
Closing the Gap Between Theory and Practice:
New Measures for On-Line Algorithm Analysis

Reza Dorrigiv and Alejandro López-Ortiz

Cheriton School of Computer Science,
University of Waterloo,

Waterloo, ON, N2L 3G1, Canada
{rdorrigiv,alopez-o}@uwaterloo.ca

Abstract. We compare the theory and practice of online algorithms,
and show that in certain instances there is a large gap between the pre-
dictions from theory and observed practice. In particular, the competi-
tive ratio which is the main technique for analysis of online algorithms
is known to produce unrealistic measures of performance in certain set-
tings. Motivated by this we examine first the case of paging. We present
a study of the reasons behind this apparent failure of the theoretical
model. We then show that a new measure derived from first principles
and introduced by [Angelopoulos, Dorrigiv and López-Ortiz, SODA 2007]
better corresponds to observed practice. Using these ideas, we derive a
new framework termed the cooperative ratio that generalizes to all other
online analysis settings and illustrate with examples in list update1.

1 Introduction

Competitive analysis has long been established as the canonical approach for
the analysis of on-line algorithms. Informally, an on-line algorithm processes the
input in an on-line manner; that is, the input is a sequence of requests that
arrive sequentially in time and the algorithm must make irrevocable decisions
with only partial or no knowledge about future requests.

The competitive ratio was formally introduced by Sleator and Tarjan [33],
and it has served as a practical framework for studying on-line algorithms. An
algorithm (assuming a cost-minimization problem) is said to be α-competitive if
the cost of serving any specific request sequence never exceeds α times the op-
timal cost (up to some additive constant) of an off-line algorithm which knows
the entire sequence. The competitive ratio has been applied to a variety of prob-
lems and settings such as on-line paging, list update, geometric searching/motion
planning and on-line approximation of NP-complete problems. Indeed the growth
and strength of the field of on-line algorithms is due in no small part to the ef-
fectiveness of this measure in the course of practical analysis: the measure is
1 This paper presents the unifying concepts behind a series of papers on on-line al-

gorithm analysis by the authors, which as a whole lead to a new model for on-line
algorithm analysis. See [4,5,18,19,20,21] where aspects of this proposal are discussed
separately and at length on their own.

S.-i. Nakano and Md.S. Rahman (Eds.): WALCOM 2008, LNCS 4921, pp. 13–24, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

14 R. Dorrigiv and A. López-Ortiz

relatively simple to define yet powerful enough to quantify, to a large extent,
the performance of an on-line algorithm. Furthermore computing the competi-
tive ratio has proven to be effective—even in cases where the exact shape of the
off-line optimum opt is unknown.

On the other hand, there are known applications in which competitive analysis
yields unsatisfactory results. In some cases it results in unrealistically pessimistic
measures, in others it fails to distinguish between algorithms that have vastly dif-
fering performance under any practical characterization. Most notably, for the
case of paging and on-line motion planning algorithms, competitive analysis does
not reflect observed practice, as first noted by Sleator and Tarjan in their seminal
paper [33]. Such anomalies have led to the introduction of many alternatives to the
competitive analysis of on-line algorithms [8,10,11,13,14,16,22,24,25,27,28,35].

In this paper we study the reasons behind this disconnect, using paging as
a case study. We show then that a newly introduced measure by Angelopou-
los, Dorrigiv and López-Ortiz [5] refines the model and resolves most of these
issues for paging. We then generalize the ideas to other settings which leads to
a general framework termed the adaptive/cooperative ratio for the analysis of
on-line algorithms. This model gives promising results when applied to three
well known on-line problems, paging, list update and motion planning. The idea
is to normalize the performance of an on-line algorithm by a measure other than
the performance of the off-line optimal algorithm OPT. We show that in many
instances the performance of OPT on a sequence is a coarse approximation of
the difficulty or complexity of this input. Using a finer, more natural measure
we can separate paging and list update algorithms which were otherwise indis-
tinguishable under the classical model. This creates a performance hierarchy of
algorithms which better reflects the intuitive relative strengths between them.
Surprisingly, certain randomized algorithms for paging and list update which are
superior to the deterministic optimum in the classical model are not so in the
cooperative model. This confirms that the ability of the on-line adaptive algo-
rithm to ignore pathological worst cases can lead to algorithms that are more
efficient in practice.

2 Definitions

Let σ = (σ1, σ2, . . .) be an input sequence. We denote by σ1:j = (σ1, σ2, . . . , σj)
the prefix subsequence of the first j requests in σ. An on-line algorithm A for
an optimization problem takes as input a sequence σ = (s1, s2, . . . , sn). The
algorithm A processes the request sequence in order, from σ1 onwards and pro-
duces a partial solution with cost A(σ1:j) after the arrival of the jth request (for
convenience of notation we will denote as A(σ) = costA(σ)).

In general it is assumed that the length of the sequence is unknown before-
hand and hence an on-line algorithm performs the same steps on the common
prefix of two otherwise distinct input sequences. More formally, if σ′ is a prefix of
σ then A(σ′) = A(σ1:|σ′|). In contrast, the off-line optimal algorithm, denoted as

Closing the Gap Between Theory and Practice 15

opt has access to the entire sequence at once and hence does not necessarily
meet the prefix condition.

Definition 1. An on-line algorithm A is said to have competitive ratio C(n) if,
for all input sequences σ we have: A(σ) ≤ C(|σ|) · OPT(σ).

Equivalently, using the more conventional ratio notation, we have that an algo-
rithm is C(n)–competitive iff

C(n) = max
|σ|=n,n≥No

{
A(σ)

OPT(σ)

}
.

3 Paging

Paging is a fundamental problem in the context of the analysis of on-line al-
gorithms. A paging algorithm mediates between a slower and a faster memory.
Assuming a cache of size k, it decides which k memory pages to keep in the
cache without the benefit of knowing in advance the sequence of upcoming page
requests. After receiving the ith page request if the page requested is in the cache
(known as a hit) it is served at no cost; else, in the case of a fault the page is
served from slow memory at a cost of one unit. In this event the request results
in a cache miss and the on-line algorithm must decide irrevocably which page
to evict without the benefit of knowing the sequence of upcoming page requests.
The goal of a paging algorithm is to minimize the number of faults over the
entire input sequence, that is, the cost of a particular solution.

Three well known paging algorithms are Least-Recently-Used (LRU), First-In-
First-Out (FIFO), and Flush-When-Full (FWF). On a fault, if the cache is full,
LRU evicts the page that is least recently requested, FIFO evicts the page that
is first brought to the cache, and FWF empties the entire cache. All these paging
algorithms have competitive ratio k, which is the best among all deterministic
on-line paging algorithms [9].

3.1 Theory Versus Practice

As was mentioned earlier, the standard model for paging does not lead to sat-
isfactory conclusions which are replicated in practice. With the goal of closing
the gap between theory and practice, we examine the difference in assumptions
between the theoretical competitive ratio model and the practical systems re-
search approach to paging. We now discuss in detail the differences which also
appear summarized in Table 1.

1. The theoretical model for the study of paging algorithms is the competitive
ratio framework, in contrast, the vast majority of systems research on paging
uses the fault rate measure, which simply determines the percentage of page
requests leading to a page fault. Consider for example a request sequence of
1M pages, such that an on-line algorithm A has 200 page faults while the
off-line optimum has twenty faults. This means that A has a competitive

16 R. Dorrigiv and A. López-Ortiz

ratio of 10 which is high, while in terms of the fault rate model A has a page
fault rate of 0.002% which is very good.

2. In the worst case one can devise highly contrived request sequences with a
very high competitive ratio for any paging algorithm. Since these sequences
do not occur naturally, measuring the performance of an online algorithm
using them does not shed light on the actual relative performance of vari-
ous algorithms. Practical studies in contrast use an extensive set of real-life
request sequences (traces) gathered from diverse set of applications, over
which the performance of any online strategy can be measured.

3. Under the competitive ratio all marking algorithms have the same compet-
itive ratio. In other words LRU and FWF are equal under this measure. In
contrast, experimental analysis has consistently shown that LRU and/or mi-
nor variants thereof are typically the best choices in practice, while FWF is
much worse than LRU. The competitive ratio then fails to separate between
these algorithms with very different performance in practice.

4. In terms of practice the theoretical model suggests that LRU might be prefer-
able for “practical” heuristic reasons. In actuality, since paging algorithms
are executed concurrently with every page access this limits the complexity
of any solution, and hence practical heuristic solutions are simplifications
and approximations of LRU.

5. Competitive analysis uses an optimal off-line algorithm as a baseline to com-
pare on-line algorithms. While this may be convenient, it is rather indirect:
one could argue that in comparing A to B all we need to study is the rela-
tive cost of the algorithms on the request sequences. The approach we follow
stems from this basic observation. The indirect comparison to an off-line op-
timal can introduce spurious artifacts due to the comparison of two objects
of different types, namely an online and an off-line algorithm. As well the off-
line optimum benefits from aspects other than the difficulty of the instances,
namely it can take advantage of knowledge of the future, so regardless of the
difficulty of servicing a request it might do better as a consequence of this2.
In contrast the fault rate measure uses a direct comparison of the number of
faults per access of paging algorithms to determine which one is preferable.

6. Interestingly, even if algorithms are measured using the competitive ratio, in
practice the worst case request sequence encountered using LRU has compet-
itive ratio 4, and most sequences measure are well below that with competi-
tive ratio between two and four. Contrast this with the predicted competitive
ratio of k under the theoretical model.

7. The off-line optimum model implicitly creates an adversarial model in which
the paging algorithm must be able to handle all request sequences, including
those maliciously designed to foil the paging algorithm. In contrast, in real
life, programmers and compilers purposely avoid bad request sequences and

2 For example consider the decision whether to purchase car insurance or not [8]. If
one purchases insurance then the adversary selects the input in which no claim is
filed, if alternatively no insurance is bought then the adversary selects the input in
which an accident takes place. In real life, however, it is easy to see that the best
on-line strategy is to buy insurance so long as it is priced below the expected loss.

Closing the Gap Between Theory and Practice 17

try to arrange the data in a way so as to maximize locality of reference in
the request sequence (e.g. the I/O model [1], or the cache oblivious model
[30]). In game theoretical terms, the theoretical competitive model is a zero
sum game in which the adversary benefits from a badly performing paging
algorithm, while in practice paging is a positive sum game in which both
the user and the paging algorithm can maximize their respective perfor-
mances by cooperating and coordinating their strategies. Indeed it has been
observed that paging algorithms optimize for locality of reference because
this was first observed in real life traces, and now compilers optimize code to
increase locality of reference because those paging algorithms excel on those
sequences.

8. Lastly, we observe that finite lookahead does not help in the theoretical
model, as this is a worst case measure (simply repeat each request for as
long as the lookahead is) yet in practice instruction schedulers in many cases
know the future request sequence for a small finite lookahead and can use
this information to improve the fault rate of paging strategies.

Table 1. Contrast of theory versus practice for paging

Theoretical Model Systems Framework

Competitive ratio framework Fault rate measure
Worst case analysis Typical case analysis

Marking algorithms optimal LRU and variants thereof are best
In practice LRU is best LRU is impractical
LFD is off-line optimal No analogous concept
Competitive ratio is k Comp. ratio over observed sequences is at most 4

User is a malicious adversary User (compiler/programmer) seeks
locality of reference

No benefit from lookahead Lookahead helps

3.2 Related Work

In this section we overview some alternatives to the competitive ratio. We refer
the reader to the survey of Dorrigiv and López-Ortiz [18] for a more comprehen-
sive and detailed exposition.

Loose competitiveness, which was first proposed by Young in [35] and later
refined in [38], considers an off-line adversary that is oblivious to the parameter
k (the cache size). The adversary must produce a sequence that is bad for most
values of k rather than for just a specific value. It also ignores the sequences
on which the on-line algorithm incurs a cost less than a certain threshold. This
results in a weaker adversary and hence in paging algorithms with constant per-
formance ratios. The diffuse adversary model by Koutsoupias and Papadimitriou
[28] as well as Young [36,37] refines the competitive ratio by restricting the set

18 R. Dorrigiv and A. López-Ortiz

of legal request sequences to those derived from a class (family) of probability
distributions. This restriction follows from the observation that although a good
performance measure could in fact use the actual distribution over the request
sequences, determining the exact distribution of real-life phenomena is a difficult
task.

The Max/Max ratio, introduced by Borodin and Ben-David [8] compares on-
line algorithms based on their amortized worst-case behaviour (here the amorti-
zation arises by dividing the cost of the algorithm over the length of the request
sequence). The relative worst order ratio [11,12,15] combines some of the desir-
able properties of the Max/Max ratio and the random order ratio (introduced
in [27] in the context of the on-line bin packing problem). As with the Max/Max
ratio, it allows for direct comparison of two on-line algorithms. Informally, for
a given request sequence the measure considers the worst-case ordering (per-
mutation) of the sequence, for each of the two algorithms, and compares their
behaviour on these orderings. It then finds among all possible sequences the one
that maximizes this worst-case performance. Recently, Panagiotou and Souza
proposed a model that explains the good performance of LRU in practice [29].
They classify input sequences according to some parameters and prove an upper
bound on the competitive ratio of LRU as a function of these parameters. Then
they argue that sequences in practice have parameters that lead a to constant
competitive ratio for LRU.

There are several models for paging which assume locality of reference
Borodin, Raghavan, Irani, and Schieber [10] proposed the access graph model
in which the universe of possible request sequences is reduced to reflect that the
actual sequences that can arise depend heavily on the structure of the program
being executed. The space of request sequences can then be modeled by a graph
in which paths between vertices correspond to actual sequences. In a general-
ization of the access graph model, Karlin, Phillips, and Raghavan [26] proposed
a model in which the request sequences are distributed according to a Markov
chain process. Becchetti [7] refined the diffuse adversary model of Koutsoupias
and Papadimitriou by considering only probabilistic distributions in which tem-
poral locality of reference is present. Torng [34] considered the decomposition of
input sequences to phases in the same manner as marking algorithms. He then
modeled locality of reference by restricting the input to sequences with long
average phase length. Using the full access cost model, he computed the perfor-
mance of several paging algorithms on sequences with high locality of reference.
Most notably, Albers, Favrholdt, and Giel [2] introduced a model in which in-
put sequences are classified according to a measure of locality of reference. The
measure is based on Denning’s working set concept [17] which is supported by
extensive experimental results. The technique used, which we term concave anal-
ysis, reflects the fact that efficient algorithms must perform competitively in each
class of inputs of similar locality of reference, as opposed to the worst case alone.
It should be noted that [2] focuses on the fault rate as the measure of the cost
of an algorithm, as opposed to the traditional definition of cost as the number
of cache misses.

Closing the Gap Between Theory and Practice 19

4 Bijective Analysis and Average Analysis

Bijective Analysis and Average Analysis are two models recently proposed by
Angelopoulos, Dorrigiv and López-Ortiz [5] for comparing on-line algorithms.
In this section, we first provide the formal definitions of Bijective Analysis and
Average Analysis and then apply them to the paging algorithms. These models
have certain desired characteristics for comparing online algorithms: they allow
for direct comparison of two on-line algorithms without appealing to the con-
cept of the off-line “optimal” cost (see [5] for a more detailed discussion). In
addition, these measures do not evaluate the performance of the algorithm on a
single “worst-case” request, but instead use the cost that the algorithm incurs
on each and all request sequences. Informally, Bijective Analysis aims to pair
input sequences for two algorithms A and B using a bijection in such a way
that the cost of A on input σ is no more than the cost of B on the image of
σ, for all request sequences σ of the same length. In this case, intuitively, A is
no worse than B. On the other hand, Average Analysis compares the average
cost of the two algorithms over all request sequences of the same length. For an
on-line algorithm A and an input sequence σ, let A(σ) be the cost incurred by
A on σ. Denote by In the set of all input sequences of length n.

Definition 2. [5] We say that an on-line algorithm A is no worse than an
on-line algorithm B according to Bijective Analysis if there exists an integer
n0 ≥ 1 so that for each n ≥ n0, there is a bijection b : In ↔ In satisfying
A(σ) ≤ B(b(σ)) for each σ ∈ In. We denote this by A �b B. Otherwise we
denote the situation by A ��b B. Similarly, we say that A and B are the same
according to Bijective Analysis if A �b B and B �b A. This is denoted by
A ≡b B. Lastly we say A is better than B according to Bijective Analysis if
A �b B and B ��b A. We denote this by A ≺b B.

Definition 3. [5] We say that an on-line algorithm A is no worse than an on-
line algorithm B according to Average Analysis if there exists an integer n0 ≥ 1
so that for each n ≥ n0,

∑
I∈In

A(I) ≤
∑

I∈In
B(I). We denote this by A �a B.

Otherwise we denote the situation by A ��a B. A ≡a B, and A ≺a B are defined
as for Bijective Analysis.

In [5] it is shown that LRU is strictly better than FWF under Bijective Analysis.
Additionally, lookahead is beneficial in Bijective Analysis model: more specifi-
cally, LRU with lookahead as small as one (namely the sequence is revealed
to the algorithm as consecutive pairs of requests) is strictly better than LRU
without any lookahead. Both of these results describe natural, “to-be-expected”
properties of the corresponding paging strategies which competitive analysis
nevertheless fails to yield.

Also it turns out that a very large class of natural paging strategies known as
lazy algorithms (including LRU and FIFO, but not FWF) are in fact strongly
equivalent under this rather strict bijective measure. The strong equivalence of
lazy algorithms is evidence of an inherent difficulty to separate these algorithms
in any general unrestricted setting. In fact, it implies that to obtain theoretical

20 R. Dorrigiv and A. López-Ortiz

separation between algorithms we must either induce a partition of the request
sequence space (e.g. as in Albers et al. [2]) or assume a distribution (or a set
of distributions) on the sequence space (e.g. as in Koutsoupias and Papadim-
itriou [28], Young [36] and Becchetti [7]). The latter group of approaches use
probabilistic assumptions on the sequence space. However, we are interested in
measures that separate algorithms under a deterministic model.

Next we briefly describe concave analysis. In this model a request sequence
has high locality of reference if the number of distinct pages in a window of
size n is small. Consider a function that represents the maximum number of
distinct pages in a window of size n within a given request sequence. Extensive
experiments with real data show that this function can be bounded by a concave
function for most practical request sequences [2]. Let f be an increasing concave
function. We say that a request sequence is consistent with f if the number of
distinct pages in any window of size n is at most f(n), for any n ∈ N . Now we can
model locality by considering only those request sequences that are consistent
with f .

Using a combination of Average Analysis and concave analysis, Angelopoulos
et al. [5] show that LRU is never outperformed in any possible subpartition on the
request sequence space induced by concave analysis, while it always outperforms
any other paging algorithm in at least one subpartition of the sequence space.
This result proves separation between LRU and all other algorithms and provides
theoretical backing to the observation that LRU is preferable in practice.

To be more precise we restrict the input sequences to those consistent with a
given concave function f . Let If denote the set of such sequences. We can easily
modify the definitions of Bijective Analysis and Average Analysis (Definition 2
and Definition 3) by considering If instead of I. We denote the corresponding
relations by A �f

b B, A �f
a B, etc. Note that we can make any sequence consis-

tent with f by repeating every request a sufficient number of times. Therefore
even if we restrict the input to sequences with high locality of reference, there
is a worst case sequence for LRU that is consistent with f and therefore the
competitive ratio of LRU is the same as in the standard model. Observe that
the performance of a paging algorithm is now evaluated within the subset of
request sequences of a given length whose locality of reference is consistent with
f , i.e. If

n .

Theorem 1 (Unique optimality of LRU). [5] For any concave function
f and any paging algorithm A, LRU �f

a A. Furthermore, let A be a paging
algorithm other than LRU. Then there is a concave function f so that A ��f

a LRU

which implies A ��f
b LRU.

5 List Update and Cooperative Analysis

List update is a fundamental problem in the context of on-line computation.
Consider an unsorted list of l items. The input to the algorithm is a sequence
of n requests that should be served in an on-line manner. Let A be an arbitrary

Closing the Gap Between Theory and Practice 21

on-line list update algorithm. To serve a request to an item x, A should linearly
search the list until it finds x. If x is the ith item in the list, A incurs cost i
to access x. Immediately after accessing x, A can move x to any position closer
to the front of the list at no extra cost. This is called a free exchange. Also A
can exchange any two consecutive items at a cost of 1. These are called paid
exchanges. An efficient algorithm should use free and paid exchanges so as to
minimize the overall cost of serving a sequence. This is called the standard cost
model [3]. Three well-known deterministic on-line algorithms are Move-To-Front
(MTF), Transpose, and Frequency-Count (FC). MTF moves the requested item
to the front of the list whereas Transpose exchanges the requested item with
the item that immediately precedes it. FC maintains a frequency count for each
item, updates this count after each access, and makes necessary moves so that
the list always contains items in non-increasing order of frequency count. Sleator
and Tarjan showed that MTF is 2-competitive, while Transpose and FC do not
have constant competitive ratios [33].

The competitive analysis of list update algorithms does not have as many
drawbacks as paging and at first it gives promising results: list update algorithms
with better competitive ratio tend to have better performance in practice. How-
ever, in terms of separation list update algorithms have similar drawbacks to
paging: while algorithms can generally be more easily distinguished than in the
paging case, the experimental study of list update algorithms by Bachrach and
El-Yaniv suggests that the relative performance hierarchy as computed by the
competitive ratio does not correspond to the observed relative performance of
the algorithms in practice [6].

Like paging, “real-life” input sequences for list update problem usually exhibit
locality of reference. As stated before, for the paging problem, several models for
capturing locality of reference have been proposed [2,7,34]. Likewise, many re-
searchers have pointed out that input sequences of list update algorithms in
practice show locality of reference [9,23,32] and actually on-line list update al-
gorithms try to take advantage of this property [23,31]. Hester and Hirschberg
[23] posed the question of providing a good definition of locality of accesses for
the list update problem as an open problem. In addition, it has been commonly
assumed, based on intuition and experimental evidence, that MTF is the best al-
gorithm on sequences with high locality of reference, e.g., Hester and Hirschberg
[23] claim: “move-to-front performs best when the list has a high degree of local-
ity”. However, to the best of our knowledge, locality of reference for list update
algorithms had not been formally studied, until recently [4,19].

In [4], Angelopoulos, Dorrigiv and López-Ortiz extended the concave anal-
ysis model [2] to the list update problem. The validity of the extended model
was supported by experimental results obtained on the Calgary Corpus, which
is frequently used as a standard benchmark for evaluating the performance
of compression algorithms (and by extension list update algorithms, e.g. [6]).
They combined Average Analysis with concave analysis and proved that under
this model MTF is never outperformed, while it always outperforms any other

22 R. Dorrigiv and A. López-Ortiz

on-line list update algorithm. Thus, [4] resolved the open problem posed by Hes-
ter and Hirschberg [23].

Based on adaptive analysis ideas, Dorrigiv and López-Ortiz [19] proposed co-
operative analysis for analyzing on-line algorithms. The idea behind cooperative
analysis is to give more weight to “well-behaved” input sequences. Informally,
an on-line algorithm has good cooperative ratio if it performs well on good se-
quences and not too poorly on bad sequences. For example, as stated before,
input sequences for paging and list update have locality of reference in practice,
therefore one possibility is to relate goodness of sequences to their amount of
locality. In [19], we showed that cooperative analysis of paging and list update
algorithms gives promising results. Here we just briefly describe the results for
list update. We use a measure of badness that is related to locality of reference
as follows. For a sequence σ of length n, define dσ[i] for 1 ≤ i ≤ n as either 0 if
this is the first request to item σ[i], or otherwise, the number of distinct items
that are requested since the last request to σ[i] (including σ[i]). Define �(σ), the
non-locality of a sequences σ, as �(σ) =

∑
1≤i≤n dσ[i].

Definition 4. [19] We say that an on-line list update algorithm A has locality-
cooperative ratio α if there is a constant β so that for every sequence σ, A(σ) ≤
α× �(σ)+β. We define locality-cooperative ratio of A, LCR(A), as the smallest
number α so that A has locality-cooperative ratio α.

The following theorem summarizes the results proved for locality-cooperative
ratio of list update algorithms.

Theorem 2. [19] For any on-line list update algorithm A, 1 ≤ LCR(A) ≤ l;
furthermore:
1. LCR(MTF) = 1.
2. LCR(Transpose) ≥ l/2.
3. LCR(FC) ≥ l+1

2 ≈ l/2.
4. LCR(TS) ≥ 2l

l+1 ≈ 2.
5. LCR(Bit) ≥ 3l+1

2l+2 ≈ 3/2.

6 Conclusions

In this paper, we highlighted the gap between theoretical and experimental re-
sults for some on-line problems and possible ways to close this gap. We observed
that standard measure for analysis of on-line algorithms, i.e., competitive anal-
ysis, leads to results that are not consistent with practice for paging and list
update. Then we described reasons for the shortcomings of competitive anal-
ysis and described several new models for analysis of on-line algorithms that
do not have these drawbacks. Bijective Analysis and Average Analysis directly
compare two on-line algorithms on all sequences of the same length and lead to
satisfactory results when applied to paging and list update. The new concept of
cooperative ratio applies adaptive analysis ideas to the analysis of on-line algo-
rithms and divides the cost of the algorithm on a sequence to some property of
that sequence.

Closing the Gap Between Theory and Practice 23

References

1. Aggarwal, A., Vitter, J.S.: The Input/Output complexity of sorting and related
problems. Communications of the ACM 31(9), 1116–1127 (1988)

2. Albers, S., Favrholdt, L.M., Giel, O.: On paging with locality of reference. Journal
of Computer and System Sciences 70(2), 145–175 (2005)

3. Albers, S., Westbrook, J.: Self-organizing data structures. In: Fiat, A. (ed.) Online
Algorithms. LNCS, vol. 1442, pp. 13–51. Springer, Heidelberg (1998)

4. Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: List update with locality of refer-
ence: Mtf outperforms all other algorithms. Technical Report CS-2006-46, Univer-
sity of Waterloo, Cheriton School of Computer science (November 2006)

5. Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: On the separation and equiva-
lence of paging strategies. In: SODA 2007. Proceedings of the 18th ACM-SIAM
Symposium on Discrete Algorithms, pp. 229–237 (2007)

6. Bachrach, R., El-Yaniv, R.: Online list accessing algorithms and their applications:
Recent empirical evidence. In: SODA 1997. Proceedings of the 8th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 53–62 (1997)

7. Becchetti, L.: Modeling locality: A probabilistic analysis of LRU and FWF. In:
Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 98–109. Springer,
Heidelberg (2004)

8. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms.
Algorithmica 11, 73–91 (1994)

9. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

10. Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality
of reference. Journal of Computer and System Sciences 50, 244–258 (1995)

11. Boyar, J., Favrholdt, L.M.: The relative worst order ratio for on-line algorithms. In:
Proceedings of the 5th Italian Conference on Algorithms and Complexity (2003)

12. Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst order ratio applied
to paging. In: SODA 2005. Proceedings of the 16th ACM-SIAM Symposium on
Discrete Algorithms, pp. 718–727 (2005)

13. Boyar, J., Larsen, K.S.: The Seat Reservation Problem. Algorithmica 25(4), 403–
417 (1999)

14. Boyar, J., Larsen, K.S., Nielsen, M.N.: The Accommodating Function: A gener-
alization of the competitive ratio. SIAM Journal on Computing 31(1), 233–258
(2001)

15. Boyar, J., Medvedev, P.: The relative worst order ratio applied to seat reservation.
In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 90–101.
Springer, Heidelberg (2004)

16. Chrobak, M., Noga, J.: LRU is better than FIFO. Algorithmica 23(2), 180–185
(1999)

17. Denning, P.J.: The working set model for program behaviour. Communications of
the ACM, 11(5) (May 1968)

18. Dorrigiv, R., López-Ortiz, A.: A survey of performance measures for on-line al-
gorithms. SIGACT News (ACM Special Interest Group on Automata and Com-
putability Theory) 36(3), 67–81 (2005)

19. Dorrigiv, R., López-Ortiz, A.: The cooperative ratio of on-line algorithms. Tech-
nical Report CS-2007-39, University of Waterloo, Cheriton School of Computer
science (October 2007)

24 R. Dorrigiv and A. López-Ortiz

20. Dorrigiv, R., López-Ortiz, A.: On certain new models for paging with locality of
reference. In: WALCOM 2008. Proceedings of the 2nd Workshop on Algorithms
and Computation (to appear, 2008)

21. Dorrigiv, R., López-Ortiz, A., Munro, J.I.: On the relative dominance of paging
algorithms. In: ISAAC 2007. Proceedings of the 18th International Symposium on
Algorithms and Computation (to appear, 2007)

22. Fiat, A., Woeginger, G.J.: Competitive odds and ends. In: Fiat, A. (ed.) Online
Algorithms. LNCS, vol. 1442, pp. 385–394. Springer, Heidelberg (1998)

23. Hester, J.H., Hirschberg, D.S.: Self-organizing linear search. ACM Computing Sur-
veys 17(3), 295 (1985)

24. Irani, S.: Competitive analysis of paging. In: Fiat, A., Woeginger, G.J. (eds.) Online
Algorithms. LNCS, vol. 1442, pp. 52–73. Springer, Heidelberg (1998)

25. Irani, S., Karlin, A.R., Phillips, S.: Strongly competitive algorithms for paging with
locality of reference. SIAM Journal on Computing 25, 477–497 (1996)

26. Karlin, A.R., Phillips, S.J., Raghavan, P.: Markov paging. SIAM Journal on Com-
puting 30(3), 906–922 (2000)

27. Kenyon, C.: Best-fit bin-packing with random order. In: SODA 1996. Proceedings
of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 359–364
(1996)

28. Koutsoupias, E., Papadimitriou, C.: Beyond competitive analysis. SIAM Journal
on Computing 30, 300–317 (2000)

29. Panagiotou, K., Souza, A.: On adequate performance measures for paging. In:
STOC 2006. Proceedings of the 38th Annual ACM Symposium on Theory of Com-
puting, pp. 487–496 (2006)

30. Prokop, H.: Cache-oblivious algorithms. Master’s thesis, Massachusetts Institute
of Technology, Dept. of Electrical Engineering and Computer Science (1999)

31. Reingold, N., Westbrook, J., Sleator, D.D.: Randomized competitive algorithms
for the list update problem. Algorithmica 11, 15–32 (1994)

32. Schulz, F.: Two new families of list update algorithms. In: Chwa, K.-Y., Ibarra,
O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 99–108. Springer, Heidelberg (1998)

33. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28, 202–208 (1985)

34. Torng, E.: A unified analysis of paging and caching. Algorithmica 20(2), 175–200
(1998)

35. Young, N.E.: The k-server dual and loose competitiveness for paging. Algorith-
mica 11(6), 525–541 (1994)

36. Young, N.E.: Bounding the diffuse adversary. In: SODA 1998. Proceedings of the
9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 420–425 (1998)

37. Young, N.E.: On-line paging against adversarially biased random inputs. Journal
of Algorithms 37(1), 218–235 (2000)

38. Young, N.E.: On-line file caching. Algorithmica 33(3), 371–383 (2002)

	Introduction
	Definitions
	Paging
	Theory Versus Practice
	Related Work

	Bijective Analysis and Average Analysis
	List Update and Cooperative Analysis
	Conclusions

