
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 1467–1478,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Closing the Loop: Fast, Interactive Semi-Supervised Annotation

With Queries on Features and Instances

Burr Settles

Machine Learning Department

Carnegie Mellon University

Pittsburgh, PA 15213 USA

bsettles@cs.cmu.edu

Abstract

This paper describes DUALIST, an active

learning annotation paradigm which solicits

and learns from labels on both features (e.g.,

words) and instances (e.g., documents). We

present a novel semi-supervised training al-

gorithm developed for this setting, which is

(1) fast enough to support real-time interac-

tive speeds, and (2) at least as accurate as pre-

existing methods for learning with mixed fea-

ture and instance labels. Human annotators in

user studies were able to produce near-state-

of-the-art classifiers—on several corpora in a

variety of application domains—with only a

few minutes of effort.

1 Introduction

In active learning, a classifier participates in its own

training process by posing queries, such as request-

ing labels for documents in a text classification task.

The goal is to maximize the accuracy of the trained

system in the most economically efficient way. This

paradigm is well-motivated for natural language ap-

plications, where unlabeled data may be readily

available (e.g., text on the Internet), but the anno-

tation process can be slow and expensive.

Nearly all previous work in active learning, how-

ever, has focused on selecting queries from the

learner’s perspective. For example, experiments are

often run in simulation rather than with user stud-

ies, and results are routinely evaluated in terms of

training set size rather than human annotation time

or labor costs (which are more reasonable measures

of labeling effort). Many state-of-the-art algorithms

are also too slow to run or too tedious to implement

to be useful for real-time interaction with human an-

notators, and few analyses have taken these factors

into account. Furthermore, there is very little work

on actively soliciting domain knowledge from hu-

mans (e.g., information about features) and incorpo-

rating this into the learning process.

While selecting good queries is clearly important,

if our goal is to reduce actual annotation effort these

human factors must be taken into account. In this

work, we propose a new interactive annotation inter-

face which addresses some of these issues; in partic-

ular it has the ability to pose queries on both features

(e.g., words) and instances (e.g., documents). We

present a novel semi-supervised learning algorithm

that is fast, flexible, and accurate enough to support

these interface design constraints interactively.

2 DUALIST: Utility for Active Learning

with Instances and Semantic Terms

Figure 1 shows a screenshot of the DUALIST an-

notation tool, which is freely available as an open-

source software project1. On the left panel, users

are presented with unlabeled documents: in this case

Usenet messages that belong to one of two sports-

related topics: baseball and hockey. Users may label

documents by clicking on the class buttons listed be-

low each text. In cases of extreme ambiguity, users

may ignore a document by clicking the “X” to re-

move it from the pool of possible queries.

On the right panel, users are given a list of fea-

ture queries organized into columns by class label.

1http://code.google.com/p/dualist/

1467

Figure 1: A screenshot of DUALIST.

The rationale for these columns is that they should

reduce cognitive load (i.e., once a user is in the base-

ball mindset, s/he can simply go down the list, label-

ing features in context: “plate,” “pitcher,” “bases,”

etc.). Within each column, words are sorted by how

informative they are the to classifier, and users may

click on words to label them. Each column also con-

tains a text box, where users may “inject” domain

knowledge by typing in arbitrary words (whether

they appear in any of the columns or not). The list

of previously labeled words appears at the bottom of

each list (highlighted), and can be unlabeled at any

time, if users later feel they made any errors.

Finally, a large submit button is located at the top

of the screen, which users must click to re-train the

classifier and receive a new set of queries. The learn-

ing algorithm is actually fast enough to do this au-

tomatically after each labeling action. However, we

found such a dynamically changing interface to be

frustrating for users (e.g., words they wanted to la-

bel would move or disappear).

2.1 A Generative Model for Learning from

Feature and Instance Labels

For the underlying model in this system, we use

multinomial naı̈ve Bayes (MNB) since it is sim-

ple, fast, and known to work well for several nat-

ural language applications—text classification in

particular—despite its simplistic and often violated

independence assumptions (McCallum and Nigam,

1998; Rennie et al., 2003).

MNB models the distribution of features as a

multinomial: documents are sequences of words,

with the “naı̈ve” assumption that words in each

position are generated independently. Each docu-

ment is treated as a mixture of classes, which have

their own multinomial distributions over words. Let

the model be parameterized by the vector θ, with

θj = P (yj) denoting the probability of class yj , and

θjk = P (fk|yj) denoting the probability of generat-

ing word fk given class yj . Note that for class pri-

ors
∑

j θj = 1, and for per-class word multinomials
∑

k θjk = 1. The likelihood of document x being

generated by class yj is given by:

Pθ(x|yj) = P (|x|)
∏

k

(θjk)
fk(x),

where fk(x) is the frequency count of word fk in

document x. If we assume P (|x|) is distributed in-

dependently of class, and since document length |x|
is fixed, we can drop the first term for classification

purposes. Then, we can use Bayes’ rule to calculate

the posterior probability under the model of a label,

given the input document for classification:

Pθ(yj |x) =
Pθ(yj)Pθ(x|yj)

Pθ(x)
=

θj
∏

k(θjk)
fk(x)

Z(x)
,

(1)

where Z(x) is shorthand for a normalization con-

stant, summing over all possible class labels.

The task of training such a classifier involves es-

timating the parameters in θ, given a set of labeled

instances L = {〈x(l), y(l)〉}Ll=1. To do this, we use

a Dirichlet prior and take the expectation of each

parameter with respect to the posterior, which is a

simple way to estimate a multinomial (Heckerman,

1995). In other words, we count the fraction of times

the word fk occurs in the labeled set among doc-

uments of class yj , and the prior adds mjk “hallu-

cinated” occurrences for a smoothed version of the

maximum likelihood estimate:

θjk =
mjk +

∑

i P (yj |x
(i))fk(x

(i))

Z(fk)
. (2)

Here, mjk is the prior for word fk under class yj ,

P (yj |x
(i)) ∈ {0, 1} indicates the true labeling of the

ith document in the training set, and Z(fk) is a nor-

malization constant summing over all words in the

vocabulary. Typically, a uniform prior is used, such

as the Laplacian (a value of 1 for all mjk). Class pa-

rameters θj are estimated a similar way, by counting

1468

the fraction of documents that are labeled with that

class, subject to a prior mj . This prior is important

in the event that no documents are yet labeled with

yj , which can be quite common early on in the active

learning process.

Recall that our scenario lets human annotators

provide not only document labels, but feature labels

as well. To make use of this additional information,

we assume that labeling the word fk with a class yj
increases the probability P (fk|yj) of the word ap-

pearing in documents of that class. The natural in-

terpretation of this under our model is to increase the

prior mjk for the corresponding multinomial. To do

this we introduce a new parameter α, and define the

elements of the Dirichlet prior as follows:

mjk =

{

1 + α if fk is labeled with yj ,

1 otherwise.

This approach is extremely flexible, and offers three

particular advantages over the previous “pooling

multinomials” approach for incorporating feature la-

bels into MNB (Melville et al., 2009). The pooling

multinomials algorithm averages together two sets

of θjk parameters: one that is estimated from labeled

data, and another derived from feature labels under

the assumption of a boolean output variable (treating

labeled features are “polarizing” factors). Therefore,

pooling multinomials can only be applied to binary

classification tasks, while our method works equally

well for problems with multiple classes. The second

advantage is that feature labels need not be mutu-

ally exclusive, so the word “score” could be labeled

with both baseball and hockey, if necessary (e.g.,

if the task also includes several non-sports labels).

Finally, our framework allows users to conceivably

provide feature-specific priors αjk to, for example,

imply that the word “inning” is a stronger indicator

for baseball than the word “score” (which is a more

general sports term). However, we leave this aspect

for future work and employ the fixed-α approach as

described above in this study.

2.2 Exploiting Unlabeled Data

In addition to document and feature labels, we usu-

ally have access to a large unlabeled corpus. In fact,

these texts form the pool of possible instance queries

in active learning. We can take advantage of this ad-

ditional data in generative models like MNB by em-

ploying the Expectation-Maximization (EM) algo-

rithm. Combining EM with pool-based active learn-

ing was previously studied in the context of instance

labeling (McCallum and Nigam, 1998), and we ex-

tend the method to our interactive scenario, which

supports feature labeling as well.

First, we estimate initial parameters θ′ as in Sec-

tion 2.1, but using only the priors (and no instances).

Then, we apply the induced classifier on the unla-

beled pool U = {x(u)}Uu=1 (Eq. 1). This is the “E”

step of EM. Next we re-estimate feature multino-

mials θjk, using both labeled instances from L and

probabilistically-labeled instances from U (Eq. 2).

In other words, P (yj |x) ∈ {0, 1} for x ∈ L, and

P (yj |x) = Pθ′(yj |x) for x ∈ U . We also weight

the data in U by a factor of 0.1, so as not to over-

whelm the training signal coming from true instance

labels in L. Class parameters θj are re-estimated in

the analogous fashion. This is the “M” step.

For speed and interactivity, we actually stop train-

ing after this first iteration. When feature labels are

available, we found that EM generally converges in

four to 10 iterations, requiring more training time

but rarely improving accuracy (the largest gains con-

sistently come in the first iteration). Also, we ignore

labeled data in the initial estimation of θ′ because L
is too small early in active learning to yield good re-

sults with EM. Perhaps this can be improved by us-

ing an ensemble (McCallum and Nigam, 1998), but

that comes at further computational expense. Fea-

ture labels, on the other hand, seem generally more

reliable for probabilistically labeling U .

2.3 Selecting Instance and Feature Queries

The final algorithmic component to our system is

the selection of informative queries (i.e., unlabeled

words and documents) to present to the annotator.

Querying instances is the traditional mode of ac-

tive learning, and is well-studied in the literature;

see Settles (2009) for a review. In this work we use

entropy-based uncertainty sampling, which ranks all

instances in U by the posterior class entropy under

the model Hθ(Y |x) = −
∑

j Pθ(yj |x) logPθ(yj |x),
and asks the user to label the top D unlabeled doc-

uments. This simple heuristic is an approximation

to querying the instance with the maximum infor-

mation gain (since the class entropy, once labeled,

is zero), under the assumption that each x is repre-

1469

sentative of the underlying natural data distribution.

Moreover, it is extremely fast to compute, which is

important for our interactive environment.

Querying features, though, is a newer idea with

significantly less research behind it. Previous work

has either assumed that (1) features are not assigned

to classes, but instead flagged for “relevance” to the

task (Godbole et al., 2004; Raghavan et al., 2006),

or (2) feature queries are posed just like instance

queries: a word is presented to the annotator, who

must choose among the labels (Druck et al., 2009;

Attenberg et al., 2010). Recall from Figure 1 that

we want to organize feature queries into columns by

class label. This means our active learner must pro-

duce queries that are class-specific.

To select these feature queries, we first rank ele-

ments in the vocabulary by information gain (IG):

IG(fk) =
∑

Ik

∑

j

P (Ik, yj) log
P (Ik, yj)

P (Ik)P (yj)
,

where Ik ∈ {0, 1} is a variable indicating the pres-

ence or absence of a feature. This is essentially

the common feature-selection method for identify-

ing the most salient features in text classification

(Sebastiani, 2002). However, we use both L and

probabilistically-labeled instances from U to com-

pute IG(fk), to better reflect what the model be-

lieves it has learned. To organize queries into

classes, we take the top V unlabeled features and

pose fk for the class yj with which it occurs most

frequently, as well as any other class with which it

occurs at least 75% as often. Intuitively, this ap-

proach (1) queries features that the model believes

are most informative, and (2) automatically identi-

fies classes that seem most correlated. To our knowl-

edge, DUALIST is the first active learning environ-

ment with both of these properties.

3 Experiments

We conduct four sets of experiments to evaluate our

approach. The first two are “offline” experiments,

designed to better understand (1) how our training

algorithm compares to existing methods for feature-

label learning, and (2) the effects of tuning the α

parameter. The other experiments are user studies

designed to empirically gauge how well human an-

notators make use of DUALIST in practice.

We use a variety of benchmark corpora in the fol-

lowing evaluations. Reuters (Rose et al., 2002) is

a collection of news articles organized into topics,

such as acquisitions, corn, earnings, etc. As in pre-

vious work (Raghavan et al., 2006) we use the 10

most frequent topics, but further process the cor-

pus by removing ambiguous documents (i.e., that

belong to multiple topics) so that all articles have

a unique label, resulting in a corpus of 9,002 arti-

cles. WebKB (Craven et al., 1998) consists of 4,199

university web pages of four types: course, faculty,

project, and student. 20 Newsgroups (Lang, 1995)

is a set of 18,828 Usenet messages from 20 different

online discussion groups. For certain experiments

(such as the one shown in Figure 1), we also use

topical subsets. Movie Reviews (Pang et al., 2002)

is a set of 2,000 online movie reviews categorized as

positive or negative in sentiment. All data sets were

processed using lowercased unigram features, with

punctuation and common stop-words removed.

3.1 Comparison of Learning Algorithms

An important question is how well our learning al-

gorithm, “MNB/Priors,” performs relative to exist-

ing baseline methods for learning with labeled fea-

tures. We compare against two such approaches

from the literature. “MaxEnt/GE” is a maximum en-

tropy classifier trained using generalized expectation

(GE) criteria (Druck et al., 2008), which are con-

straints used in training discriminative linear mod-

els. For labeled features, these take the form of ex-

pected “reference distributions” conditioned on the

presence of the feature (e.g., 95% of documents con-

taining the word “inning” should be labeled base-

ball). For each constraint, a term is added to the

objective function to encourage parameter settings

that yield predictions conforming to the reference

distribution on unlabeled instances. “MNB/Pool” is

naı̈ve Bayes trained using the pooling multinomials

approach (Melville et al., 2009) mentioned in Sec-

tion 2.1. We also expand upon MNB/Pool using an

EM variant to make it semi-supervised.

We use the implementation of GE training from

the open-source MALLET toolkit2, and implement

both MNB variants in the same data-processing

pipeline. Because the GE implementation available

2http://mallet.cs.umass.edu

1470

Corpus MaxEnt/GE MNB/Pool Pool+EM1 MNB/Priors Priors+EM1

Reuters 82.8 (22.9) – – – – 83.7 (≤0.1) 86.6 (0.3)

WebKB 22.2 (4.9) – – – – 67.5 (≤0.1) 67.8 (0.1)

20 Newsgroups 49.7 (326.6) – – – – 50.1 (0.2) 70.7 (6.9)

Science 86.9 (5.7) – – – – 71.4 (≤0.1) 92.8 (0.1)

Autos/Motorcycles 90.8 (0.8) 90.1 (≤0.1) 97.5 (≤0.1) 89.9 (≤0.1) 97.6 (≤0.1)

Baseball/Hockey 49.9 (0.8) 90.7 (≤0.1) 96.7 (≤0.1) 90.5 (≤0.1) 96.9 (≤0.1)

Mac/PC 50.5 (0.6) 86.7 (≤0.1) 91.2 (≤0.1) 86.6 (≤0.1) 90.2 (≤0.1)

Movie Reviews 68.8 (1.8) 68.0 (≤0.1) 73.4 (0.1) 67.7 (≤0.1) 72.0 (0.1)

Table 1: Accuracies and training times for different feature-label learning algorithms on benchmark corpora. Classi-

fication accuracy is reported for each model, using only the top 10 oracle-ranked features per label (and no labeled

instances) for training. The best model for each corpus is highlighted in bold. Training time (in seconds) is shown in

parentheses on the right side of each column. All results are averaged across 10 folds using cross-validation.

to us only supports labeled features (and not labeled

instances as well), we limit the MNB methods to

features for a fair comparison. To obtain feature la-

bels in this experiment, we simulate a “feature or-

acle” as in previous work (Druck et al., 2008; At-

tenberg et al., 2010), which is essentially the query

selection algorithm from Section 2.3, but using com-

plete labeled data to compute IG(fk). We con-

servatively use only the top 10 features per class,

which is meant to resemble a handful of very salient

features that a human might brainstorm to jump-

start the learning process. We experiment with

EM1 (one-step EM) variants of both MNB/Pool

and MNB/Priors, and set α = 50 for the latter

(see Section 3.2 for details on tuning this parame-

ter). Results are averaged over 10 folds using cross-

validation, and all experiments are conducted on a

single 2.53GHz processor machine.

Results are shown in Table 1. As expected, adding

one iteration of EM for semi-supervised training im-

proves the accuracy of both MNB methods across all

data sets. These improvements come without signif-

icant overhead in terms of time: training still rou-

tinely finishes in a fraction of a second per fold.

MNB/Pool and MNB/Priors, where they can be

compared, perform virtually the same as each other

with or without EM, in terms of accuracy and speed

alike. However, MNB/Pool is only applicable to bi-

nary classification problems. As explained in Sec-

tion 2.1, MNB/Priors is more flexible, and prefer-

able for a more general-use interactive annotation

tool like DUALIST.

The semi-supervised MNB methods are also con-

sistently more accurate than GE training—and are

about 40 times faster as well. The gains of

Priors+EM1 over MaxEnt/GE are statistically sig-

nificant in all cases but two: Autos/Motorcycles and

Movie Reviews3. MNB is superior when using any-

where from five to 20 oracle-ranked features per

class, but as the number of feature labels increases

beyond 30, GE is often more accurate (results not

shown). If we think of MaxEnt/GE as a discrim-

inative analog of MNB/Priors+EM, this is consis-

tent with what is known about labeled set size in su-

pervised learning for generative/discriminative pairs

(Ng and Jordan, 2002). However, the time complex-

ity of GE training increases sharply with each new

labeled feature, since it adds a new constraint to the

objective function whose gradient must be computed

using all the unlabeled data. In short, GE train-

ing is too slow and too inaccurate early in the ac-

tive learning process (where labels are more scarce)

to be appropriate for our scenario. Thus, we select

MNB/Priors to power the DUALIST interface.

3.2 Tuning the Parameter α

A second question is how sensitive the accuracy of

MNB/Priors is to the parameter α. To study this,

we ran experiments varying α from from one to 212,

using different combinations of labeled instances

and/or features (again using the simulated oracle and

10-fold cross-validation).

3Paired 2-tailed t-test, p < 0.05, correcting for multiple tests

using the Bonferroni method.

1471

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 1 10 100 1000

10 feat
10 feat, 100 inst
100 feat
100 feat, 100 inst

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 1 10 100 1000

10 feat
10 feat, 100 inst
100 feat
100 feat, 100 inst

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 1 10 100 1000

10 feat
10 feat, 100 inst
100 feat
100 feat, 100 inst

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 1 10 100 1000

10 feat
10 feat, 100 inst
100 feat
100 feat, 100 inst

alpha alpha

Reuters WebKB

Science Movie Reviews

Figure 2: The effects of varying α on accuracy for four

corpora, using differing amounts of training data (labeled

features and/or instances). For clarity, vertical axes are

scaled differently for each data set, and horizontal axes

are plotted on a logarithmic scale. Classifier performance

remains generally stable across data sets for α < 100.

Figure 2 plots these results for four of the corpora.

The first thing to note is that in all cases, accuracy is

relatively stable for α < 100, so tuning this value

seems not to be a significant concern; we chose 50

for all other experiments in this paper. A second ob-

servation is that, for all but the Reuters corpus, label-

ing 90 additional features improves accuracy much

more than labeling 100 documents. This is encour-

aging, since labeling features (e.g., words) is known

to be generally faster and easier for humans than la-

beling entire instances (e.g., documents).

For Reuters, however, the additional feature la-

bels appear harmful. The anomaly can be explained

in part by previous work with this corpus, which

found that a few expertly-chosen keywords can

outperform machine learning methods (Cohen and

Singer, 1996), or that aggressive feature selection—

i.e., using only three or four features per class—

helps tremendously (Moulinier, 1996). Corpora like

Reuters may naturally lend themselves to feature se-

lection, which is (in some sense) what happens when

labeling features. The simulated oracle here was

forced to label 100 features, some with very low

information gain (e.g., “south” for acquisitions, or

“proven” for gold); we would not expect humans an-

notators to provide such misleading information. In-

stead, we hypothesize that in practice there may be a

limited set of features with high enough information

content for humans to feel confident labeling, after

which they switch their attention to labeling instance

queries instead. This further indicates that the user-

guided flexibility of annotation in DUALIST is an

appropriate design choice.

3.3 User Experiments

To evaluate our system in practice, we conducted

a series of user experiments. This is in contrast to

most previous work, which simulates active learning

by using known document labels and feature labels

from a simulated oracle (which can be flawed, as we

saw in the previous section). We argue that this is an

important contribution, as it gives us a better sense

of how well the approach actually works in practice.

It also allows us to analyze behavioral results, which

in turn may help inform future protocols for human

interaction in active learning.

DUALIST is implemented as a web-based appli-

cation in Java and was deployed online. We used

three different configurations: active dual (as in Fig-

ure 1, implementing everything from Section 2), ac-

tive instance (instance queries only, no features), and

a passive instance baseline (instances only, but se-

lected at random). We also began by randomly se-

lecting instances in the active configurations, until

every class has at least one labeled instance or one

labeled feature. D = 2 documents and V = 100 fea-

tures were selected for each round of active learning.

We recruited five members of our research group

to label three data sets using each configuration, in

an order of their choosing. Users were first allowed

to spend a minute or two familiarizing themselves

with DUALIST, but received no training regarding

the interface or data sets. All experiments used a

fixed 90% train, 10% test split which was consistent

across all users, and annotators were not allowed to

see the accuracy of the classifier they were train-

ing at any time. Each annotation action was times-

tamped and logged for analysis, and each experi-

ment automatically terminated after six minutes.

Figure 3 shows learning curves, in terms of accu-

racy vs. annotation time, for each trial in the user

study. The first thing to note is that the active

1472

WebKB Science Movie Reviews

annotation time (sec) annotation time (sec) annotation time (sec)

u
s

e
r
 1

u
s

e
r
 2

u
s

e
r
 3

u
s

e
r
 4

u
s

e
r
 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 60 120 180 240 300 360

active dual
active inst

passive inst
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 60 120 180 240 300 360

active dual
active inst

passive inst
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 60 120 180 240 300 360

active dual
active inst

passive inst

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 60 120 180 240 300 360

active dual
active inst

passive inst
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 60 120 180 240 300 360

active dual
active inst

passive inst
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 60 120 180 240 300 360

active dual
active inst

passive inst

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 60 120 180 240 300 360

active dual
active inst

passive inst
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 60 120 180 240 300 360

active dual
active inst

passive inst
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 60 120 180 240 300 360

active dual
active inst

passive inst

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 60 120 180 240 300 360

active dual
active inst

passive inst
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 60 120 180 240 300 360

active dual
active inst

passive inst
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 60 120 180 240 300 360

active dual
active inst

passive inst

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 60 120 180 240 300 360

active dual
active inst

passive inst
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 60 120 180 240 300 360

active dual
active inst

passive inst
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 60 120 180 240 300 360

active dual
active inst

passive inst

Figure 3: User experiments involving human annotators for text classification. Each row plots accuracy vs. time

learning curves for a particular user (under all three experimental conditions) for each of the three corpora (one

column per data set). For clarity, vertical axes are scaled differently for each corpus, but held constant across all users.

The thin dashed lines at the top of each plot represents the idealized fully-supervised accuracy. Horizontal axes show

labeling cost in terms of actual elapsed annotation time (in seconds).

1473

dual configuration yields consistently better learn-

ing curves than either active or passive learning with

instances alone, often getting within 90% of fully-

supervised accuracy (in under six minutes). The

only two exceptions make interesting (and differ-

ent) case studies. User 4 only provided four la-

beled features in the Movie Review corpus, which

partially explains the similarity in performance to

the instance-only cases. Moreover, these were

manually-added features, i.e., he never answered

any of the classifier’s feature queries, thus depriving

the learner of the information it requested. User 5,

on the other hand, never manually added features

and only answered queries. With the WebKB cor-

pus, however, he apparently found feature queries

for the course label to be easier than the other

classes, and 71% of all his feature labels came

from that class (sometimes noisily, e.g., “instructor”

might also indicate faculty pages). This imbalance

ultimately biased the learner toward the course la-

bel, which led to classification errors. These patho-

logical cases represent potential pitfalls that could

be alleviated with additional user studies and train-

ing. However, we note that the active dual interface

is not particularly worse in these cases, it is simply

not significantly better, as in the other 13 trials.

Feature queries were less costly than instances,

which is consistent with findings in previous work

(Raghavan et al., 2006; Druck et al., 2009). The

least expensive actions in these experiments were

labeling (mean 3.2 seconds) and unlabeling (1.8s)

features, while manually adding new features took

only slightly longer (5.9s). The most expensive ac-

tions were labeling (10.8s) and ignoring (9.9s) in-

stance queries. Interestingly, we observed that the

human annotators spent most of the first three min-

utes performing feature-labeling actions (), and

switched to more instance-labeling activity for the

final three minutes (). As hypothesized in Sec-

tion 3.2, it seems that the active learner is exhausting

the most salient feature queries early on, and users

begin to focus on more interpretable instance queries

over time. However, more study (and longer annota-

tion periods) are warranted to better understand this

phenomenon, which may suggest additional user in-

terface design improvements.

We also saw surprising trends in annotation qual-

ity. In active settings, users made an average of one

instance-labeling error per trial (relative to the gold-

standard labels), but in the passive case this rose to

1.6, suggesting they are more accurate on the active

queries. However, they also explicitly ignored more

instances in the active dual condition (7.7) than ei-

ther active instance (5.9) or passive (2.5), indicating

that they find these queries more ambiguous. This

seems reasonable, since these are the instances the

classifier is least certain about. But if we look at

the time users spent on these actions, they are much

faster to label/ignore (9.7s/7.5s) in the active dual

scenario than in the active instance (10.0s/10.7s) or

passive (12.3s/15.4s) cases, which means they are

being more efficient. The differences in time be-

tween dual and passive are statistically significant4.

3.4 Additional Use Cases

Here we discuss the application of DUALIST to a

few other natural language processing tasks. This

section is not meant to show its superiority relative

to other methods, but rather to demonstrate the flex-

ibility and potential of our approach in a variety of

problems in human language technology.

3.4.1 Word Sense Disambiguation

Word Sense Disambiguation (WSD) is the prob-

lem of determining which meaning of a word is be-

ing used in a particular context (e.g., “hard” in the

sense of a challenging task vs. a marble floor). We

asked a user to employ DUALIST for 10 minutes

for each of three benchmark WSD corpora (Moham-

mad and Pedersen, 2004): Hard (3 senses), Line

(6 senses), and Serve (4 senses). Each instance rep-

resents a sentence using the ambiguous word, and

features are lowercased unigram and bigram terms

from the surrounding context in the sentence. The

learned models’ prediction accuracies (on the sen-

tences not labeled by the user) were: 83.0%, 78.4%,

and 78.7% for Hard, Line, and Serve (respectively),

which appears to be comparable to recent supervised

learning results in the WSD literature on these data

sets. However, our results were achieved in less than

10 minutes of effort each, by labeling an average of

76 sentences and 32 words or phrases per task (com-

pared to the thousands of labeled training sentences

used in previous work).

4Kolmogorov-Smirnov test, p < 0.01.

1474

3.4.2 Information Extraction

DUALIST is also well-suited to a kind of large-

scale information extraction known as semantic

class learning: given a set of semantic categories

and a very large unlabeled text corpus, learn to pop-

ulate a knowledge base with words or phrases that

belong to each class (Riloff and Jones, 1999; Carl-

son et al., 2010). For this task, we first processed

500 million English Web pages from the ClueWeb09

corpus (Callan and Hoy, 2009) by using a shallow

parser. Then we represented noun phrases (e.g., “Al

Gore,” “World Trade Organization,” “upholstery”)

as instances, using a vector of their co-occurrences

with heuristic contextual patterns (e.g., “visit to X”

or “X’s mission”) as well as a few orthographic pat-

terns (e.g., capitalization, head nouns, affixes) as

features. We filtered out instances or contexts that

occurred fewer than 200 times in the corpus, result-

ing in 49,923 noun phrases and 87,760 features.

We then had a user annotate phrases and patterns

into five semantic classes using DUALIST: person,

location, organization, date/time, and other (the

background or null class). The user began by insert-

ing simple hyponym patterns (Hearst, 1992) for their

corresponding classes (e.g., “people such as X” for

person, or “organizations like X” for organization)

and proceeded from there for 20 minutes. Since

there was no gold-standard for evaluation, we ran-

domly sampled 300 predicted extractions for each

of the four non-null classes, and hired human eval-

uators using the Amazon Mechanical Turk service5

to estimate precision. Each instance was assigned

to three evaluators, using majority vote to score for

correctness.

Table 2 shows the estimated precision, total ex-

tracted instances, and the number of user-labeled

features and instances for each class. While there

is room for improvement (published results for this

kind of task are often above 80% precision), it is

worth noting that in this experiment the user did not

provide any initial “seed examples” for each class,

which is fairly common in semantic class learning.

In practice, such additional seeding should help, as

the active learner acquired 115 labeled instances for

the null class, but fewer than a dozen for each non-

null class (in the first 20 minutes).

5http://www.mturk.com

Class Prec. # Ext. # Feat. # Inst.

person 74.7 6,478 37 6

location 76.3 5,307 47 5

organization 59.7 4,613 51 7

date/time 85.7 494 51 12

other – 32,882 13 115

Table 2: Summary of results using DUALIST for web-

scale information extraction.

3.4.3 Twitter Filtering and Sentiment Analysis

There is growing interest in language analysis

for online social media services such as Twitter6

(Petrović et al., 2010; Ritter et al., 2010), which al-

lows users to broadcast short messages limited to

140 characters. Two basic but interesting tasks in

this domain are (1) language filtering and (2) sen-

timent classification, both of which are difficult be-

cause of the extreme brevity and informal use of lan-

guage in the messages.

Even though Twitter attempts to provide language

metadata for its “tweets,” English is the default set-

ting for most users, so about 35% of English-tagged

tweets are actually in a different language. Further-

more, the length constraints encourage acronyms,

emphatic misspellings, and orthographic shortcuts

even among English-speaking users, so many tweets

in English actually contain no proper English words

(e.g., “OMG ur sooo gr8!! #luvya”). This may

render existing lexicon-based language filters—and

possibly character n-gram filters—ineffective.

To quickly build an English-language filter for

Twitter, we sampled 150,000 tweets from the Twit-

ter Streaming API and asked an annotator spend 10

minutes with DUALIST labeling English and non-

English messages and features. Features were rep-

resented as unigrams and bigrams without any stop-

word filtering, plus a few Twitter-specific features

such as emoticons (text-based representations of fa-

cial expressions such as :) or :(used to convey feel-

ing or tone), the presence of anonymized usernames

(preceded by ‘@’) or URL links, and hashtags (com-

pound words preceded by ‘#’ and used to label mes-

sages, e.g., “#loveit”). Following the same method-

ology as Section 3.4.2, we evaluated 300 random

predictions using the Mechanical Turk service. The

6http://twitter.com

1475

estimated accuracy of the trained language filter was

85.2% (inter-annotator agreement among the evalu-

ators was 94.3%).

We then took the 97,813 tweets predicted to be in

English and used them as the corpus for a sentiment

classifier, which attempts to predict the mood con-

veyed by the author of a piece of text (Liu, 2010).

Using the same feature representation as the lan-

guage filter, the annotator spent 20 minutes with

DUALIST, labeling tweets and features into three

mood classes: positive, negative, and neutral. The

annotator began by labeling emoticons, by which

the active learner was able to uncover some interest-

ing domain-specific salient terms, e.g., “cant wait”

and “#win” for positive tweets or “#tiredofthat” for

negative tweets. Using a 300-instance Mechanical

Turk evaluation, the estimated accuracy of the sen-

timent classifier was 65.9% (inter-annotator agree-

ment among the evaluators was 77.4%).

4 Discussion and Future Work

We have presented DUALIST, a new type of dual-

strategy annotation interface for semi-supervised ac-

tive learning. To support this dual-query interface,

we developed a novel, fast, and practical semi-

supervised learning algorithm, and demonstrated

how users can employ it to rapidly develop use-

ful natural language systems for a variety of tasks.

For several of these applications, the interactively-

trained systems are able to achieve 90% of state-

of-the-art performance after only a few minutes of

labeling effort on the part of a human annotator.

By releasing DUALIST as an open-source tool, we

hope to facilitate language annotation projects and

encourage more user experiments in active learning.

This represents one of the first studies of an ac-

tive learning system designed to compliment the

strengths of both learner and annotator. Future di-

rections along these lines include user studies of effi-

cient annotation behaviors, which in turn might lead

to new types of queries or improvements to the user

interface design. An obvious extension in the natural

language domain is to go beyond classification tasks

and query domain knowledge for structured predic-

tion in this way. Another interesting potential appli-

cation is human-driven active feature induction and

engineering, after Della Pietra et al. (1997).

From a machine learning perspective, there is an

open empirical question of how useful the labels

gathered by DUALIST’s internal naı̈ve Bayes model

might be in later training machine learning systems

with different inductive biases (e.g., MaxEnt models

or decision trees), since the data are not IID. So far,

attempts to “reuse” active learning data have yielded

mixed results (Lewis and Catlett, 1994; Baldridge

and Osborne, 2004). Practically speaking, DUAL-

IST is designed to run on a single machine, and

supports a few hundred thousand instances and fea-

tures at interactive speeds on modern hardware. Dis-

tributed data storage (Chang et al., 2008) and paral-

lelized learning algorithms (Chu et al., 2007) may

help scale this approach into the millions.

Finally, modifying the learning algorithm to better

cope with violated independence assumptions may

be necessary for interesting language applications

beyond those presented here. TAN-Trees (Fried-

man et al., 1997), for example, might be able to ac-

complish this while retaining speed and interactiv-

ity. Alternatively, one could imagine online stochas-

tic learning algorithms for discriminatively-trained

classifiers, which are semi-supervised and can ex-

ploit feature labels. To our knowledge, such flexi-

ble and efficient learning algorithms do not currently

exist, but they could be easily incorporated into the

DUALIST framework in the future.

Acknowledgments

Thanks to members of Carnegie Mellon’s “Read the

Web” research project for helpful discussions and

participation in the user studies. This work is sup-

ported in part by DARPA (under contracts FA8750-

08-1-0009 and AF8750-09-C-0179), the National

Science Foundation (IIS-0968487), and Google.

References

J. Attenberg, P. Melville, and F. Provost. 2010. A uni-

fied approach to active dual supervision for labeling

features and examples. In Proceedings of the Euro-

pean Conference on Machine Learning and Principles

and Practice of Knowledge Discovery in Databases

(ECML PKDD). Springer.

J. Baldridge and M. Osborne. 2004. Active learning and

the total cost of annotation. In Proceedings of the Con-

ference on Empirical Methods in Natural Language

Processing (EMNLP), pages 9–16. ACL Press.

1476

J. Callan and M. Hoy. 2009. The clueweb09 dataset.

http://lemurproject.org/clueweb09/.

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hr-

uschka Jr., and T.M. Mitchell. 2010. Toward an ar-

chitecture for never-ending language learning. In Pro-

ceedings of the Conference on Artificial Intelligence

(AAAI), pages 1306–1313. AAAI Press.

F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wal-

lach, M. Burrows, T. Chandra, A. Fikes, and R.E. Gru-

ber. 2008. Bigtable: A distributed storage system for

structured data. ACM Transactions on Computer Sys-

tems, 26(2):1–26.

C.T. Chu, S.K. Kim, Y.A. Lin, Y. Yu, G. Bradski, A.Y.

Ng, and K. Olukotun. 2007. Map-reduce for machine

learning on multicore. In B. Schölkopf, J. Platt, and

T. Hoffman, editors, Advances in Neural Information

Processing Systems, volume 19, pages 281–288. MIT

Press.

W. Cohen and Y. Singer. 1996. Context-sensitive learn-

ing methods for text categorization. In Proceedings of

the ACM SIGIR Conference on Research and Develop-

ment in Information Retrieval, pages 307–315. ACM

Press.

M. Craven, D. DiPasquo, D. Freitag, A. McCallum,

T. Mitchell, K. Nigam, and S. Slattery. 1998. Learn-

ing to extract symbolic knowledge from the world

wide web. In Proceedings of the National Confer-

ence on Artificial Intelligence (AAAI), pages 509–516.

AAAI Press.

S. Della Pietra, V. Della Pietra, and J. Lafferty. 1997.

Inducing features of random fields. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence,

19(4):380–393.

G. Druck, G. Mann, and A. McCallum. 2008. Learn-

ing from labeled features using generalized expecta-

tion criteria. In Proceedings of the ACM SIGIR Con-

ference on Research and Development in Information

Retrieval, pages 595–602. ACM Press.

G. Druck, B. Settles, and A. McCallum. 2009. Ac-

tive learning by labeling features. In Proceedings of

the Conference on Empirical Methods in Natural Lan-

guage Processing (EMNLP), pages 81–90. ACL Press.

N. Friedman, D. Geiger, and M. Goldszmidt. 1997.

Bayesian network classifiers. Machine learning,

29(2):131–163.

S. Godbole, A. Harpale, S. Sarawagi, and S. Chakrabarti.

2004. Document classification through interactive su-

pervision of document and term labels. In Proceed-

ings of the Conference on Principles and Practice of

Knowledge Discovery in Databases (PKDD), pages

185–196. Springer.

M.A. Hearst. 1992. Automatic acquisition of hyponyms

from large text corpora. In Proceedings of the Confer-

ence on Computational Linguistics (COLING), pages

539–545. ACL.

D. Heckerman. 1995. A tutorial on learning with

bayesian networks. Technical Report MSR-TR-95-06,

Microsoft Research.

K. Lang. 1995. Newsweeder: Learning to filter net-

news. In Proceedings of the International Conference

on Machine Learning (ICML), pages 331–339. Mor-

gan Kaufmann.

D. Lewis and J. Catlett. 1994. Heterogeneous un-

certainty sampling for supervised learning. In Pro-

ceedings of the International Conference on Machine

Learning (ICML), pages 148–156. Morgan Kaufmann.

B. Liu. 2010. Sentiment analysis and subjectivity. In

N. Indurkhya and F.J. Damerau, editors, Handbook of

Natural Language Processing,. CRC Press.

A. McCallum and K. Nigam. 1998. Employing EM

in pool-based active learning for text classification.

In Proceedings of the International Conference on

Machine Learning (ICML), pages 359–367. Morgan

Kaufmann.

P. Melville, W. Gryc, and R.D. Lawrence. 2009. Sen-

timent analysis of blogs by combining lexical knowl-

edge with text classification. In Proceedings of the In-

ternational Conference on Knowledge Discovery and

Data Mining (KDD), pages 1275–1284. ACM Press.

S. Mohammad and T. Pedersen. 2004. Combining lex-

ical and syntactic features for supervised word sense

disambiguation. In Hwee Tou Ng and Ellen Riloff,

editors, Proceedings of the Conference on Compu-

tational Natural Language Learning (CoNLL), pages

25–32. ACL Press.

I. Moulinier. 1996. A framework for comparing text cat-

egorization approaches. In Proceedings of the AAAI

Symposium on Machine Learning in Information Ac-

cess. AAAI Press.

A.Y. Ng and M. Jordan. 2002. On discriminative vs.

generative classifiers: A comparison of logistic regres-

sion and naive bayes. In Advances in Neural Infor-

mation Processing Systems (NIPS), volume 14, pages

841–848. MIT Press.

B. Pang, L. Lee, and S. Vaithyanathan. 2002. Thumbs

up: Sentiment classification using machine learning

techniques. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing

(EMNLP), pages 79–86. ACL Press.

S. Petrović, M. Osborne, and V. Lavrenko. 2010.

Streaming first story detection with application to

Twitter. In Proceedings of the North American Asso-

ciation for Computational Linguistics (NAACL), pages

181–189. ACL Press.

H. Raghavan, O. Madani, and R. Jones. 2006. Active

learning with feedback on both features and instances.

Journal of Machine Learning Research, 7:1655–1686.

1477

J.D. Rennie, L. Shih, J. Teevan, and D. Karger. 2003.

Tackling the poor assumptions of naive bayes text clas-

sifiers. In Proceedings of the International Conference

on Machine Learning (ICML), pages 285–295. Mor-

gan Kaufmann.

E. Riloff and R. Jones. 1999. Learning dictionaries for

information extraction by multi-level bootstrapping.

In Proceedings of the Conference on Artificial Intel-

ligence (AAAI), pages 474–479. AAAI Press.

A. Ritter, C. Cherry, and B. Dolan. 2010. Unsupervised

modeling of Twitter conversations. In Proceedings

of the North American Association for Computational

Linguistics (NAACL), pages 172–180. ACL Press.

T. Rose, M. Stevenson, and M. Whitehead. 2002. The

Reuters corpus vol. 1 - from yesterday’s news to to-

morrow’s language resources. In Proceedings of the

Conference on Language Resources and Evaluation

(LREC), pages 29–31.

F. Sebastiani. 2002. Machine learning in automated text

categorization. ACM Computing Surveys, 34(1):1–47.

B. Settles. 2009. Active learning literature survey. Com-

puter Sciences Technical Report 1648, University of

Wisconsin–Madison.

1478

