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Abstract

We show how to adjust a very nice coupling argument due to McDiarmid in
order to prove/reprove in a novel way results concerning Hamilton cycles in various
models of random graphs and hypergraphs. In particular, we firstly show that for
k > 3, if pnk−1/ log n tends to infinity, then a random k-uniform hypergraph on n
vertices, with edge probability p, with high probability (w.h.p.) contains a loose
Hamilton cycle, provided that (k − 1)|n. This extends results of Frieze, Dudek and
Frieze, and reproves a result of Dudek, Frieze, Loh and Speiss. Secondly, we show
that there exists K > 0 such for every p > (K log n)/n the following holds: Let
Gn,p be a random graph on n vertices with edge probability p, and suppose that
its edges are being colored with n colors uniformly at random. Then, w.h.p the
resulting graph contains a Hamilton cycle for which all the colors appear on its
edges (a rainbow Hamilton cycle). Bal and Frieze proved the latter statement for
graphs on an even number of vertices, where for odd n their p was ω((log n)/n).
Lastly, we show that for p = (1 + o(1))(log n)/n, if we randomly color the edge set
of a random directed graph Dn,p with (1 + o(1))n colors, then w.h.p. one can find
a rainbow Hamilton cycle where all the edges are directed in the same way.

1 Introduction

In this paper we show how to adjust a very nice coupling argument due to McDiarmid
[7] in order to prove/reprove problems related to the existence of Hamilton cycles in
various random graphs/hypergraphs models. The first problem we consider is related to
the existence of a loose Hamilton cycle in a random k-uniform hypergraph.

A k-uniform hypergraph is a pair H = (V, E), where V is the set of vertices and
E ⊆

(

[n]
k

)

is the set of edges. In the special case where k = 2 we simply refer to it as a
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graph and denote it by G = (V,E). The random k-uniform hypergraph H
(k)
n,p is defined by

adding each possible edge with probability p independently at random, where for the case
k = 2 we denote it by Gn,p (the usual binomial random graph). For 1 6 ℓ < k we define
an ℓ-Hamilton cycle as a cyclic ordering of V for which the edges consist of k consecutive
vertices, and for each two consecutive edges ei and ei+1 we have |ei ∩ ei+1| = ℓ (where we
consider n + 1 = 1). In the special case ℓ = 1 a 1-Hamilton cycle is referred to as a loose
Hamilton cycle. It is easy to verify that if n is not divisible by k − 1 then such a cycle
cannot exist.

Frieze [4] and Dudek and Frieze [2] showed that for p = ω (log n/n), the random k-

uniform hypergraph H
(k)
n,p w.h.p. (with high probability) contains a loose Hamilton cycle

in H
(k)
n,p whenever 2(k − 1)|n. Formally, they showed:

Theorem 1. The following hold:

(a) (Frieze) Suppose that k = 3. Then there exists a constant c > 0 such that for
p > (c log n)/n the following holds

lim
4|n→∞

Pr
[

H(3)
n,p contains a loose Hamilton cycle

]

= 1.

(b) (Dudek and Frieze) Suppose that k > 4 and that pnk−1/ log n tends to infinity. Then

lim
2(k−1)|n→∞

Pr
[

H(k)
n,p contains a loose Hamilton cycle

]

= 1.

The assumption 2(k − 1)|n is clearly artificial, and indeed in [3] Dudek, Frieze, Loh
and Speiss removed it and showed analog statement to 1 with the only restriction on n
to be divisible by k − 1 (which is optimal).

As a first result in this paper, we give a very short proof for the result of Dudek, Frieze,
Loh and Speiss while weakening (a) a bit. Formally, we prove the following theorem:

Theorem 2. The following hold:

(a) Suppose that k = 3. Then for every ε > 0 there exists a constant c > 0 such that for
p > (c log n)/n the following holds

lim
2|n→∞

Pr
[

H(3)
n,p contains a loose Hamilton cycle

]

> 1 − ε.

(b) Suppose that k > 4 and that pnk−1/ log n tends to infinity. Then

lim
(k−1)|n→∞

Pr
[

H(k)
n,p contains a loose Hamilton cycle

]

= 1.

the electronic journal of combinatorics 22(1) (2015), #P1.61 2



Another problem we handle with is the problem of finding a rainbow Hamilton cycle
in a randomly edge-colored random graph. For an integer c, let us denote by Gc

n,p the
random graph Gn,p, where each of its edges is being colored, uniformly at random with a
color from [c]. A Hamilton cycle in Gc

n,p is called rainbow if all its edges receive distinct
colors. Clearly, a rainbow Hamilton cycle can not exist whenever c < n. Bal and Frieze
[1] showed that for some constant K > 0, if p > (K log n)/n, the Gn(n, p) w.h.p. contains
a rainbow Hamilton cycle, provided that n is even. For the odd case they proved similar
statement but only for p = ω((log n)/n). We overcome this small difficulty and show the
following:

Theorem 3. There exists a constant K > 0 such that Gn
n,p w.h.p. contains a rainbow

Hamilton cycle.

It is well known (see e.g. [6]) that a Hamilton cycle appears (w.h.p.) in Gn,p for
p ≈ (log n)/n. Therefore, one would expect to prove an analog for Theorem 3 in this
range of p. However, it is easy to see that in this range, while randomly color the edges
of Gn,p with n colors, w.h.p. not all the colors appear. Frieze and Loh [5] proved that
for p = (1 + ε)(log n)/n and for c = n + Θ(n/ log log n), a graph Gc

n,p w.h.p. contains a
rainbow Hamilton cycle. It is thus natural to consider the same problem for a randomly
edge-colored directed random graph, denoted by Dc

n,p (we allow edges to go in both
directions). Note that in directed graphs we require to have a directed Hamilton cycle,
which is a Hamilton cycle with all arcs pointing to the same direction.

The following theorem will follow quite immediately from our auxiliary lemmas in the
following section:

Theorem 4. Let p = (1 + ε)(log n)/n and let c = n + Θ(n/ log log n). Then Dc
n,p w.h.p.

contains a rainbow Hamilton cycle.

2 Auxiliary results

In this section we present some variants of a very nice argument by McDiarmid [7].
For the convenience of the reader we briefly sketch the proofs, and the omitted details will
be left as easy exercises. Before stating our lemmas, let us define the directed random k-
uniform hypergraph D

(k)
n,p in the following way. Each ordered k-tuple (x1, . . . , xk) consisting

of k distinct elements of [n] appears as an arc with probability p, independently at random.
In the special case where k = 2 we simply write Dn,p. For 1 6 ℓ < k, a directed ℓ-Hamilton

cycle is an ℓ-Hamilton cycle where consecutive vertices are now arcs of D
(k)
n,p and the last ℓ

vertices of every arc are the first of the consecutive one. In the following lemma we show
that the probability for D

(k)
n,p to have a directed ℓ-Hamilton cycle is lower bounded by the

probability for H
(k)
n,p to have one.

Lemma 5. Let k > 3 and let 1 6 ℓ < k. Then, for every p := p(n) ∈ (0, 1) we have

Pr
[

D(k)
n,p contains a directed ℓ-Hamilton cycle

]

> Pr
[

H(k)
n,p contains an ℓ-Hamilton cycle

]

.
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Proof. (McDiarmid) Let us define the following sequence of random directed hypergraphs
Γ0,Γ1, . . . ,ΓN , where N =

(

n
k

)

in the following way: Let e1, . . . , eN be an arbitrary enu-
meration of all the (unordered) k-tuples contained in [n]. For each ei one can define k!
different orientations. Now, in Γi, for every j 6 i and for each of the k! possible orderings
of ej, we add the corresponding arc with probability p, independently at random. For
every j > i, we include all possible orderings of ej or none with probability p, indepen-

dently at random. Note that Γ0 is H
(k)
n,p while ΓN is D

(k)
n,p. Therefore, in order to complete

the proof it is enough to show that

Pr [Γi contains a directed ℓ-Hamilton cycle]

> Pr [Γi−1 contains a directed ℓ-Hamilton cycle] .

To this end, expose all arcs but those obtained from ei. There are three possible
scenarios:

(a) Γi−1 contains a directed loose Hamilton cycle without considering ei, or

(b) Γi−1 does not contain a directed loose Hamilton cycle even if we add all possible
orderings of ei, or

(c) Γi−1 contains a directed loose Hamilton cycle using at least one of the orderings of ei.

Note that in (a) and (b) there is nothing to prove. In case (c), the probability for Γi−1

to have a directed loose Hamilton cycle is p, where the probability for Γi to have such a
cycle is at least p. This completes the proof of the lemma.

In the second lemma, we show that given an integer c, one can lower bound the
probability of Dc

n,p to have a rainbow directed Hamilton cycle by the probability of Gc
n,p

to have such a cycle.

Lemma 6. Let c be a positive integer. Then, for every p := p(n) ∈ (0, 1) and q ∈ (0, 1)
for which q − q2 = p we have

Pr
[

Dc
n,q contains a rainbow directed Hamilton cycle

]

> Pr
[

Gc
n,p contains a rainbow Hamilton cycle

]

.

Proof. (Sketch)
Define the following sequence of random edge-colored directed graphs Γ0,Γ1, . . . ,ΓN ,

where N =
(

n
2

)

in the following way: Let e1, . . . , eN be an arbitrary enumeration of all
the (unordered) pairs contained in [n]. Now, in Γi, for every j 6 i and for each of the 2
possible orientations of ej, we add the corresponding arc with probability q, independently
at random. For every j > i, we include both orientations of ej or none with probability
p, independently at random. At the end, all the obtained arcs are being colored by colors
from [c], independently, uniformly at random. Note that Γ0 is Gc

n,p while ΓN is Dc
n,q.

Therefore, in order to complete the proof it is enough to show that

Pr [Γi contains a rainbow Hamilton cycle ] > Pr [Γi−1 contains a rainbow Hamilton cycle] .
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To this end, expose all arcs but those obtained from ei. There are three possible
scenarios:

(a) Γi−1 contains a rainbow Hamilton cycle without considering ei, or

(b) Γi−1 does not contain a rainbow Hamilton cycle even if we add all possible orderings
of ei colored with any color, or

(c) Γi−1 contains a rainbow Hamilton cycle using at least one of the orderings of ei which
is also getting colored “correctly”.

Note that in (a) and (b) there is nothing to prove. We therefore only consider Case
(c). Suppose that ei = {x, y}, and let C1 be the set of all colors for which if we add
the arc xy to Γi−1 colored with any color from C1, then it contains a rainbow Hamilton
cycle. Similarly, define C2 with respect to the arc yx. By assumption we have C1 ∪ C2 6= ∅
(note that these sets are not necessarily disjoint). Let ci denote the size of Ci (i ∈ {1, 2}),
and let 0 < c0 = |C1 ∪ C2| 6 c1 + c2. Note that the probability for Γi−1 to have a
rainbow Hamilton cycle is pc0

n
. For Γi, the probability to have a rainbow Hamilton cycle

is qc1
n

+ qc2
n

− q2c1c2
n2 >

qc0
n

− q2c0
n

>
pc0
n

. This completes the proof of the lemma.

Note that by combining the result of Bal and Frieze [1] with Lemma 6 we immediately
obtain the following corollary:

Corollary 7. There exists a constant K > 0 such that for every p > (K log n)/n we have

Pr
[

Dn
n,p contains a rainbow Hamilton cycle

]

= 1,

provided that n is even.

3 Proofs of our main results

In this section we prove Theorems 2, 3 and 4. We start with proving Theorem 2.

Proof of Theorem 2: Suppose that (k−1)|n and that 2(k−1) does not divide n. Let f 2(n)

be a function that tends arbitrarily slowly to infinity and suppose that p = f2(n) logn
nk−1 . Note

that by deleting the orderings of the edges in a D
(k)
n,q, using a similar argument as a multi-

round exposure (we refer the reader to [6] for more details), we obtain a H
(k)
n,s where

(1 − q)k! = 1 − s (one can just think about D
(k)
n,q as an undirected hypergraph such that

for every e ∈
(

[n]
k

)

there are k! independent trials to decide whether to add it).

Now, let us choose q in such a way that (1−p/2)(1− q)k!f(n) = 1−p, and observe that

q >
p

2k!f(n)
= ω

(

log n/nk−1
)

. We generate H
(k)
n,p in a multi-round exposure and present

it as a union
⋃f(n)

i=0 Hi, where H0 is H
(k)
n,p/2 and Hi is D

(k)
n,q (which, as stated above, is like

H
(k)
n,s with (1 − q)k! = 1 − s) for each 1 6 i 6 f(n) (of course, ignoring the orientations).

In addition, all the Hi’s are considered to be independent.
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Our strategy goes as follows: First, take H0 = H
(k)
n,p/2 and pick an arbitrary edge

e∗ = {x1 . . . , xk}. Trivially, H0 contains an edge w.h.p. (and this was the only use of H0).
Now, fix an arbitrary ordering (x1, . . . , xk) of e∗ and let V ∗ = ([n] \ {x1, . . . , xk}) ∪ {e∗}
(that is, V ∗ is obtained by deleting all the elements of e∗ and adding an auxiliary vertex
e∗). For each i > 1, whenever we expose Hi we define an auxiliary k-uniform directed
random hypergraph Di on a vertex set V ∗ in the following way. Every arc e of Hi is being
added to Di if it satisfies one of the following:

• e ∩ e∗ = ∅, or

• e ∩ e∗ = {x1}, and x1 is not the first vertex of the arc e, or

• e ∩ e∗ = {xk} and xk is the first vertex of the arc e.

Note that indeed, by definition, every k-tuple of V ∗ now appear with probability p,
independently at random and that |V ∗| = n−(k−1). Therefore, we clearly have that each

of the Di’s is an independent D
(k)
n−(k−1),q. Moreover, note that 2(k−1)|n−(k−1) and that

each directed loose Hamilton cycle of Di with the special vertex e∗ as a starting/ending

vertex of the edges touching it corresponds to a (undirected) loose Hamilton cycle of H
(k)
n,p.

To see the latter, suppose that e∗v2 . . . vte
∗ is such a cycle in Di. Now, by definition we

have that both xkv2, . . . vk and vt−k+2 . . . vtx1 are arcs of Hi, and therefore, by replacing
e∗ with its entries x1 . . . xk, one obtains a loose Hamilton cycle in Hi.

Next, by combining Theorem 1 with Lemma 5, we observe that w.h.p. Di contains a
directed loose Hamilton cycle. Note that by symmetry we have that the probability for e∗

to be an endpoint of an edge on the Hamilton cycle is 2/k. Therefore, after exposing all
the Di’s, the probability to fail in finding such a cycle is (1 − 2/k)f(n) = o(1) as desired.
This completes the proof.

Next we prove Theorem 3.

Proof of Theorem 3: Let us assume that n is odd (since otherwise there is nothing to
prove) and that K > is a sufficiently large constant for our needs. Now, let q be such that
(1−p/2)(1−q)2 = 1−p, and present Gn

n,p as a union G1∪G2, where G1 is Gn
n,p/2 and G2 is

Dn
n,q (as in the proof of Theorem 2, by ignoring orientations one can see Dn

n,q as Gn
n,s with

s satisfying (1 − q)2 = 1 − s). Next, let e∗ = (x, y) be an arbitrary edge of G1 (trivially,
w.h.p. there exists an edge), let c1 denote its color, and define an auxiliary edge-colored
random directed graph D as follows. The vertex set of D is V ∗ = ([n] \ x, y) ∪ {e∗} (that
is, we delete x and y and add an auxiliary vertex e∗). The arc set of D consist of all arcs
uv of G2 with colors distinct than c1 for which one of the following holds:

• {u, v} ∩ {x, y} = ∅, or

• v = x, or

• u = y.
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A moment’s thought now reveals that D is Dn−1
n−1,s, where s = (1− 1/n)q, that n− 1 is

even, and that a rainbow Hamilton cycle of D corresponds to a rainbow Hamilton cycle
of Gn

n,p. Now, since s > (K ′ log n)/n for some K ′ (we can take it to be arbitrary large),
it follows from Corollary 7 that w.h.p. D contains a rainbow Hamilton cycle, and this
completes the proof.

Lastly, we prove Theorem 4.

Proof of Theorem 4: The proof is an immediate corollary of the result of Frieze and Loh
[5] and Lemma 6.
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