time and O(log” ™! nloglogn) amortized update time. (See [80] for details.)

5.2 The approximate post-office problem

Let S be a set of n points in IRP, and let € be any positive constant. For any point
p € IRP, we denote by p* the point of S that is closest to p. A point g € S is called a
(1 + €)-approzimate neighbor of p, if d(p,q) < (1 + €) d(p, p*).

In this section, we give several data structures for solving this approximate post-
office problem. As we will see, for this problem, there are solutions with polylogarith-
mic query and update times that use O(nlog®®) n) space. Recall that these bounds
seem to be impossible for the ezact post-office problem, see the discussion in the be-
ginning of Section 5.

5.2.1 A data structure based on quad trees

The first result for the approximate post-office problem is due to Bern [24]. By scaling,
we may assume w.l.o.g. that the set S is contained in the cube [3/8,7/8]P.

We build a quad tree for the set S. (See Finkel and Bentley [62].) Each node v
of this tree stores an axes-parallel cube, such that all points in the subtree of v are
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contained in this cube. The root of the quad tree contains the cube [0,1]P. Consider
any node v, and let C, be its cube. We split C, into 2P equal sized subcubes, and
give v 20 children, one for each subcube. A node v is a leaf if C, contains at most one
point of S. With such a leaf, we store the point of S—if it exists—that is contained
in Cy.

In order to save space, we remove all nodes whose cubes do not contain any points
of S. We also remove all nodes that have only one child, by attaching the child directly
to its grandparent. Clearly, this results in a tree having linear size.

We use this data structure in the following way. Consider a query point p. If p is
not contained in [0, 1]P, then return any point g of S. Otherwise, follow a path in the
tree in the obvious way, and stop in the node v storing the smallest cube containing p.
(Note that v is not necessarily a leaf.) Now return any point g that is contained in
the subtree of v. _

Let us see how good an approximation the returned point ¢ is. First assume that
the query point p lies outside [1/4,1]°. Then we have d(p,p*) > 1/8 and d(p,q) <
d(p,p*) +d(p*,q) < d(p,p*) + D/2. It follows that d(p,q)/d(p,p*) < 1+4D, ie, the
returned point g is a (1 + 4D)-approximate neighbor of p.

There is one more case where g is a reasonably good approximation. Before we
can describe this case, we need some definitions. Consider the cube C,. Split this
cube into 2P equal sized subcubes. One of these subcubes contains p. We call this
subcube the answer cube of p. Let A be an axes-parallel cube with sides of length
¢ and center a. The point p is said to be central in A if it is contained in the cube
centered at a that has sides of length 2£/3.

We claim that g is a good approximation if p is central in its answer cube. To
prove this, let p’s answer cube have sides of length £. Since g is contained in C,, we
have d(p,q) < 2¢D. Moreover, since p is central in A, and since A does not contain
any points of S, we have d(p,p*) > £/6. Hence, d(p,q)/d(p,p*) < 12D, i.e., the point
g is a (12D)-approximate neighbor of p.

Of course, it might be the case that p is not central in its answer cube. To solve
this problem, we do the following. For 1 < i < 2P, let 413;...ip be the binary
representation of i — 1. Let v; be the vector (i1/3,42/3,...,ip/3). We build 2° quad
trees, where for 1 < i < 20, the root cube of the i-th tree is [0, 1)P translated by v;.
The claim now is that if the query point p is contained in [1/4,1]?, then p is central
in its answer cube in one of these 2P quad trees.

Hence, given a query point p € IRP, we query each of the quad trees. If g; is the
point found in the i-th tree, 1 < i < 2P, then we compute the one that is closest
to p, and return this point. This point is a (12D)-approximate neighbor of p. We
remark that for special metrics, the approximation can be much better. For example,
if we use the Euclidean metric, then this solution computes a (12\/5)-approx:'zmate
neighbor of p.

If we use a centroid decomposition to represent the quad trees, see Section 3.3),
then the query algorithm takes O(logn) time. The entire data structure uses linear
space. Finally, using an algorithm that is similar to that of Section 2.5.2, the entire
data structure can be built in O(nlogn) time.
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5.2.2 A randomized data structure based on neighborhood graphs

The first efficient data structure for solving the (14 ¢)-approximate post-office problem
for any constant € > 0 was given by Arya and Mount [11].

The data structure of Arya and Mount is a directed graph that is constructed in
a randomized manner. For each point g of S we cover the space IR? with a constant
number of cones having g as their apex. Then we apply the following procedure that
adds for each ¢ € S and each cone C with apex g an expected number of O(logn)
directed edges of the form (gq,r), where » € C: Let ry,73,...,7n-1 be a random
permutation of the point set S\ {g}. For each cone C' with apex g, consider all points
that are contained in C. If r; € C, then the data structure contains a directed edge
(g,7;) if 7; is the point of the set C' N {ry,72,...,7} having minimum distance to g.

The graph that is constructed in this way is called the randomized neighborhood
graph. Standard arguments from probability theory imply that each point has expected
out-degree O(logn). Hence, the expected size of the data structure is bounded by
O(nlogn). The data structure can be built in O(n?) time in a straightforward way.

Let p € IR be any query point, and let g be any point of S that is not a (1 + ¢€)-
approximate neighbor of p. Arya and Mount show that by choosing the cones such that
their angular diameter is small enough, there is an edge (g,r) in the data structure for
which d(p,r) < d(p,q). This implies the following algorithm for solving approximate
post-office queries. Start in any point g of S. Consider all edges (g,r), and choose the
point r that is closest to p. If d(p,r) < d(p,q), then set ¢ := r, and repeat this process.
Otherwise, if d(p,r) > d(p,q), report the point g as being a (1 + €)-approximate
neighbor of p.

Unfortunately, it seems very difficult to prove a good bound on the expected run-
ning time of this query algorithm. Therefore, Arya and Mount propose the following
modification. We associate each directed edge (a,b) of the data structure with the
cone having a as its apex and that contains b. A directed path g1,¢z,...,qx is called
pseudo-linear, if for each 1 < i < k, the cone associated with (g;_;,¢:) contains the
cone associated with (gi,¢+1). Such a path resembles a path in a skip list [99] and,
therefore, it is relatively easy to analyze it. In particular, let p be a query point and
let ¢ be a point of S that is not a (1 4 ¢)-approximate neighbor of p. Then there is
a pseudo-linear path containing an expected number of O(logn) edges that starts in
g and ends in a point r such that d(p,r) < d(p,¢). This path can be computed in
O(log?n) expected time. Moreover, if N, (resp. N,) denotes the number of points z
such that d(p,z) < d(p,q) (resp. d(p,z) < d(p,r)), then N, < N,/2 with probabil-
ity at least 1/2. Hence, after having computed an expected number of O(log n) such
pseudo-linear paths, we have found a (1 + €)-approximate neighbor of p. The expected
running time of the complete query algorithm is bounded by O(log® n).

Arya and Mount also give a practical variant of this algorithm. They made several
experiments with this variation and compared its running time with that of other prac-
tical algorithms based on k — d trees and simple bucketing techniques, for dimensions
up to 16. For details, we refer to [10, 11].
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5.2.3 Data structures based on range trees

Kapoor and Smid [80] gave the first efficient dynamic data structure for the (1 4 ¢)-
approximate post-office problem. Their algorithm, however, only works for approxi-
mating the Euclidean neighbor of a query point.

Let p € IR be any query point, let p* € S be the Euclidean neighbor of p, let
q € S be the L. -neighbor of p, and let § := deo(p,p*). Consider the axes-parallel cube
centered at p having sides of length 2§. Clearly, g lies inside or on the boundary of
this cube. Therefore, da(p,q) < VD - §. Since § = de(p,p*) < d2(p,p*), We infer that
ds(p,q) < VD - da(p,p*), i-e., gis a v/ D-approximate L,-neighbor of p.

Hence, we can use the range tree and the corresponding algorithm given in Sec-
tion 5.1.2 to solve the v/D-approximate Euclidean post-office problem.

We can improve this solution, by making the following observations. Consider the
planar case. First, the point g above is a much better approximation if the angle
between the vector pp* and the positive z-axis is almost 7/4. Next, the L,-metric
depends on the coordinate system. That is, if we rotate the zy-system, then the
Lo-metric changes. The Euclidean metric, however, is invariant under such rotations.

We store the set S in a constant number of range trees, where each range tree
stores the points according to its own coordinate system. Given a query point p, we
use the range trees to compute L..-neighbors in all coordinate systems. By choosing
the coordinate systems in an appropriate way, one of these Lo -neighbors is a (1 4+ ¢€)-
approximate Euclidean neighbor of p. (In the planar case, we take care that there
is always one coordinate system in which the angle between the vector pp* and the
positive z-axis is “almost” = /4.)

For the planar case, the coordinate systems are obtained as follows. Let 0 < ¢ <
7 /4 be such that tan ¢ = €/(2 + ¢€). For 0 < i < 27/¢, let z; (resp. y;) be the directed
line that makes an angle of i - ¢ with the positive z-axis (resp. y-axis). Then, the i-th
coordinate system is w.r.t. the axes z; and y;. For the higher-dimensional case, we use
the cones as given in Yao [127].

Overall, we get a data structure for the (1 + €)-approximate Euclidean post-office
problem having size O(nlog?! n), and whose query and amortized update times are
bounded by O(log®~! nlog log n).

Bespamyatnikh [26] gives an alternative solution using the same approximate dis-
tance functions as in Section 4.6. His technique applies to any L,-metric. The prob-
lem of finding a (1 + €)-approximate L.-neighbor is reduced to that of range searching
for minimum. Hence, using range trees, we get a dynamic data structure of size
O(nlogP~* n) with query and update times of O(log” n). Using Chazelle’s data struc-
ture of [36] gives a data structure of size O(nlog” % n) with query and update times
of O(logP*! loglog n).

A completely different approach was given by Chan and Snoeyink [34]. Their
result applies to any L,-metric, but it only gives efficient dynamic data structures in
the planar case. So, assume that D = 2. We start with sketching an ezact post-office
data structure for the special case in which all query points lie on the y-axis. Consider
the intersection of the Voronoi diagram of § with the y-axis. Using a lifting map
and dualization (see [58]), this intersection corresponds to a planar lower convex hull.
Using the algorithm of Overmars and van Leeuwen [97], we can store and maintain
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this lower hull in O(log?n) time per insertion and deletion, using linear space. Exact
post-office queries on the y-axis can be answered by binary search, in logarithmic time.

We use this solution to give an approximate post-office structure for the case in
which all points of S are to the left of the y-axis, and all query points are to the
right of the y-axis. Let p = (p1,p2) be any query point such that p; > 0. For each i,
—[x/(2¢) — 1] < i < [7/(2€) — 1], let p* be the intersection of the y-axis with the
ray from p that makes an angle of i - ¢ with the negative z-axis. Also, let ¢* be the
exact nearest neighbor of p. One of these exact neighbors is a (1 + €)-approximate
neighbor of the query point p: Let p* = (p],p;) be the exact nearest neighbor of p,
and assume w.l.o.g. that p} > p,. Let i be the index such that the ray with angle i - ¢
is just below p*. Then the neighbor ¢‘ of p* satisfies d(p,¢*) < (1 + €) d(p,p*). (For a
proof, see [34].) It follows that we can solve this version of the problem with O(log n)
query time, O(log® n) update time, and O(n) space.

The general approximate post-office problem can now be solved by applying range
tree techniques to the latter solution. The result is a data structure of size O(nlog n),
having an update time of O(log® n), that solves (1+ ¢)-approximate post-office queries
in O(log?n) time. We remark that the data structure and, hence, the constants in
the space and update time bounds, do not depend on €. In fact, this data structure
can be used for queries in which the input consists of a point p and an approximation

bound e.

5.2.4 An optimal solution for the approximate post-office problem

The (1 + ¢)-approximate post-office problem was solved optimally by Arya et al. [12].
They give a data structure of size O(n), that answers queries in O(logn) time, and
that can be built in O(nlogn) time. This data structure and the constants in the
space and building time bounds do not depend on €. It can be used for answering
queries for all degrees of precision. (Of course, the constant factor in the query time
does depend on €.)

The data structure is based on a hierarchical subdivision of space into cells that
is similar to the ones we have seen already, e.g. in Section 2.5.2. Since we are dealing
with a query problem, however, the previous techniques have to be adapted somewhat.

Define a fat boz to be a D-dimensional axes-parallel rectangle for which the ratio
of its longest side to its shortest side is bounded from above by some constant. We
will construct a subdivision of IR? into pairwise disjoint cells, where a cell is either a
fat box or the set theoretic difference of two fat boxes. These cells are called boz cells
and doughnut cells, respectively.

The construction is based on two operations on fat boxes. First, in a split operation,
a fat box is split into two fat boxes by cutting its longest side into two equal parts.
The split is called fair if both resulting boxes contain points of S.

Let B and B’ be two fat boxes such that B’ is contained in B. We say that B’
is sticky for B if for each of the 2D sides of B’, the distance from this side to the
corresponding side of B is either zero or at least the width of B’ along this dimension.
The second operation is the shrink operation. It is only defined on a fat box B on
which a fair split is not possible. This operation returns the smallest fat box B’ # B
that is sticky for B and that contains all points of BN §.
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The following lemma can be proved easily.

Lemma 5.1 Let B be any fat boz that contains at least two points of S. Then a fair
split operation or a shrink operation can be performed on B. If the shrink operation
can be applied on B, then a fair split is always possible on the resulting shrunken fat
boz.

Now we can describe the construction of the subdivision. We start with the smallest
axes-parallel cube U containing all points of 5. There are three possible cases. First
assume that U contains only one point of S. Then this cube becomes a box cell of the
subdivision, and the construction stops. Next, assume that U contains at least two
points, but a fair split on U is not possible. Then, we perform the shrink operation
on U. Let U’ be the shrunken box. We create a doughnut cell U \ U’, and recursively
apply the construction on U’. Finally, assume that U contains at least two points, and
a fair split on U is possible. Then, we perform the fair split, yielding two fat boxes Uy
and U,. We now recursively apply the construction on U; NS and U, N S, respectively.

This construction defines a binary tree T in the natural way. Each node of this
tree stores a cell. The cells that are stored at the leaves form the subdivision of IRP.
Lemma 5.1 implies that along any path in T there cannot be two consecutive “shrink
nodes”. Hence, the tree has size O(n).

In order to use T for solving approximate post-office queries, we need to store some
additional information. With each leaf of T', storing the cell C' of the subdivision, we
store a point g(C) of S. If C is a box cell, then ¢(C) is the unique point of C'N S.
Otherwise, if C is a doughnut cell of the form U \ U’, then ¢(C) is an arbitrary point
of U'NS.

Define the size of a box cell (resp. doughnut cell) of the subdivision to be the length
of its longest side (resp. length of the longest side of its outer box).

Then, it is clear that for each cell C' of the subdivision, and for each point z in
C NIRP, the distance between z and ¢(C) is at most D times the size of C.

Before we give the query algorithm, we make some more remarks. First, we mention
the following lemma, whose proof follows from packing arguments.

Lemma 5.2 Let p be any point in IR? and let v and s be positive real numbers such
that r > s. The number of cells of the subdivision having size at least s and intersecting
the ball of radius v with center p is bounded by O((r/s)P).

If we use a centroid decomposition to represent the tree T', see Section 3.3, then
we can answer point location queries in O(logn) time. In such a query, we find the
cell of the subdivision containing a given query point. Note that the size of the data
structure remains linear. Using basically the same algorithm as in Section 2.5.2, the
entire data structure can be built in O(nlog n) time.

Let p be any point in IR? and let C be any cell of the subdivision. We define the
distance between p and C to be the minimum distance between p and any point of
C NIRP. The following lemma will be important for the query algorithm.

Lemma 5.3 Let p € IR be any query point, and let k be a positive integer. In
O(klogn) time, we can enumerate the k cells of the subdivision that are closest to p,
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in increasing order of their distance to p. The value of k need not be known at the
moment when the enumeration starts.

Proof: We only give the algorithm for enumerating the cells. For the correctness
proof and time analysis, we refer to [12]. The algorithm is based on the priority search
technique, that was used for the first time in [10].

We say that two cells of the subdivision are neighbors if they share a common
(D — 1)-dimensional boundary. Let C' be a cell of the subdivision, and let F' be any of
its (D — 1)-dimensional facets. Let p' be the point on F that is closest to p. Clearly, p'
can be computed in constant time. Let N(C, F,p) be the cell of the subdivision that
is closest to p and that is a neighbor of C along F. Given p’, we can find this cell by
point location, in logarithmic time.

Now we can give the algorithm. We will maintain a heap that stores cells of the
subdivision, sorted by their distances from p. Initially, the heap is empty. Also,
we assume that all cells are unmarked. Using point location, we find the cell that
contains p, mark it, and insert it into the heap. Now, we make a sequence of k
iterations.

During one iteration, we remove the cell C that is closest to p from the heap, and
report it. Then, for each face F' of C, compute the cell N(C, F,p) and, in case it is
unmarked, mark it and insert it into the heap. l

Now we can give the algorithm for answering approximate post-office queries. Let
p be any query point. Using the algorithm of Lemma 5.3, enumerate cells of the
subdivision in increasing order of their distance to p. For each cell C' that is enumer-
ated, compute the distance between p and its associated point ¢(C'), and maintain the
smallest distance § encountered so far. We stop with enumerating cells as soon as the
distance between p and the current cell is larger than 6/(1 + €). Then we report § and
the point whose distance to p is equal to 4.

To prove the correctness of this algorithm, let C be the cell of the subdivision that
contains the exact nearest neighbor p* of p. Note that C must be a box cell. If C has
been enumerated, then p* = ¢(C), and we have in fact found the exact neighbor of p.
Assume that C has not been enumerated. Since we visit the cells in increasing order
of their distance to p, we know that the distance between C and p is at least §/(1 +¢).
Therefore, § < (1+ ¢€) d(p,p*), i.e., we have found a (1 + ¢)-approximate neighbor of p.

It remains to analyze the query time. For each cell visited, we need O(log n) time.
Hence, we have to show that at most a constant number of cells are enumerated before
the algorithm terminates.

If C is a cell of the subdivision, then we denote its size by size(C'). Moreover,
d(p,C) denotes the distance between p and C.

Consider the query algorithm. Let C be the current cell that is being enumerated,
let §' = d(p,C) and s = size(C'). We claim that if s < §’¢/D, then the next cell that is
enumerated causes the query algorithm to terminate. To prove this, let z be a point
of C NIR? such that d(p,z) = §'. We know that d(z,q(C)) < Ds. Hence, by the
triangle inequality, d(p,q(C)) < 8’ + Ds < (1 + €) §'. In particular, the current value
of § satisfies § < (1 + €)é’. The next cell that is enumerated has distance at least
8 > §/(1+ €) to p. This proves the claim.
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Hence, to bound the number of cells that are enumerated, it remains to consider
cells C for which size(C) > ed(p,C)/D.

We define z to be the minimum value of D size(C) + d(p,C), minimized over all
cells C of the subdivision.

Lemma 5.4 Consider the value of § that is reported by the algorithm. We have § <
(1+¢)=.

Proof: Let C’ be the cell for which D size(C') + d(p,C’') = z. If C' is enumerated
during the algorithm, then

§ < d(p,q(C")) < Dsize(C') +d(p,C") =z < (1 + €) 2.

Otherwise, if C’ is not enumerated, then we know that d(p,C’) > /(1 + €), which
implies that
§<(1+€)d(p,C") < (1+€)d(p,q(C)) < (1 +¢)z.

This completes the proof.

Lemma 5.5 All cells that are enumerated, except possibly the last one, intersect the
ball with radius (1 + €) z centered at p.

Proof: Consider again the final value of §. Let C be a cell of the subdivision such
that d(p,C) > (1 + €)z. Also, let Co be the cell whose enumeration resulted in é.
That is, § = d(p,q(Co)). Then, since § < (1 + €) ¢, we have d(p,C) > § > d(p, Co). It
follows that if C is enumerated, then this happens after Cp has been enumerated. At
the moment when C is enumerated, however, we have d(p,C) > é§ > §/(1+¢). Hence,
the algorithm terminates at this moment. B

Let C be a cell for which size(C) > ed(p,C)/D. The definition of z immediately
implies that D size(C) + d(p,C) > z. Therefore, D size(C) + D size(C)/e > z, or,
equivalently, size(C) > z/(D(1 + 1/¢)).

This proves that the number of cells that are enumerated is at most equal to three
plus the number of cells of size at least z/(D(1+ 1/¢)) that intersect the ball centered
at p and having radius (1 + €) z. By Lemma 5.2, there are at most a constant number
of such cells C.

This completes the proof of the claim that the running time of the query algorithm
is logarithmic.

To conclude this section, we remark that Arya et al. extend their algorithm such
that the approximate k nearest neighbors to a query point can be enumerated in
O(klogn) time. (In this case, the points g(C) have to be chosen more carefully.)
They also present results of experiments made using a simplification of the algorithm
as presented above, for 16-dimensional point sets. For details, we refer to [12].
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6 Further results on proximity problems

6.1 Approximating the complete Euclidean graph: spanners

In this section, we give an overview of the algorithms that have been designed for
constructing spanners. (See Definition 1.1.) Throughout, distances denote Euclidean
distances.

We first remark that the problem of constructing any t-spanner, where 1 <t <2,
has an (nlog n) lower bound in the algebraic computation tree model. This follows
from the simple fact that in such a spanner the closest pair must be connected by an
edge. The same lower bound was in fact proved for any constant £ > 1 by Das and
Smid [48].

Spanners were introduced to computational geometry by Chew [38]. Let S be a
set of n points in the plane. Chew shows that the L;-Delaunay triangulation of § is a
Euclidean v/10-spanner. That is, for every pair p, g of points in S, there is a path in
this triangulation between p and g whose weight is at most /10 times the Euclidean
distance between p and g. Later, Dobkin, Friedman and Supowit [56] proved that
the Euclidean Delaunay triangulation is a ¢-spanner for £ = m(1 + v/5)/2. Keil and
Gutwin [82] improved this to t = -3—5—9%. Levcopoulos and Lingas [87] generalized the
latter result in the following way. Given the Euclidean Delaunay triangulation of n
planar points, and any positive real number r, a plane graph can be constructed in
linear time, that is a ¢-spanner for t = (1 + 1 /r)ﬁzﬂﬁ, and whose total weight is at
most 2r + 1 times the weight of a minimum spanning tree for these points.

6.1.1 Spanners based on simplicial cones

Using simplicial cones, we can give a simple construction of a t-spanner for any constant
t > 1. The construction appeared for the first time in Clarkson [40] for the cases
D = 2 and D = 3. It was discovered independently by Keil and Gutwin [82] for the
case D = 2. Ruppert and Seidel [101] generalized the construction to an arbitrary
dimension.

We describe the planar version of the construction. As in Section 4.6, we choose
an integer constant k. Let § = 2w/k. Rotate the positive z-axis over angles i - §,
0 < i < k, yielding k rays. Let C1,C,,...,Ck be the cones that are bounded by any
two successive rays. Also, for 1 < i < k, let [; be a fixed ray that emanates from the
origin and that is contained in Cj.

Define a graph in the following way. For each point p of S and each ¢,1 <: <k,
translate the cone C; and the corresponding ray [; such that its apex and starting point
are at p, respectively. Then take the point ¢ € S that is contained in the translated
cone and whose projection onto the translated ray is closest to p. We add the directed
edge (p, g) to the graph.

The graph obtained in this way is called the ©-graph. Clearly, it contains at most
kn = O(n) edges. To prove that this graph is a spanner, consider any two points p
and g of S. We construct a path from p to g, in the following way. Let po := p. Let
i > 0, and assume we have already constructed a path po,p1,...,p:. If p; = g, then
the construction stops. Otherwise, let ; be the index such that the cone C;—when
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translated such that its apex is at p;—contains g. The ©-graph contains an edge (p;,7),
for some point r in the translated cone. We extend the path by setting pii; := 7.
It can be shown that

d(pi+1,9) < d(ps, q) — (cos 6 — sin 6) d(pi, pit1)- (3)

As a result, if k£ > 8, each next point on the path is closer to g than the previous
one. In particular, point ¢ will be reached. Rewriting inequality (3) shows that the
entire path from p to g has weight at most ¢ times the distance between p and g,
for t = 1/(cos @ — sin§). Note that by choosing k large enough, the value of ¢ gets
arbitrarily close to one.

The construction can easily be generalized to any dimension D, by using the sim-
plicial cones of Yao [127]. Using the sweep technique and range trees, the ©-graph can
be constructed in O(nlog® ! n) time. For details, see [13, 14, 40, 82, 101].

Let the spanner diameter of a spanner be defined as the smallest integer £ such
that for any pair p and g of points, there is a path from p to g of weight at most ¢
times the distance between p and g, and that contains at most £ edges. The ©-graph
can have spanner diameter n — 1: Take n points on the real line. For these points, the
©-graph is just a list storing the points in sorted order.

Arya, Mount and Smid [13, 14] show how to combine the ©-graph with skip lists [99]
to get a t-spanner having O(n) edges and O(log ) spanner diameter, both with high
probability. They also show how to maintain this spanner efficiently under insertions
and deletions of points, in the model of random updates, as defined in Mulmuley [94].

Although the out-degree of any vertex in the ©-graph is bounded by a constant,
the maximum in-degree can be as large as n — 1: Take n — 1 points on a circle, and
let the n-th point be its center. In the corresponding ©-graph, each point on the
circle has an edge towards the center vertex. Arya et al. [9] give an O(nlog n)-time
algorithm that transforms any spanner of bounded out-degree into a spanner that
has both bounded out-degree and bounded in-degree. Applying this transformation
to the ©-graph gives an O(nlog”~! n)-time algorithm for constructing a ¢-spanner of
bounded in- and out-degree.

6.1.2 Greedy spanners

There is a simple greedy algorithm for constructing spanners. Let S be a set of n points
in IR?, and let ¢t > 1. Sort the (‘;‘) point pairs in increasing order of their distances.
Start with an empty graph on S, and consider all point pairs in sorted order. If p, g is
the current pair, then add an edge between them if and only if the current graph does
not contain a path between p and g of weight at most ¢ - d(p, q).

It is clear that this algorithm constructs a t-spanner. Other properties of this
spanner were analyzed in a sequence of papers. First, Chandra et al. [35] showed that
each vertex in this spanner has a degree that is bounded by a constant. Recent results
of Das, Heffernan and Narasimhan [45] and Das, Narasimhan and Salowe [47] prove
that its weight is proportional to that of a minimum spanning tree for S.

Since the greedy algorithm looks at each pair of points explicitly, its running time
is (n?). Das and Narasimhan [46] present a variant of the greedy algorithm based
on graph clustering techniques that runs in O(nlog®n) time. Applying the results
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of [45, 47] shows that this algorithm produces a t-spanner whose weight is proportional
to that of a minimum spanning tree. Its degree, however, can be very large.

As mentioned by Vaidya [125], Feder and Nisan gave an alternative greedy algo-
rithm for constructing a spanner of bounded degree. (See also Salowe [105].) Let
0 < § < m/4 be a real number. Again, sort the (';) pairs in increasing order of their
distances, start with an empty graph on S, and consider the pairs in sorted order.
If p,q is the current pair, then we add an edge between them if and only if there is
no r € S such that (i) (p,r) is an edge and the angle rpq is less than 6 or (i) (,q)
is an edge and the angle rqp is less than 6. The resulting graph is a ¢-spanner for
t = 1/(cos @ — sin §), and it clearly has bounded degree. The weight of this spanner,
however, can be very large.

Arya and Smid [15] gave an efficient implementation of a variant of Feder and
Nisan’s greedy algorithm that uses the data structure of Section 4.3. The result is
an O(nlog? n)-time algorithm that constructs a t-spanner of bounded degree whose
weight is bounded by O(log n) times the weight of a minimum spamung tree. If we
apply the results of [46] to this spanner, then we get an O(n log? n)-time algorithm
for constructing a t-spanner of bounded degree with weight within a constant factor
of that of a minimum spanning tree.

6.1.3 Spanners based on well-separated pairs

The first optimal O(n log n)-time algorithms for constructing a ¢-spanner on any set of
n points in IRP, for any constant ¢ > 1, were given by Vaidya [125] and Salowe [103].
Their algorithms are related and use hierarchical subdivisions. It should not be a
surprise that we can also use the well-separated pair decomposition (WSPD) of Sec-
tion 2.5.2 for giving a similar construction. (This is due to Callahan and Kosaraju [31].)

To prove this, let {{A:,B:},{42,B2},...,{Am, Bn}} be a WSPD for § with m =
O(n). For each i, 1 < i < m, choose arbitrary representative points a; € A; and
b; € B;, and add an edge between these two points.

This defines the graph. It is clear that it can be built in O(nlog n) time. To prove
that it is a spanner, consider any two points p and g of S. We know that there is
an index i such that p € A4; and ¢ € B;. Consider the corresponding representatives
a; € A; and b; € B;. We recursively construct paths between p and a;, and between b;
and q. The final path between p and g consists of the path between p and a;, followed
by the edge (a;, b;), followed by the path between b; and g.

The definition of WSPD implies that the edge (a;,b;) is long compared to the
distances d(p,a;) and d(g,b;). Using this observation, it can easily be shown that by
choosing the separation constant large enough, the graph is a ¢{-spanner.

It has been shown that by modifying the WSPD-spanner, other spanners can be
constructed that have a variety of properties.

First, if the representatives are chosen carefully, then the edges of the graph can be
directed such that the spanner has bounded out-degree. (See [31].) Hence, applying
the transformation of Arya et al. [9] that was mentioned in Section 6.1.1 shows that
for each ¢ > 1, we can build in O(nlog n) time a t-spanner of bounded degree.

Next, Arya, Mount and Smid [13] prove that by choosing the representatives in
another way, the spanner based on the WSPD has O(log ») spanner diameter. Arya et
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al. [9] show that the weight of this spanner is bounded by O(log n) times the weight of
a minimum spanning tree. We note, however, that this spanner does not have bounded
degree.

Arya et al. [9] use simplicial cones to prune the WSPD-spanner. They analyze the
pruned graph using a theorem of Das, Narasimhan and Salowe [47]. The result is an
algorithm that constructs a t-spanner of bounded degree whose weight is proportional
to the weight of a minimum spanning tree. This is the first algorithm that constructs
such a spanner in O(nlogn) time.

One of the main results in [9] is a technique that decomposes the WSPD into
a constant number of hierarchically organized sets of well-separated pairs. This de-
composition is used to give a class of spanners that can be viewed as the union of
a constant number of trees. Moreover, each of the (';) spanner paths arises as the
unique path between two leaves in one of these trees. In Alon and Schieber [6] and
Bodlaender, Tel and Santoro [28], algorithms are given for adding edges to a tree such
that its diameter is reduced. Applying this gives a t-spanner of spanner diameter 2
with O(nlogn) edges, a t-spanner of spanner diameter 3 with O(nloglogn) edges, a
t-spanner of spanner diameter 4 with O(nlog* n) edges, and so on. In fact, it is even
possible to obtain a t-spanner of spanner diameter a(n)+2 with only O(n) edges, where
a(n) is the inverse of Ackermann’s function. All these spanners can be constructed
in O(nlogn) time. Moreover, the trade-offs between the spanner diameter and the
number of edges are optimal. This is true even for spanners for one-dimensional point
sets. (The optimality follows from the results in [6, 28]. These papers do not consider
spanners explicitly, but their results can easily be “translated” to spanners.)

We finally mention the other results in [9]. The decomposition mentioned in the
preceding paragraph can be combined with topology trees [64] in order to get a -
spanner of bounded degree and O(logn) spanner diameter. This spanner can be
constructed in O(nlogn) time. Moreover, it is shown that the weight of this spanner
is bounded by O(log? n) times the weight of a minimum spanning tree.

6.1.4 Spanners with small degree

We have seen that for each ¢ > 1, a t-spanner of bounded degree can be constructed.
The upper bound on the degree, however, depends on ¢ and the dimension D. Typ-
ically, it is of the form (c/(t — 1)), for some constant c. Dobkin, Friedman and
Supowit [56] posed the problem of determining the smallest integer v* such that for
every set of n points in IR?, a t-spanner of degree v* can be constructed, for some
constant ¢. (Of course, ¢ will depend on D.) They prove that 3 < v* < 7.

Salowe [105] proves that v* < 4. He gives an algorithm that transforms any i-
spanner of degree v into a t'-spanner of degree |v/2]| + 2, where ¢ < 117% + 32 -
3D+l  Starting with any bounded degree spanner, and applying this transformation
repeatedly, proves Salowe’s result.

The problem of determining v* was solved by Das and Heffernan [44]. They prove
that v* = 3. To be more precise, they give a polynomial time algorithm that, given
any set of n points in IRP and any § > 1, constructs a ¢-spanner, for some constant ¢,
that has degree three and that contains at most én edges.
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