
FCCM20	
 Endorsement	

Closing the gap:
CPU and FPGA trends
in sustainable floating-
point BLAS
performance
Keith D. Underwood,
K. Scott Hemmert

Year of publication: 2004
Area: Applications

This paper presents a performance study of double precision, floating-point, dense matrix
operations implemented on several conventional microprocessor and FPGA platforms, predicting
that FPGA peak performance on these operations will outstrip commodity CPU’s and offer the
promise of significantly higher future performance. To support these predictions, issues of
memory bandwidth and on-chip/off-chip memory size are examined in detail.
The dense matrix operations implemented in this paper are members of the Basic Linear Algebra
Subroutines (BLAS) library, an industry standard library defined by Jack Dongarra et al. in the
late 1970’s. BLAS, in turn, is closely tied to the LINPACK benchmark that has become the
standard to gauge the performance of high performance scientific computers. Many
microprocessor companies, such as Intel and AMD, have spent a great deal of time and money
optimizing their versions of these libraries to give the highest performance on their products.
The contribution of this paper is the recognition of the emergence of high-performance, double
precision, floating-point FPGA arithmetic that challenged the long held position of the
commodity microprocessor in scientific computing. This was particularly significant since
floating-point computations were not generally considered viable on FPGAs just a few years
prior to this paper. This seminal paper also sparked a flurry of research in FPGA applications
that require double precision floating-point arithmetic.
Since the publication of this paper, the rapid rise of scientific computing on Graphics Processor
Units (GPU’s) has currently eclipsed both conventional microprocessors and FPGAs alike in
many, if not most, floating-point applications.

Kenneth	
 Pocek	

	

DOI:	
 http://dx.doi.org/10.1109/FCCM.2004.21	

