
Vol.:(0123456789)

SN Computer Science (2021) 2:447

https://doi.org/10.1007/s42979-021-00826-y

SN Computer Science

ORIGINAL RESEARCH

Closing the Feedback Loop in DevOps Through Autonomous Monitors
in Operations

Adha Hrusto1,2 · Per Runeson1 · Emelie Engström1

Received: 2 April 2021 / Accepted: 18 August 2021 / Published online: 7 September 2021

© The Author(s) 2021

Abstract

DevOps represent the tight connection between development and operations. To address challenges that arise on the bor-

derline between development and operations, we conducted a study in collaboration with a Swedish company responsible

for ticket management and sales in public transportation. The aim of our study was to explore and describe the existing

DevOps environment, as well as to identify how the feedback from operations can be improved, specifically with respect to

the alerts sent from system operations. Our study complies with the basic principles of the design science paradigm, such

as understanding and improving design solutions in the specific areas of practice. Our diagnosis, based on qualitative data

collected through interviews and observations, shows that alert flooding is a challenge in the feedback loop, i.e. too much

signals from operations create noise in the feedback loop. Therefore, we design a solution to improve the alert management

by optimizing when to raise alerts and accordingly introducing a new element in the feedback loop, a smart filter. Moreover,

we implemented a prototype of the proposed solution design and showed that a tighter relation between operations and

development can be achieved, using a hybrid method which combines rule-based and unsupervised machine learning for

operations data analysis.

Keywords DevOps · Development · Operations · Design science

Introduction

The software industry has gone through several revolution-

ary changes over the last decades. A major change is that

software is no longer delivered as a box product. Techno-

logical advancements and availability of cloud computing

platforms have enabled continuous delivery of software

systems leveraging the flexibility and reliability of various

cloud delivery solutions [1]. Moreover, cloud providers offer

an infrastructure for developing and operating large-scale

software systems empowered by continuous practices and

DevOps, the latest industry concept based on principles

of collaboration, automation, measurements, and monitor-

ing [2]. However, it also comes with an abundance of data to

be managed as it is considered to be the fuel of the DevOps

process [3].

The software life cycle includes continuous integration,

continuous testing, and continuous deployment practices [4].

During deployment, software systems are transitioned from

development to operations, to be continuously used by end-

users. The connection between development (Dev) and

operations (Ops), known as DevOps, ensures faster devel-

opment cycles and frequent releases. However, keeping the

same level of software quality becomes challenging due to

shorter testing cycles. Run-time monitoring of services in

operations [5], which is the focus of this study, is of high

importance for gaining confidence in a software system and

providing feedback to the development.

This article is part of the topical collection “New Paradigms of

Software Production and Deployment” guest edited by Alfredo

Capozucca, Jean-Michel Bruel, Manuel Mazzara and Bertrand

Meyer.

 * Adha Hrusto

 adha.hrusto@cs.lth.se; adha.hrusto@systemverification.com

 Per Runeson

 per.runeson@cs.lth.se

 Emelie Engström

 emelie.engstrom@cs.lth.se

1 Department of Computer Science, Lund University, Lund,

Sweden

2 System Verification AB, Malmö, Sweden

http://orcid.org/0000-0002-4575-1460
http://orcid.org/0000-0003-2795-4851
http://orcid.org/0000-0001-6736-9425
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00826-y&domain=pdf

 SN Computer Science (2021) 2:447447 Page 2 of 14

SN Computer Science

Through the run-time monitoring system, a vast amount

of data is continuously collected and saved for manual or

automatic analysis. The data analysis serves as feedback to

development teams and provides deep and quick insight into

the status of the software system during operational execu-

tion [3]. Consequently, developers and project managers can

act as soon as they are notified about anomalies. The notifi-

cation is typically implemented as alerts sent through a mes-

saging platform, like Slack, triggered by alert rules, which

are defined as functions of the operational data. However,

the abundance of data and particularly alerts from minor or

major malfunctions in system components, tend to flood over

the developers and create noise that drowns the important

alerts.

In the literature, there are examples of various meth-

ods for the analysis of operations data but only a few are

addressing real industrial needs and challenges companies

are facing in relation to the feedback from operations to

development [6]. Consequently, there is a limited choice of

potential solutions available in the literature for designing

more context-specific solution designs based on the identi-

fied industrial needs. Thus, with our research, we aim to

fill this gap by addressing challenges related to the flow—

and overflow—of data from operations to development. We

intend to explore and improve existing solution designs in

the context of the case company’s feedback loop from opera-

tions to development. Thus our study complies with the prin-

ciples of a design science paradigm [7].

We conducted a study in collaboration with a Swedish

company responsible for ticket management and sales in

public transportation. Their main product is the back-end

system for ticketing and payments, developed and operated

in a DevOps environment using Microsoft services and

tools. Following design science principles, we explore and

describe the existing DevOps environment and identify main

challenges on the borderline between operations and devel-

opment, using qualitative data collected through interviews

and observations. To address the identified challenges, we

design a solution for more effective processing of data avail-

able through the monitoring system in operations by intro-

ducing a smart filter in the feedback loop. Thus our research

adds to the new research and innovation discipline called

AIOps, artificial intelligence for IT operations [8]. Moreo-

ver, we present a prototype implementation and validation of

the proposed design. It includes a description of the labeling

process of unlabeled operations data, using unsupervised

anomaly detection and considering the service vulnerabili-

ties, as well as learning new advanced alert rules using a

supervised, decision tree-based Python module.

The contributions of our paper are threefold:

 C1. Problem conceptualization. We identified alert target-

ing, signal to noise optimization, and system interoper-

ability as being three important problem instances of

the general alert flooding problem in the feedback from

operations to development.

 C2. Solution design. We present a unique technical solu-

tion that combines various systems’ and applications’

metrics for learning advanced alert rules within the

new element in the feedback loop, a smart filter.

 C3. Prototype implementation. We performed a pilot

implementation of the proposed solution in the case

environment as a proof of concept for further work.

The rest of the paper is structured as follows. We first

present the "Background and Related Work" in this field.

Next we elaborate the "Research Approach" followed by a

"Case Description" of the case company. Identified problem

instances are introduced in section "Problem Conceptualiza-

tion". The solution proposal is presented in section "Solu-

tion Design", followed by "Prototype Implementation and

Empirical Validation". Finally, we conclude with section

"Discussion and Conclusion".

Background and Related Work

Ståhl et al. [2] conclude in their systematic mapping study

on continuous practices and DevOps, that the concepts of

continuous software engineering practices and DevOps are

ambiguous in the literature. We adhere to their proposed

definition that “Continuous deployment is an operations

practice where release candidates evaluated in continuous

delivery are frequently and rapidly placed in a production

environment”. In contrast, “Continuous release is a busi-

ness practice where release candidates evaluated in continu-

ous delivery are frequently and rapidly made generally avail-

able to users/customers.” Depending on the environment, a

release may be achieved through deployment, for example

in most SaaS (Software as a Service) environments. On the

contrary, for user installed software, continuous deployment

is not an applicable concept as the user must take actions to

install a new version. However, continuous releases may still

be offered to the users.

Ståhl et al. [2] find DevOps be a broader term, including

culture and mindset. It also comprises tools, processes, and

practices. We adhere to this broad definition of DevOps,

as we want to investigate “the interplay between specific

continuous practices and DevOps principles, processes and

methods” [2], which aligns well with Fitzgerald and Stol’s

scoping of continuous software engineering [4].

Despite the observed ambiguity, there are additional

research summaries. Laukkanen et al. [9] presented a litera-

ture review of problems, causes and solutions, when adopt-

ing continuous delivery. They build on a previous litera-

ture review by Rodriguez et al. [10], and summarize topics

SN Computer Science (2021) 2:447 Page 3 of 14 447

SN Computer Science

related to build design, system design, integration, testing,

release, human and organizations, and resources. However,

the operational aspects are not included. Similarly, Shahin

et al. [11] do not cover practices beyond continuous deploy-

ment in their review and Mishra and Otaiwi [12] only briefly

mention operational feedback as contributing to software

quality in DevOps, in their systematic mapping study.

There is, however, research related to post-deployment

activities. Suonsyrjä et al. [13] studied how automatically

collected data from operations could be used as feedback to

the development. They reviewed the literature and surveyed

practitioners’ interest in such activities. They conclude that

topics related to post-deployment monitoring appeared in the

scientific literature during the 20th century but, not during

the last two decades [13]. As an exception, Orso et al. [14]

presented the GAMMA system 2002, as an approach to sup-

port monitoring software’s behavior during its lifetime.

Monitoring is not only focused on the software. Accord-

ing to Pietrantuono et al. [15], monitoring of the software

product in operation can be used for collecting usage data.

The data is afterward analyzed and reused for selecting

the most representative test cases, based on usage profiles,

which are used in their approach to “continuous software

reliability testing”.

Moreover, monitoring has also been part of alarm sys-

tems used for triggering warning signals in case of unusual

rises in systems’ metrics. Xu et al. [16] proposed a Pro-

cess-Oriented Dependability (POD)-Monitor for reducing a

number of false alarms focusing on sporadic and infrequent

operations. Their approach utilizes process-context informa-

tion and the Support Vector Machines (SVM) algorithm for

learning when to suppress alarms and reduce the overload

on operators.

Alerts is another term used for denoting the same or simi-

lar events as alarms and according to Zhao et al. [6], they

represent a key source of anomalous events in operations.

Zhao et al. [6] reported an approach for handling alert storms

consisting of alert storm detection using Extreme Value The-

ory (EVT), alert filtering using ML Isolation Forest method,

alert clustering using Similarity Matrix Construction, and

representative alert selection. Furthermore, Zhao et al. [17]

published another study on enhancing the quality of services

by utilizing the monitoring data. Similarly, they analyzed

alerts but with aim of identifying the severity level. They

proposed a framework AlertRank for extracting severe alerts

based on textual and temporal alert features as well as fea-

tures extracted from monitoring metrics. Since there are two

different terms in the literature, in the rest of the paper we

use alerts to denote signals of unexpected systems’ behav-

iors in operations.

Monitoring in operations can be utilized even without alert

rules, thus considering raw operations data. Cito et al. [18]

identified three main categories of operations data: system

metrics, application metrics, and application system met-

rics [18]. Recently, researchers and practitioners have devoted

significant effort to the analysis of aforementioned operations

data considering, among others, machine learning techniques

and to the development of various applications. Anomaly

detection is one of the available applications for early detec-

tion of a system’s abnormal behavior. It has been used for

detecting deviations in software releases based on the data

generated by a DevOps toolchain [19]. Further, Du et al. [20]

presented DeepLog, a model based on deep learning for natu-

ral language processing, which is used for learning patterns

in logs and detecting anomalies in log data. More thorough

research on anomaly detection has been undertaken by He

et al. [21] where they provide an overview of supervised

and unsupervised machine learning techniques used for log

analysis. In addition, logs have been studied for several other

applications. Clustering log sequences into groups, identifying

causal dependencies, and creating failure rules are the main

steps in the root cause analysis and failure prediction approach

proposed by Fu et al. [22].

More attempts at problem identification by log analysis can

be found in papers by He et al. [23] and Lin et al. [24] where

KPI (Key Performance Indicators) are used in a combination

with logs. In both papers, the authors deal with clustering-

based techniques, but their solutions differ in the second phase

of the proposed approaches. In the solution by He et al. [23],

the second phase consists of correlation analysis of identified

clusters with system KPIs, while the second phase by Lin

et al. [24] includes extracting most representative logs from

clusters and comparison of clusters created in test and produc-

tion environment for simpler problem identification. Further-

more, feedback from operations has been used for decision

making and improving feature planning [18] as well as for

feedback-driven development where monitoring data has been

used for improving developer’s tools [25].

In summary, operations data has been studied and analyzed

for different purposes but still, there is more to be explored in

DevOps contexts, to improve the feedback from operations

to development. State of the art solutions [6, 19, 26] address

relevant challenges in managing operations data. However,

situations of alert flooding in DevOps environments are not

extensively explored. Thus, we aim to contribute to the design

of solutions that better manage alerts in DevOps.

Research Approach

Our study, as shown in Fig. 1, is a problem-driven design sci-

ence approach [7]. Thus our starting point was to gain deeper

insights into the specific challenges of our case company.

As a first step, we explored how the general problem, of

incorporating feedback from operations in the development,

manifests as a problem instance in the industrial context

 SN Computer Science (2021) 2:447447 Page 4 of 14

SN Computer Science

under study. For that purpose, we conducted six interviews

and performed observations in the case company to identify

and articulate the main problem instances on which to focus

further improvements.

To obtain a comprehensive overview of the issues, we

selected interviewees in senior positions with different

responsibilities within the team including a product owner,

a test manager, a test developer, a system architect, and two

developers. During the interviews, we asked general as well

as more specific questions related to the DevOps cycle. The

interviews were semi-structured since we wanted to flexibly

explore the interviewee’s opinions and let them speak about

their main issues. Focus areas and examples of questions used

in the interviews are shown in Table 1. All collected qualitative

data, notes and video records, was analyzed using the NVivo

tool. Furthermore, we observed their processes in operations

and the way they were handling operations data. This enabled

uncovering insights and defining problem instances.

In the problem conceptualization step, we described three

identified problem instances (Section 5) through the lens of

envisioned matching solutions, i.e. we formulated three high

level technological rules. However, in this paper, we refined

only one of them in the conceptual solution design. Hence, we

improve the feedback loop from operations to development

by introducing a new element, a smart filter, for optimization

of alert to noise ratio. In the design process, we considered

the insights gained through interviews, results of the intensive

discussions with the development team, and state of the art

solutions for alert management [6, 17].

Moreover, alongside the proposed solution design, we

implemented a prototype instance to get a better understanding

of the opportunities of the available operations data, its type

and characteristics as well as the constraints of the context. In

the implementation of the prototype solution, we used unsu-

pervised anomaly detection throughout the labeling process

of unlabeled operations data while also considering the ser-

vice vulnerability and observed metrics frequency. Further, for

generating new advanced alert rules, a supervised tree-based

machine learning technique was used. Regarding the empirical

validation, there were time and environment constraints that

hindered a full evaluation of the implemented solution. How-

ever, we were able to perform a partial evaluation using limited

data set for implementation of the multivariate anomaly detec-

tion in a prototype environment. In this way, we were able to

compare the results obtained by using the smart filter in the

feedback loop with the results of using the pure unsupervised

ML technique for predicting alerts based on multivariate unla-

beled data set.

Case Description

The system under study is a backend system of an applica-

tion for ticketing and payments used in public transporta-

tion. It is a cloud-based system developed and operated in

a DevOps environment, using Microsoft tools and services.

The system architecture is leaning towards a microservice

Fig. 1 Overview of the Design Science Approach

Table 1 Topic areas and examples of questions used in the semi-structured interviews

Focus area Examples of questions

CI/CD pipeline - Could you describe the CI/CD pipeline?

- What are the shortcomings and how can they be addressed?

Continuous monitoring - Which parts of the system are monitored?

- Which signals are the most critical and good candidates for monitoring?

Alerts - How does the current alert system look like?

- In which periods you experience the highest number of alerts?

Accessibility of operations data - Which types of operations data are available for analysis?

- Which types of operations data are used for setting the alert rules?

Potential improvements - How/what would you improve in your current monitoring system?

SN Computer Science (2021) 2:447 Page 5 of 14 447

SN Computer Science

architecture which consists of 20 services that are highly

maintainable, testable, and independently deployable.

Throughout the entire CI/CD cycle, shown in Fig. 2, new

features or updates of each service are tested on: (1) unit

level, every time the build process of the system under test

with its dependencies is triggered; (2) API and UI level,

every time the master branch is updated as well as every

night on the latest build version from the master branch.

Moreover, the candidate version for the release is used as a

reference version by other teams in the company for a week,

which is called the “hardening process”. If necessary, the

latest version is tested in the acceptance-test environment

which serves as a production-like environment. The release

cycle is weekly and ends by deploying to three production

environments. Hence, the existence of several independent

environments enables smooth development, testing, and

deployment activities but also multiplies the complexity of

the entire system.

The health status of each service is monitored using the

Microsoft data platform, Azure Monitor. Azure Monitor col-

lects the data from several sources such as applications or

Azure resources into a common platform to be used for anal-

ysis, alerting, and visualization. Within this data platform,

two types of data are available, metrics and logs. Metrics

are numerical values denoting specific system’s observations

captured within a defined timestamp. Logs are represented

by both, numerical and textual values and they describe spe-

cific events that happened at a particular moment in time.

Both metrics and logs can be used for setting alert rules

that signalize that something unexpected is detected in the

observations of the targeted resources. The case company

has implemented simple rules for detecting failed requests

with error 500 and unexpected raises of dependency calls

and failed Http requests, as shown in Table 2. When these

rules are satisfied, then alerts are triggered and alert notifi-

cations are sent either to a dedicated Slack channel or via

email.

Operations data shown in Table 2, represent only a small

portion of all available data in Azure Monitor but in this

paper, we focus on the selected logs and metrics. Among

all accessible observations of different system components,

we chose metrics and logs related to the data types used for

setting current alert rules and the ones used in debugging in

case of detected anomalies. Alert rules, shown in Table 2,

are configured for all 20 services, and notifications about

raised alerts are sent on two different platforms. Alerts that

Fig. 2 CI/CD pipeline

 SN Computer Science (2021) 2:447447 Page 6 of 14

SN Computer Science

detect internal server error 500 are sent to the Slack channel,

while unusual rises in the rate of dependency failures and

failed requests are sent via email.

The development team has already reported various chal-

lenges in managing and responding to fired alerts with this

configuration. Moreover, their every day development tasks

are filled with the uncertainty that every alert brings into

their development environment due to overload of non rel-

evant alerts. Consequently, this might cause a bottleneck in

the information flow from operations to development. The

flaws, identified within the monitoring and alert system, are

elaborated in the next section.

Problem Conceptualization

In this section, we present three main problem instances,

identified in the problem conceptualization step, with respect

to the general goal of better incorporating feedback from

operations into development. Based on observations made

in the case company, alert flooding is identified as the main

cause of all three problems. Alert flooding is a phenomenon

that appears in a case of a high number of alerts that are not

properly managed. In this paper, we focus on the specific

aspects of this phenomenon namely, targeting, optimization,

and interoperability problems.

Alert Flooding as Targeting Problem

The first problem is defined as a targeting problem. This

means that the distribution of alerts to target recipients,

between the teams and individual assignment of a single

or group of alerts within the team, is not fully transparent.

Moreover, a lot of time is spent on discussions on how to

resolve alerts and who is going to take the responsibility.

Currently, there are three teams that can be assigned when

an alert is fired. Each team consists of four or five members,

mainly developers, and every team is responsible for one of

the domains which consist of multiple services. Alert noti-

fications are sent to a dedicated Slack channel, but no one

is tagged or directly assigned to the raised alerts. Individual

responsibilities within the team are not clear and team mem-

bers usually discuss specific alerts in the same Slack chan-

nel. Sometimes they tag each other and ask if that person

has already looked into raised alerts. As acknowledgment,

they usually write that they will look at it right away or later.

If they agree that an action should be taken, a ticket is cre-

ated and added to a backlog of the board in Azure DevOps.

Hence, two different platforms for communicating alerts are

used but the information is not synchronized.

While observing the team and their current practices, we

noticed that some team members showed more interest than

others in resolving alerts and that some look into alerts that

are related only to services they are developing or they are

familiar with. Consequently, there is an increasing number

of alert notifications because no one takes full responsibil-

ity for looking into alerts that frequently appear every day.

After talking to some team members, it was clear that they

would like to see some structured way of alert management

and assignment but they also pointed out that acting on every

alert would take too much time since their main focus is

development. Because of that, designing a solution for the

targeting problem becomes even more challenging.

Alert Flooding as Optimization Problem

The second problem instance represents an optimization

problem, which addresses optimization of a signal to noise

ratio. In this case, the signal consists of high priority alerts

while the noise represents low priority alerts, which fre-

quently appear every day. Hence, the main question is how

to differentiate between alerts that cause failures and alerts

that cause temporary glitches that don’t affect the system’s

performance.

Table 2 Types of operations

data mapped with configured

alerts

Operations data Configured alerts

Logs Exceptions /

Traces /

Requests /

Application metrics Dependency failures An unusual rise in the rate of dependency failures

Exceptions /

Failed Requests /

Server Exceptions /

System Metrics CPU Time /

Errors Http 4xx An unusual rise in the rate of failed Http requests

Server Errors 5xx Whenever there is a server error 500

Response Time /

Requests /

SN Computer Science (2021) 2:447 Page 7 of 14 447

SN Computer Science

While observing the current practices in alert manage-

ment, we noticed that all alert notifications come to the

Slack channel with the same priority. Over time, developers

learned which alerts are reoccurring occasionally, and they

consider them as “normal alerts”. Normal alerts are mostly

caused by glitches in an external or internal service or repre-

sent a consequence of a failure related to the central service.

The central service represents the heart of the system and all

alerts related to this service have the highest priority. This

priority is not specified as a part of an alert notification, but

is something that developers know since they developed the

system and they know how vulnerable each of the services

is. “Normal alerts” are not normal since they signalize that

something might be wrong in the specific service, but they

are normal as they occur frequently, and the team got used to

them. They also produce noise in the channel used for com-

municating alerts and because of that some critical things

may pass unnoticed. The team raised concerns about this

and agreed that addressing and solving this particular prob-

lem might help in faster and better response to other more

important alerts. One more reason to do so is because they

currently do not act upon normal alerts unless there is a high

number of occurrences.

The majority of current alert rules aim at discover-

ing internal server errors with error code 500 while a sig-

nificantly higher number of logs still remain unexplored,

Table 2. Hence, there is a need for adding more alert rules.

However, the team decided to stick with the existing alert

rules since the current ones are not successfully managed.

Recently, the team reported that they missed over 20,000

failed Http requests with error code 400. They did not notice

this anomaly because they were overwhelmed with other

alert notifications but also due to the fact that they do not

usually analyze logs or fix issues before they cause severe

problems. Hence, designing new or redesigning existing

alert rules to optimize the signal to noise ratio, is another

challenge that they are facing while at the same time it

is important that the number of non-relevant alerts is not

increased and that the most critical alerts are prioritized.

Interoperability Flaws Between Developed System
and External Systems

Many large-scale software systems depend on external ser-

vices developed by third parties. In this way, the original

system can offer more features to their end customers. This

seems to be a huge benefit but may also increase the vulner-

ability of the entire system since even the smallest glitches

in an external service might cause serious deviations in the

original system. Similar issues are experienced in the case

company as their backend system also depends on external

payment providers, Azure databases, and other software pro-

jects developed in their company. There is a special Slack

channel where RSS (Really Simple Syndication) feeds and

emails from external services are forwarded. However, many

problems are still discovered through customer service and

user complaints. So, they get notified when something

has already failed and is visible to end-users instead of in

advance. Moreover, the uncertainty of potential disruptions

makes developers even more confused. It is their responsi-

bility to decide if a raised issue is something temporary or it

really represents an issue they should look into and report.

They usually make a decision based on the alert frequency

and side effect appearance. There are no statistics that can

prove developers’ claims, but a huge number of alerts are

caused due to interoperability flaws with external services.

The existence of failed Http responses with unknown and

unexpected error codes complicates root cause analysis even

more. It is important to address this problem, otherwise the

system stability will be degraded.

Solution Design

As stated in Section 3, we provide a conceptual design for

the second problem instance, alert flooding as an optimi-

zation problem. This problem causes the highest informa-

tion overflow in the feedback loop. By addressing this spe-

cific instance, the scope of the first and the third problem

instances will be reduced, and individual solutions simpli-

fied. The first and the third problem instances will not be

individually treated in this paper but will be considered in

our future work.

Hence, we propose one solution design and focus on the

following challenges related to the second problem instance:

(1) reduce the number of noisy alerts without missing the

critical ones; (2) increase the number of alert rules with-

out causing an overload of alert notifications; (3) improve

developer’s responses to the fired alerts while minimizing

interference with their development related tasks. Accord-

ingly, we present the overview of the proposed solution for

the second problem instance in Fig. 3.

The upper part of Fig. 3, illustrates the previously

explained architecture of the software system, consisting of

20 micro services and Azure Monitor, that monitors real-

time application performance (Application Insights) and

performance of Http-based services for hosting applica-

tions (App Services). The lower part of Fig. 3, visualizes

the enhanced alert system with a new addition, representing

the bridge between MS Azure Monitor and Slack, the plat-

form where alert notifications are sent. The new box, the

smart filter, serves as a middle-ware and provides additional

features to the existing alert management.

The main task of the introduced box is to generate

alert rules for sending alert notifications to the messaging

 SN Computer Science (2021) 2:447447 Page 8 of 14

SN Computer Science

platform. Hence, we temporally disregard current alert noti-

fications and instead focus directly on the most important

data, specifically metrics shown in Table 3, holding informa-

tion about the system’s performance. The reason for such an

approach is that the current alert rules only catch a limited

number of system glitches and failures while at the same

time not being able to differentiate noisy alerts from impor-

tant ones. The smart filter will analyze more data and learn

over time to identify new dependencies that may generate

new and better decision rules. In this way, we will reduce the

risk of omitting important alert notifications while keeping

the the Slack channel clean from noisy information. There-

fore, in our proposed solution design, new decision rules

are learnt based on the features representing the systems’

and applications’ performance metrics of the mostly affected

services. The output of the smart filter is binary, meaning

that new decision rules are able to determine when to send

and when not to send alert notifications. As shown in Fig. 3,

the smart filter involves preprocessing and labeling of the

data required for the learning process. The exact procedure

is presented in Section 7.

All things considered, the proposed approach of generat-

ing new decision rules aims at filtering the incoming per-

formance data and sending only relevant alert notifications

to the Slack channel. Newly learnt alert rules should not

increase the number of alert notifications in the Slack chan-

nel since the learning process also involves learning about

the noisy data.

Therefore, the proposed solution design addresses the

aforementioned challenge regarding the insufficient alert

rules. The purpose of the enhanced alert management is to

provide more insights into correlations between alerts and

operations data and at the same time enable forwarding

more details about potential failures within the alert noti-

fications. In this way, the development team could have all

information needed to discover the root causes of potential

failures. Moreover, it is expected that developer’s awareness

of raised alerts will increase and that they will need less time

Fig. 3 Overview of the pro-

posed solution for the second

problem instance

Table 3 Overview of the selected data, service vulnerabilities and desired decision rules

Selected application and system metrics - CPU Time

- Number of failed requests

- Number of exceptions

- Number of dependency failures

- Http 4xx errors

- Internal server errors

- Total number of requests

- Response time

Services with known vulnerabilities - Service B –> buying tickets on vending machines

- Service G –> service for validating selected locations

- Service M –> main service for ticketing

- Service P –> bridge to an external payment service

Example of a decision rule IF num_of_failed_requests_SG > threshold_1 AND response_time_SB > threshold_2 AND num_

of_Http500_SB > threshold_3 THEN send_notification

SN Computer Science (2021) 2:447 Page 9 of 14 447

SN Computer Science

for resolving critical systems behaviors. Therefore, the pro-

posed solution design intends to resolve the previously listed

challenges related to the second problem instance.

Prototype Implementation and Empirical
Validation

In this section, we present technical details of the prototype

implementation1 as well as the effects of the implemented

solution prototype in the identified problem context. Prototype

implementation includes data selection, tools and methods

selection, threshold detection for each of the features, labe-

ling process, training process and testing. While working on

the implementation of a solution prototype, we have decided to

stick with basic machine learning techniques since we primar-

ily wanted to examine the limitations of the suggested design.

Hence, using deep learning or reinforcement learning for iden-

tified problem instances is beyond the scope of this paper.

Data selection. For the prototype implementation, we

have chosen to only work with numerical values represent-

ing the various systems’ and applications’ performance

metrics, to keep the simplicity. Logs are not included in the

preliminary data selection due to their complex structure

and due to the fact that the observed logs including traces,

types of exceptions, or failed requests could only help with

the explainability of potential failures. The metrics and ser-

vices selected to be part of the training data (see Table 3)

are chosen based on the observations made in the messaging

and monitoring platform focusing on metrics frequency and

service vulnerability. Therefore, we selected 8 metrics for

each of the 11 services, which makes in total 88 features.

Every feature vector has 8623 samples collected during a

period of one month with a time granularity of 5 min, which

was selected based on the current practice within the project.

Tools and method selection. The presented solution

design involves learning new decision rules in the form of log-

ical expressions “IF conditions THEN response” and for such

an approach the first choice of ML methods are tree based

methods, such as bagging and random forest. Therefore, for

implementation, we use Skope-rules [27], a Python machine

learning module for extracting rules from the tree ensemble

as suggested by Friedman and Popescu [28]. The classifica-

tion is binary, thus, if an instance representing the combina-

tion of multiple features satisfies conditions of the rule, then

it is assigned to one of two output classes, “send_notifica-

tion” or “dont_send_notification”. Using this Python module

requires labeled data for the learning process, thus making this

approach even more challenging since the monitoring data

platform collects only raw data and the knowledge about the

expected outcomes is unknown.

Identifying thresholds. Therefore, we decided to gener-

ate labels based on the known service vulnerabilities and

desired level of contamination. The first step of the labeling

process is to identify thresholds for single features using

machine learning for anomaly detection (see Fig. 3, step

1). For that purpose, we used a Python toolkit PyOD [29]

consisting of 30 different detection algorithms. Hence, the

thresholds are predicted for each of the 88 features where

the outliers are expected to be extremely high values. By

applying one of the algorithms from the PyOD module on a

feature vector, we get anomaly scores for each of the values

within a feature vector. Larger anomaly scores are assigned

to outliers and the threshold is simply determined by pick-

ing a value from a sorted feature vector with a large enough

score. The score value on the borderline between inliners

and outliers is chosen so that the level of contamination of

the entire training data equals 0.05. The contamination is

determined by the number of outlying objects in the data

set, in our case alert notifications that need to be sent to the

messaging platform. Selected level of contamination cor-

responds to the 13 alert notifications per day and represents

three times less of the current number of alert notifications.

Since there is no optimal number of alert notifications per

day we consider this decrease significant and at the same

time large enough to not miss the important system failures.

Labeling process. After determining the thresholds for

each of the features, the warnings are raised in the cases

where the features reach values above these border values.

Based on these warnings, we generate labels (see Fig. 3, step

2) considering a fixed number of raised warnings in a time

slot of 5 minutes as well as capturing for which services

warnings are raised, targeting services shown in Table 3.

Accordingly, the output class is labeled as 1, if there are

more than 8 raised warnings in the same time slot, which

means that there are at least two services affected consider-

ing that 8 warnings can be related to one service. Further,

the output is also denoted as anomalous or 1, if there are

warnings raised for the most vulnerable services, as shown

in Table 3, no matter the number of raised warnings. When

the labeling process is completed, learning logical and inter-

pretable alert rules can be activated (see Fig. 3, step 3).

Training process. Through the training process, Skope-

rules generated 120 rules for the class “dont_send_notifi-

cation” and 43 rules for the class “send_notification”. The

rules are generated by fitting single estimators, decision

trees, with predefined precision and recall as input param-

eters. The precision and recall reached during the train-

ing phase are between 0.92 and 0.99 for the output class

“dont_send_notification”. The precision score for the output

class “send_notification” is evenly high as for the opposite

class but the recall was significantly lower due to very low

contamination, the number of outliers, in the training data

set. A low recall score makes the algorithm “picky” when 1 https:// github. com/ adha7/ smart- alert- filter, available upon request

https://github.com/adha7/smart-alert-filter

 SN Computer Science (2021) 2:447447 Page 10 of 14

SN Computer Science

selecting outlying samples which might be good for filter-

ing the noise but on the other hand, it might miss single and

isolated outliers.

Testing. On this account, we analyze how the imple-

mented prototype scales the number of predicted alert noti-

fications per day to the actual number of raised alerts. We

use test data collected within the 7 days (March 3, 20:35

– March 10, 19:40) for predicting outlying objects, alerts,

and present the results in Fig. 4.

We conclude that the smart filter produces half the num-

ber of alerts in a period of 7 days, 108 compared to 211.

Regarding the distribution of alert notifications per day,

the number of predicted alerts during the weekend (March

6 and 7) is very low which is expected due to lower stress

on the ticketing and payments system. During the work-

days, the number of predicted alerts is less than actual

except when there are issues in the system that the current

alert system is not able to capture. This was the case on

March 5, when there was a problem with buying tickets on

the vending machines. The smart filter raised an alert 30

minutes earlier than it was reported by customers, which

means that this specific failure could have been caught

before it was noticed by users.

The implemented prototype reduces the overall overload

on the development team but also gives space for further

improvement by introducing prioritization of alerts and

sending the alerts on different Slack channels based on their

priority for even better and clearer differentiation.

Fig. 4 Number of alerts per

day in the test data. RED color:

alerts raised with current alert

rules; GREEN color: alerts

raised with (a) the smart filter

and (b) multivariate anomaly

detection

SN Computer Science (2021) 2:447 Page 11 of 14 447

SN Computer Science

Empirical validation. In addition to the smart filter

implementation, we also implemented multivariate anomaly

detection (MAD) to validate our prototype by comparing it

with the pure unsupervised ML technique for detecting outli-

ers, representing alerts, in multivariate unlabeled data set.

We used the same Python toolkit PyOD [29] for the MAD

implementation and selected the COPOD model, copula-

based outlier detection introduced by Li at al. [30]. The

COPOD model was trained using the same training data but

without labels. The predictions, shown in Fig. 4b, using the

same test data set, revealed that the MAD trained model does

not scale very well the number of predicted alerts. It predicts

almost the same number of alerts as the actual alert system,

making the same level of noise. Both models, trained using

the smart filter and MAD respectively, reach the F1-score,

a harmonic mean of precision and recall denoting a model’s

accuracy, above 0.9. However, the pure unsupervised ML

might not be able to capture the imbalance between the tar-

get classes and the importance of specific services and their

metrics. To clarify this, we look at the alert distribution over

the metrics of highly affected services shown in Fig. 5a, b.

We noticed that the smart filter produces less noise around

the actual failures, such as the one marked with the black

arrow from March 5. This means that the actual failure can

be more easily identified among the alerts that appear close

to the selected alert on the graph. The predicted alerts using

multivariate anomaly detection are grouped and based on

the graph, they produce several alert floods which is the

opposite to what we want to achieve. On the other hand, the

smart filter predicts isolated alerts in case of short system’s

glitches and smaller groups of alerts when there is a larger

issue rolling out.

There are still some individual events that passed unno-

ticed but since this is only a prototype version, imperfections

and shortcomings are expected. Furthermore, we used a lim-

ited data set collected within one month, which could have

also affected the training process and learning when to send

alert notifications due to a low number of outlying objects.

We aim to address this in our future work by considering

the larger data set.

Discussion and Conclusion

The synergy between development and operations in

DevOps is important for developing and releasing high-

quality software systems, but even more for gaining insights

into the system’s behavior in the production environment.

To ensure the latter, raw operations data, collected through

runtime monitoring tools, is analyzed to discover valuable

feedback information. Our results have shown that moni-

toring and utilizing data available in the production may

help developer teams to more easily identify, understand and

communicate issues in the operations. Further, it helps pre-

sent the valuable information in an actionable manner and

reduces the pressure and overload.

The results obtained, following design science principles,

directly relate to three main contributions mentioned in the

introduction section, problem conceptualization (C1), solu-

tion design (C2), and prototype implementation (C3). We

started with the problem conceptualization since the first

step in solving a particular problem is understanding its

causes and effects. Before our attempt to identify the main

challenges on the borderline between development and

operations, the everyday routine work at the case company

obscured shortcomings in the information flow between

operations and development. During the initial stage of

interviews and observations, we managed to identify tar-

geting, optimization and interoperability problem instances

related to alert flooding. The problem conceptualization

(C1) helped both the development team in acknowledging

existing issues and the research team, in creating a solution

design, which is our second contribution. After presenting

our findings, the development team seemed relieved since

they finally understood what was hindering them from mak-

ing full use of operational data and how data overload in

operations could be prevented.

The solution design (C2), as previously mentioned,

addresses the problem of alert flooding with the emphasis

on reducing the number of noisy alerts. The presented con-

ceptual model includes a new element in the feedback loop,

responsible for learning new advanced alert rules capable

of reducing the total number of alerts and increasing their

relevance. The smart filter addresses challenges in the alert

management such as insufficient number of alert rules, noisy

alert notifications, and slow developer’s response on fired

alerts. Therefore, this addition in the feedback loop improves

the information flow from operations to development by

introducing alert rules which combine various systems’ and

applications’ metrics and services with the aim of captur-

ing unexpected and faulty system’s behaviors and providing

more detailed insights to the development team.

The third contribution (C3) includes implementation of

the solution prototype and validation in a specific context,

i.e. our case, the ticketing and payment system operated in

the DevOps environment. We successfully implemented a

prototype version of the smart filter using a hybrid method

consisting of unsupervised anomaly detection and super-

vised decision tree-based Python toolkit while also consider-

ing the importance of highly vulnerable services in the labe-

ling process. The prototype was validated using a limited

test data set collected through the monitoring system in the

production environment. Accordingly, we demonstrated that

a severe failure could have been caught if the smart filter was

integrated in the feedback loop instead of the current alert

system. Furthermore, we compared the implementation of

 SN Computer Science (2021) 2:447447 Page 12 of 14

SN Computer Science

our prototype with the pure unsupervised ML technique for

multivariate anomaly detection. We showed that the cus-

tomized hybrid method better captures the systems’ unbal-

anced operations data and system-specific characteristics

needed for catching both systems’ glitches and severe fail-

ures. Hence, the feedback information obtained as a final

result has tightened the connection between operations and

development. There have been several attempts at address-

ing similar challenges using state of the art solutions based

on deep learning [6, 20, 26], while our solution proposal

reach promising results while keeping simplicity of the ML

approach.

Fig. 5 Distribution of raised

alerts in the test data using

(a) the smart filter and (b)

multivariate anomaly detec-

tion. BLUE color: selected

performance metric; RED color:

raised alerts

SN Computer Science (2021) 2:447 Page 13 of 14 447

SN Computer Science

The smart filter in the feedback loop improves the con-

nection between operations and development but at the same

time raises more challenges that need to be addressed in the

future. Even though it reduces the total number of alerts,

it could still be improved by increasing the level of differ-

entiation between the raised alerts by introducing several

levels of priorities and target recipients. We plan for further

work to address the raised challenges by considering deep

learning and other machine learning techniques as well as

implementing the smart filter in the production environ-

ment. Consequently, the smart filter will be fully integrated

and automated in the feedback loop and will require mini-

mum human assistance. In this way, we would be able to get

immediate feedback and insights from developers involved

in the alert management, which is needed for obtaining a

complete evaluation of the smart filter. Moreover, since our

study provides prescriptions for problems in a very specific

industrial context, in the future we aim to validate our solu-

tion in other similar contexts.

Acknowledgments This work was partially supported by the Wal-

lenberg Artificial Intelligence, Autonomous Systems and Software

Program (WASP) funded by Knut and Alice Wallenberg Foundation.

We thank the DevOps teams for their willingness to share insights and

respond to our questions.

Funding Open access funding provided by Lund University. This

study was partially supported by the Wallenberg Artificial Intelligence,

Autonomous Systems and Software Program (WASP) funded by Knut

and Alice Wallenberg Foundation. No grant number available.

Compliance with Ethical Standards

Conflict of interest Adha Hrusto declares that she has no conflict of in-

terest. Per Runeson declares that he has no conflict of interest. Emelie

Engström declares that she has no conflict of interest.

Ethical approval All procedures performed in studies involving human

participants were in accordance with the ethical standards of the insti-

tutional and/or national research committee and with the 1964 Helsinki

declaration and its later amendments or comparable ethical standards.

This article does not contain any studies with animals performed by

any of the authors.

Consent to participate Informed consent was obtained from all indi-

vidual participants included in the study.

Consent to publish The case company has consented to the submission

of the case report to the journal.

Code availability The code is available upon request in a private

GitHub repository, https:// github. com/ adha7/ smart- alert- filter.

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are

included in the article's Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in

the article's Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. William P, John S, Tony E, Andriy M. On challenges of cloud

monitoring. In Proceedings of the 27th Annual International Con-

ference on Computer Science and Software Engineering, CAS-

CON ’17, page 259–265, USA, 2017. IBM Corp.

 2. Ståhl D, Mårtensson T, Bosch J. Continuous practices and devops:

Beyond the buzz, what does it all mean? In 2017 43rd Euromicro

Conference on Software Engineering and Advanced Applications

(SEAA), pages 440–448, Vienna, 2017. IEEE.

 3. Capizzi A, Distefano S, Mazzara M. From DevOps to DevData-

Ops: Data management in devops processes. In Jean-Michel B,

Manuel M, Bertrand M, editors, Software Engineering Aspects of

Continuous Development and New Paradigms of Software Pro-

duction and Deployment, pages 52–62. Springer, New York, 2020.

 4. Fitzgerald B, Stol K-J. Continuous software engineering: a road-

map and agenda. J Syst Softw. 2017;123:176–89.

 5. Felderer M, Russo B, Auer F. On testing data-intensive software

systems. In Stefan B, Matthias E, Arndt L, Edgar RW, editors,

Security and Quality in Cyber-Physical Systems Engineering,

With Forewords by Robert M. Lee and Tom Gilb, pages 129–148.

Springer, 2019.

 6. Zhao N, Chen J, Peng X, Wang H, Wu X, Zhang Y, Chen Z,

Zheng X, Nie X, Wang G, Wu Y, Zhou F, Zhang W, Sui K, Pei

D. Understanding and handling alert storm for online service

systems. In 2020 IEEE/ACM 42nd International Conference on

Software Engineering: Software Engineering in Practice (ICSE-

SEIP), pages 162–171, 2020.

 7. Runeson P, Engström E, Storey M-A. The design science para-

digm as a frame for empirical software engineering. In Michael

F, Guilherme HT, editors, Contemporary Empirical Methods in

Software Engineering, pages 127–147. Springer, 2020.

 8. Dang Y, Lin Q, Huang P. AIOps: Real-World Challenges and

Research Innovations. In 2019 IEEE/ACM 41st International

Conference on Software Engineering: Companion Proceedings

(ICSE-Companion), pages 4–5, Montreal, QC, Canada, May 2019.

IEEE.

 9. Laukkanen E, Itkonen J, Lassenius C. Problems, causes and solu-

tions when adopting continuous delivery—A systematic literature

review. Inf Softw Technol. 2017;82:55–79.

 10. Pilar R, Alireza H, Lucy EL, Susanna T, Tanja S, Juho E, Teemu

K, Pasi K, June MV, Markku O. Continuous deployment of soft-

ware intensive products and services: a systematic mapping study.

J Syst Softw. 2017;123:263–91.

 11. Mojtaba S, Muhammad AB, Liming Z. Continuous integration,

delivery and deployment: a systematic review on approaches,

tools, challenges and practices. IEEE Access. 2017;5:3909–43.

 12. Mishra A, Otaiwi Z. Devops and software quality: a systematic

mapping. Comput Sci Rev. 2020;38:100308.

 13. Suonsyrjä S, Hokkanen L, Terho H, Systä K, Mikkonen T. Post-

deployment data: A recipe for satisfying knowledge needs in soft-

ware development? In IWSM-MENSURA , pages 139–147. IEEE,

2016.

 14. Alessandro O, Donglin L, Mary JH, Richard L. Gamma system:

continuous evolution of software after deployment. SIGSOFT

Softw Eng Notes. 2002;27(4):65–9.

https://github.com/adha7/smart-alert-filter
http://creativecommons.org/licenses/by/4.0/

 SN Computer Science (2021) 2:447447 Page 14 of 14

SN Computer Science

 15. Pietrantuono R, Bertolino A, De Angelis G, Miranda B, Russo S.

Towards Continuous Software Reliability Testing in DevOps. In

2019 IEEE/ACM 14th International Workshop on Automation of

Software Test (AST), pages 21–27, Montreal, QC, Canada, May

2019. IEEE.

 16. Xu X, Zhu L, Fu M, Sun D, Binh Tran A, Rimba P, Dwara-

kanathan S, Bass L. Crying wolf and meaning it: Reducing false

alarms in monitoring of sporadic operations through pod-monitor.

2015 IEEE/ACM 1st International Workshop on Complex Faults

& Failures in Large Software Systems (COUFLESS), pages 69 –

75, 2015.

 17. Zhao N, Jin P, Wang L, Yang X, Liu R, Zhang W, Sui K, Pei

D. Automatically and Adaptively Identifying Severe Alerts for

Online Service Systems. In IEEE INFOCOM 2020 - IEEE Confer-

ence on Computer Communications, pages 2420–2429, Toronto,

ON, Canada, July 2020. IEEE.

 18. Cito J, Wettinger J, Lwakatare LE, Borg M, Li F. Feedback from

operations to software development–a DevOps perspective on

runtime metrics and logs. In Jean-Michel Bruel, Manuel Maz-

zara, and Bertrand Meyer, editors, Software Engineering Aspects

of Continuous Development and New Paradigms of Software Pro-

duction and Deployment, pages 184–195. Springer International

Publishing, 2019.

 19. Capizzi A, Distefano S, Araújo LJP, Mazzara M, Ahmad M,

Bobrov E. Anomaly detection in DevOps Toolchain. In Jean-

Michel Bruel, Manuel Mazzara, and Bertrand Meyer, editors,

Software Engineering Aspects of Continuous Development and

New Paradigms of Software Production and Deployment, pages

37–51. Springer International Publishing, 2020.

 20. Du M, Li F, Zheng G, Srikumar V. DeepLog: Anomaly Detec-

tion and Diagnosis from System Logs through Deep Learning. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, pages 1285–1298, Dallas Texas

USA, October 2017. ACM.

 21. He S, Zhu J, He P, Lyu MR. Experience Report: System Log

Analysis for Anomaly Detection. In 2016 IEEE 27th International

Symposium on Software Reliability Engineering (ISSRE), pages

207–218, Ottawa, ON, Canada, October 2016. IEEE.

 22. Fu X, Ren R, McKee SA, Zhan J, Sun N. Digging deeper into

cluster system logs for failure prediction and root cause diagnosis.

In 2014 IEEE International Conference on Cluster Computing

(CLUSTER), pages 103–112, Madrid, Spain, September 2014.

IEEE.

 23. He S, Lin Q, Lou J-G, Zhang H, Lyu MR, Zhang D. Identifying

impactful service system problems via log analysis. In Proceed-

ings of the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of

Software Engineering - ESEC/FSE 2018, pages 60–70, Lake

Buena Vista, FL, USA, 2018. ACM Press.

 24. Lin Q, Zhang H, Lou J-G, Zhang Y, Chen X. Log clustering based

problem identification for online service systems. In Proceedings

of the 38th International Conference on Software Engineering

Companion - ICSE ’16, pages 102–111, Austin, Texas, 2016.

ACM Press.

 25. Cito J, Leitner P, Gall HC, Dadashi A, Keller A, Roth A. Runtime

metric meets developer: Building better cloud applications using

feedback. In 2015 ACM International Symposium on New Ideas,

New Paradigms, and Reflections on Programming and Software

(Onward!) - Onward! 2015, pages 14–27, Pittsburgh, PA, USA,

2015. ACM Press.

 26. Islam MS, Pourmajidi W, Zhang L, Steinbacher J, Erwin T,

Miranskyy A. Anomaly detection in a large-scale cloud platform.

In 2021 IEEE/ACM 43rd International Conference on Software

Engineering: Software Engineering in Practice (ICSE-SEIP),

pages 150–159, 2021.

 27. Gardin F, Gautier R, Goix N, Ndiaye B, Schertzer J-M. Machine

learning with logical rules in Python. https:// github. com/ scikit-

learn- contr ib/ skope- rules, 2020.

 28. Friedman JH, Popescu BE. Predictive learning via rule ensembles.

Ann Appl Stat. 2008;2(3):916–54.

 29. Zhao Y, Nasrullah Z, Li Z. Pyod: A Python toolbox for scalable

outlier detection. J Mach Learn Res. 2019;20(96):1–7.

 30. Li Z, Zhao Y, Botta N, Ionescu C, Hu X. Copod: Copula-based

outlier detection. In 2020 IEEE International Conference on Data

Mining (ICDM), pages 1118–1123. IEEE, 09 2020.

Publisher's Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

https://github.com/scikit-learn-contrib/skope-rules
https://github.com/scikit-learn-contrib/skope-rules

	Closing the Feedback Loop in DevOps Through Autonomous Monitors in Operations
	Abstract
	Introduction
	Background and Related Work
	Research Approach
	Case Description
	Problem Conceptualization
	Alert Flooding as Targeting Problem
	Alert Flooding as Optimization Problem
	Interoperability Flaws Between Developed System and External Systems

	Solution Design
	Prototype Implementation and Empirical Validation
	Discussion and Conclusion
	Acknowledgments
	References

