"This is the peer reviewed version of the following article: Y. Zhu, L. Ouyang, H. Zhong, J. Liu, H. Wang, H. Shao, Z. Huang, M. Zhu, Angew. Chem. Int. Ed. 2020, 59, 8623., which has been published in final form at https://doi.org/10.1002/anie.201915988 This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."

Closing the loop for hydrogen storage: Facile regeneration of NaBH₄ from its hydrolytic product

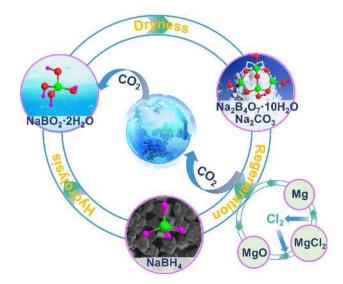
Yongyang Zhu, ^a Liuzhang Ouyang, ^{*ab} Hao Zhong, ^a Jiangwen Liu, ^a Hui Wang, ^a

Huaiyu Shao, *,c Zhenguo Huang*,d, and Min Zhu^a

a: School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, People's Republic of China.

b: China-Australia Joint Laboratory for Energy & Environmental Materials, Key Laboratory of Fuel Cell Technology of Guangdong Province, Guangzhou, 510641, People's Republic of China.

c: Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering (IAPME), Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macau SAR, China. Email: hshao@um.edu.mo


d: School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia. Email: <u>zhenguo.huang@uts.edu.au</u>

* Author to whom correspondence should be addressed.

Liuzhang Ouyang, E-mail address: <u>meouyang@scut.edu.cn</u> Tel: 86-20-87114253, Fax: 86-20-87114253, Huaiyu Shao (<u>hshao@um.edu.mo</u>), and Zhenguo Huang (zhenguo.huang@uts.edu.au)

Abstract:

Sodium borohydride (NaBH4) is among the most studied hydrogen storage materials since it is able to deliver high purity H₂ at room temperature with controllable kinetics via hydrolysis, but its regeneration from the hydrolytic product has been challenging. Herein we report a facile method to regenerate NaBH4 with high yield and low costs. The hydrolytic product NaBO₂ in aqueous solution reacts with CO₂ forming Na₂B₄O₇·10H₂O and NaCO₃, both of which are ball milled with Mg under ambient conditions to form NaBH4 with a high yield close to 80 %. Compared with previous studies, this new approach avoids expensive reducing agent such as MgH₂, bypasses the energy-intensive dehydration procedure to remove water from Na₂B₄O₇·10H₂O, and does not requires high-pressure H₂ gas, therefore leading to much reduced costs. This method is expected to effectively close the loop of NaBH4 regeneration and hydrolysis, enabling a wide deployment of NaBH4 for hydrogen storage. Keywards: borohydride, regeneration, hydrolysis, hydrogen storage

Graphical Abstract:

1 Introduction

Hydrogen has been deemed as an ideal energy carrier due to its high energy density by weight, high abundance, and environmental friendliness [1-3]. However, wide utilization of hydrogen energy has been hampered by a few barriers with one of them associated with storage. Due to its low energy density by volume, hydrogen has been conventionally compressed or liquefied to improve the density. However, these physical processes cause large energy penalty and special care is always required when operating under high pressure or cryogenic conditions. Materials-based hydrogen storage has therefore received strong attention since it has attractive features such as higher capacity, better safety, and milder operation conditions.

Sodium borohydride (NaBH₄) is among the most studied candidates as a hydrogen storage material. NaBH₄ can release hydrogen via hydrolysis with good controllability, high hydrogen purity, high gravimetric hydrogen storage capacity and environmentally benign by-products [4-6]. The hydrolysis of NaBH₄ is typically expressed by the following reaction:

$$NaBH_4 + (2+x)H_2O \rightarrow NaBO_2 \cdot xH_2O + 4H_2 (1)$$

The spent fuel is normally hydrated sodium metaborate (NaBO₂) in aqueous solution [7]. The regeneration of NaBH₄ from the hydrolytic product so far has featured high costs and low yields.

NaBO₂ in aqueous solution reacts with CO₂ in air forming Na₂B₄O₇·10H₂O and NaCO₃ according to the following reaction:

$$4NaBO_2 \cdot xH_2O + CO_2 + (10-4x)H_2O \rightarrow Na_2B_4O_7 \cdot 10H_2O + Na_2CO_3$$
 (2)

 $Na_2B_4O_7 \cdot 10H_2O$ is the main constituent of naturally abundant borax mineral. It is therefore highly appealing to develop a simple, efficient and affordable approach to generate NaBH₄ from $Na_2B_4O_7 \cdot 10H_2O$.

Currently, two types of raw materials, H_2 (H°) and metal hydride (H) have been used as hydrogen sources in the (re)generation of NaBH₄. For example, NaBH₄ can be synthesized by annealing Na₂B₄O₇ with Na and SiO₂ under high pressure H₂ (over 3 MPa) at elevated temperature (400–500°C) [8]. This method is of high cost because the reaction conditions are harsh and a considerable amount of sodium metal is needed. Recently, the preparation of NaBH₄ has been carried out by annealing the dehydrated borax (Na₂B₄O₇) with low-cost magnesium (Mg) at a high temperature (550°C) and high H₂ pressure (2.5MPa) [9]. However, this process is also energy intensive and dangerous. The process can be further optimized by ball milling Na₂B₄O₇ with magnesium hydrides (MgH₂) with a maximum yield of 78% [10, 11]. The use of expensive MgH₂, however, makes mass production by this method less feasible. It should also note that high energy is required to obtain Na₂B₄O₇ by dehydrating Na₂B₄O₇·10H₂O at approximately 600°C [12].

Herein, we present a new method where H^+ in the coordinate water in Na₂B₄O₇ can be directly used as a hydrogen source to prepare NaBH₄. In the new procedure, a mixture of Na₂B₄O₇·xH₂O (x=5, 10) and Na₂CO₃ is obtained by exposing NaBO₂ aqueous solution to CO₂ and then drying at a temperature of < 54 °C. Ball milling the mixture with Mg at room temperature and atmospheric pressure leads to the formation of NaBH₄ with a high yield of 78.9%. Compared with the literature procedures that require dehydrated Na₂B₄O₇, MgH₂, high pressure H₂, and/or high temperatures, the new method utilize low cost materials and operate under mild reaction conditions, which allow for facile scaled up manufacturing.

2 Experimental

2.1 Materials

Sodium tetraborate decahydrate (Na₂B₄O₇·10H₂O) and sodium tetraborate pentahydrate (Na₂B₄O₇·5H₂O) powders were purchased from Aladdin (Shanghai, China, ACS-grade) and Xiya Reagent (Shandong, China, 99% purity), respectively. Magnesium powder (Mg, 99.8% purity), sodium borohydride (NaBH₄, \geq 98%) and ethylenediamine (C₂H₈N₂, \geq 99% purity) were obtained from Sigma-Aldrich and stored and handled in a glove box (MIKROUNA, China) filled with argon with O₂ and H₂O concentrations below 0.1 ppm. Sulfuric acid (H₂SO₄ (GR)), sodium carbonate (Na₂CO₃, 99.5% purity), sodium hydroxide (NaOH, \geq 99%), potassium iodate (KIO₃, AR-grade), potassium iodide (KI, \geq 99%), starch indicator (\geq 99%), and sodium thiosulfate (Na₂S₂O₃, AR-grade) were purchased from Aladdin. All reagents were used as received without further purification. DI water (18.25 MΩ resistance) obtained from a water purification system (Unique-S10, Guangzhou, China) was used to prepare aqueous solution.

2.2 Synthesis of NaBH4

Mechano-chemical synthesis of NaBH₄ was carried out by ball milling Na₂B₄O₇·xH₂O (x=5, 10), Na₂CO₃ and Mg in a shaker mill (QM-3C, Nanjing, China) at 1000 or 1200 cycle per min (CPM) under ambient temperature. For each experiment,

in a glove box filled with Ar, 1 g of reactants with a specific molar ratio was loaded in a 80 mL jar with a ball-to-powder weight ratio of 50:1. Two different sized steel balls were used. To prevent overheating, the milling process was performed by alternating 30 min of milling with 30 min of rest. NaBH₄ was extracted from the reaction products using anhydrous ethylenediamine under Ar atmosphere at room temperature. Ethylenediamine was added to the ball-milled product in a closed flask which was stirred by a magnetic stirrer. Polytetrafluoroethylene membrane (0.25 µm in pore size) was used to separate the solution from solids. The filtrate was dried in a freeze dryer (Martin Christ, Alpha 1-2LD plus, Germany) to obtain NaBH₄, whose quantity was determined using iodimetric analysis [13]. The yield of NaBH₄ was calculated according to the following equation [14]:

Yield (NaBH₄) =
$$\frac{obtained mass NaBH_4}{theoretical mass NaBH_4} \times 100\%$$

The theoretical amount was based on a full conversion meaning that 1 mole $Na_2B_4O_7 \cdot xH_2O$ (x=5, 10) is converted to 4 mole of NaBH₄.

2.3 Hydrolysis of NaBH₄

Hydrolysis of NaBH₄ was carried out using an apparatus (Fig. S1 in Supporting Information) described in one previous study [15]. About 0.05 g NaBH₄, synthesized or commercial, was hydrolysed in 1.0 mL aqueous solution with 2 wt% CoCl₂ at room temperature. NaBH₄ was first added into a glass tube and CoCl₂ aqueous solution was then injected into the glass tube. The hydrogen evolution was monitored via registering the weight of discharged water using an electronic scale connected to a computer.

2.4 Characterization

The phase composition of the solid powders was investigated by a wide-angle Xray diffractometer (XRD). The X-ray diffraction patterns were recorded at ambient temperature using a Rigaku MiniFlex 300/600 in the range from 10 to 90° diffraction angle with CuK α radiation ($\lambda = 0.15418$ nm) at operating parameters of 40 mA and 45 kV. The samples were smeared on a glass slide in a home-made device and then covered with Scotch tape to prevent exposure to air. Fourier transform infrared spectroscopy (FTIR) was performed on a Nicolet IS50 spectrometer in the region of 4000-400 cm⁻¹. Solid-state ¹¹B magic angle spinning nuclear magnetic resonance (MAS NMR) (Bruker-AVANCE III HD 400) and solution-state (D₂O+0.5M NaOD) NMR (Bruker-AVANCE III HD 500) spectra were collected. The morphology of the samples was inspected by a scanning electron microscope (SEM) (Zeiss, Supra-40) and also a transmission electron microscope (TEM) (Jeol, JEM-2100). Identities of the gaseous products formed during ball milling were determined by a mass spectrometer (MS, Hiden-Qic 20).

3 Results and discussion

3.1 Regeneration and hydrolysis cycle

One key challenge in utilizing NaBH₄ for hydrogen storage lies in its regeneration. Herein we developed a facile procedure to regenerate NaBH₄ from its CO₂ treated hydrolytic product (Fig. 1a). NaBH₄ can be successfully synthesized by ball milling a mixture of Mg, Na₂B₄O₇·10H₂O, and Na₂CO₃ at ambient condition. Fig. 1b shows the XRD qualitative analysis of the powders after 20h milling of a mixture of Mg, Na₂B₄O₇·10H₂O, and Na₂CO₃ in a mole ratio of 24.75:1:1. The diffraction peaks are indexed to NaBH₄ and MgO.

NaBH₄ was isolated from the as-milled product, and its identity and morphology were studied using XRD, FT-IR, NMR, SEM, and TEM. XRD pattern of commercial NaBH₄ (Fig. 1c(2)) show ten peaks at 25.1°, 28.9°, 41.4°, 49.0°, 51.3°, 60.0°, 66.0°, 68.0°, 75.5°, and 81.0°, corresponding to (111), (200), (220), (311), (222), (400), (331), (420), (422), and (511) of NaBH₄ (ICDD 00-009-0386), respectively. The synthesized NaBH₄ displays the same XRD pattern as the commercial NaBH₄ (Fig. 1c(3)). The FT-IR bands (2200-2400 and 1125 cm⁻¹, corresponding to the B-H stretching and deformation of pure NaBH₄, respectively [16-18]) of the isolated NaBH₄ are in good agreement with the those of commercial NaBH₄ (Fig. S2a). The XRD and FT-IR results are also consistent with the previous studies on NaBH₄ synthesis [18-21]. The BH₄⁻ anion is further confirmed by NMR analysis (Fig.S2b) [22]. Similar to commercial NaBH₄, the synthesized NaBH₄ exists in cubic particles with sizes of several microns (Fig. S3). Selected area electron diffraction (SAED) pattern also indicates the success in obtaining crystalline NaBH₄ (Fig. 1d and Fig. S4).

According to the results obtained from various techniques (XRD, FTIR, NMR, SEM, and TEM), we can conclude that high quality NaBH₄ with crystallography and microstructure similar to commercial NaBH₄ was successfully synthesized by directly ball milling Na₂B₄O₇·10H₂O and Na₂CO₃ with Mg in Ar at room temperature. The synthesis conditions are very mild compared with the previous studies in which NaBH₄ was produced via NaBO₂ reacting with Mg at 350°C under 7 MPa H₂ [23] or Na₂B₄O₇ reacting with Mg at 550°C under 2.5 MPa H₂ [9].

For a closed-loop application, hydrogen evolution performance of the regenerated NaBH₄ is particularly important. Fig. 1e shows the hydrogen production curves of prepared NaBH₄. The prepared NaBH₄ showed good hydrolysis properties and produced 2317 mL/g hydrogen totally in 1.8 min. After the hydrolytic aqueous solution was naturally dried up in air, solid Na₂B₄O₇·10H₂O (ICDD ref. 01-075-1078) powers were obtained, as evidenced by XRD patterns (Fig. 1f) and FT-IR spectra (Fig. S5). Another set of characteristic diffraction peaks can be indexed to Na₃H(CO₃)₂·2H₂O which is composed of Na₂CO₃ and NaHCO₃. The transformation of Na₂CO₃ into NaHCO₃ occurs in the following reaction:

$$Na_2CO_3(aq) + CO_2 + H_2O \rightarrow 2NaHCO_3(3)$$

NaHCO₃ can be avoided by regulating the exposure of the hydrolytic aqueous solution to air. This is supported by experiments that only Na₂B₄O₇·10H₂O and Na₂CO₃ can be obtained by tuning the exposure of NaBO₂ aqueous solution to CO₂ (Fig. S6). We propose a pathway to close the cycle of NaBH₄ hydrolysis and regeneration (Fig. 1a). Comparing with the literature methods, current procedure features low-cost starting materials, mild reactions at room temperature, and requiring no high pressure H₂. The energy efficiency of regeneration can be estimated by systematic modeling, which is beyond the scope of the current work. One important step in the complete cycle is the reformation of Mg metal. Although electrochemical process of extracting Mg is energy intensive, it is widely adopted industrially. Overall, this represents a promising cycle pathway for large-scale application of NaBH₄ as a hydrogen carrier.

Fig. 1 (a) A closed system of NaBH₄ hydrolysis and regeneration. (b) XRD pattern of products obtained via ball milling a mixture of Mg, Na₂B₄O₇·10H₂O, and Na₂CO₃ in 24.75:1:1 molar ratio for 20 h at 1000 CPM. (c) XRD patterns of 1) standard PDF card of NaBH₄, 2) commercial and 3) synthesized NaBH₄. (d) TEM image and SAED pattern of synthesized NaBH₄. (e) Hydrolysis curve of the prepared NaBH₄ in 2 wt% CoCl₂ aqueous solution. (f) XRD patterns of 1) standard PDF card of Na₂B₄O₇·10H₂O, 2) raw Na₂B₄O₇·10H₂O, and 3) compounds obtained after hydrolytic aqueous

solution naturally dried up in air.

3.2 Reaction mechanism

To understand the reaction, Na₂B₄O₇·10H₂O, Na₂CO₃, and Mg mixtures were ball milled for relatively short periods. The XRD diffraction peaks of Na₂B₄O₇·10H₂O become invisible after 5 min milling, along with the appearance of diffraction peaks of Na₂B₄O₇·5H₂O (Fig. 2a), in agreement with FT-IR results (Fig. 2b(2) and Fig. S7). The actual formula of Na₂B₄O₇·5H₂O and Na₂B₄O₇·10H₂O are Na₂B₄O₅(OH)₄·3H₂O and Na₂B₄O₅(OH)₄·8H₂O, respectively, according to the chemical structures [24]. Hydrogen can be detected in this period from the MS of the gas atmosphere (Fig. S8). After 10 min of ball milling, the intensity of diffraction peaks of Na₂B₄O₇·5H₂O decreases significantly. As the milling increases to 30 min, XRD diffraction peaks of MgO become highly visible while those of Na₂B₄O₇·5H₂O and Na₂CO₃ almost disappear. Although the diffraction peaks of NaBH₄ are invisible, the B-H group can be detected by FT-IR (Fig. 2b(4)). The absorption bands of BO₃³⁻ (1500-1300 cm⁻¹) and BO_4^{5-} (1150-950 cm⁻¹) originally present in $[B_4O_5(OH)_4]^{2-}$, and of CO_3^{2-} (1450-1400 cm⁻¹, 877 cm⁻¹) originally present in Na₂CO₃ become very weak and then vanish completely from the spectra (Fig. 2b). As the milling time reaches 5 h, the (200) diffraction peak of NaBH₄ appears.

Considering the observation of $Na_2B_4O_7 \cdot 5H_2O$ and H_2 after 5 min, the first step of the reaction is assumed as follows:

$$Na_{2}B_{4}O_{7} \cdot 10H_{2}O \rightarrow Na_{2}B_{4}O_{7} \cdot 5H_{2}O + 5H_{2}O (4)$$
$$2H_{2}O + Mg \rightarrow Mg(OH)_{2} + H_{2} (5)$$

Under the experiment conditions, the following reactions will subsequently occur [25, 26]:

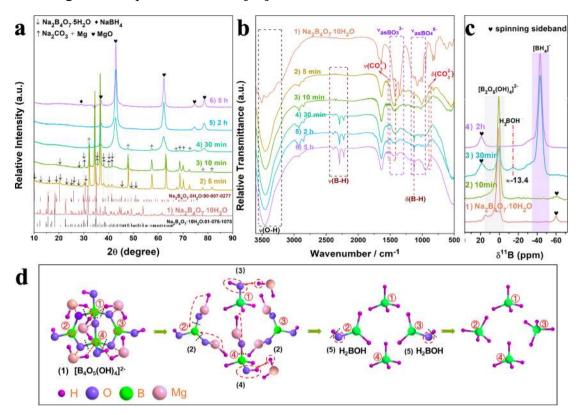
$$Mg + Mg(OH)_2 \rightarrow 2MgO + H_2 (6)$$
$$H_2 + Mg \rightarrow MgH_2 (7)$$

With increasing milling time, NaBH₄, MgO, and also CH₄ (Fig. S8 and Fig. S9) were observed which is associated with this reaction:

$$Na_2B_4O_7 \cdot 5H_2O + Na_2CO_3 + 15MgH_2 \rightarrow 4NaBH_4 + 20MgO + CH_4 + 10H_2$$
 (8)

The overall reaction equation is therefore can be expressed in the following equation:

$$Na_2B_4O_7 \cdot 10H_2O + Na_2CO_3 + 20Mg \rightarrow 4NaBH_4 + 20MgO + CH_4 (9)$$


This reaction is calculated to be favourable in thermodynamics (ΔG^{o}_{298k} = -1326.18 kJ/mol of NaBH₄).

In this closed-loop regeneration (Fig. 1a), CH₄ can be collected and converted to CO₂, which is then used to produce Na₂CO₃. Mg can be regenerated via the commercial method, where MgO is first converted to MgCl₂ and Mg is obtained by electrolysis of MgCl₂.

MgH₂ was not observed in this study, probably because it was consumed *in-situ* due to its high activity. This is in agreement with a previous study where MgH₂ was proposed as an intermediate during NaBH₄ regeneration via ball milling NaB(OH)₄ and Mg [17]. The formation of methane is likely due to the reaction between Na₂CO₃ and

MgH₂ [27, 28]. H₂ was not in the overall reaction (eqn 9) but was observed by MS, which is due to the nature of gas-solid reaction between H₂ and Mg, where it is hard to achieve 100 % conversion.

To further elucidate the reaction mechanism, the ball milled products were characterized by solid-state ¹¹B magic-angle spinning (MAS) NMR (Fig. 2c). After 10 min of ball milling, only $[B_4O_5(OH)_4]^2$ is detected (Fig. 2c(2)). The resonance observed at \approx -13.4 ppm in Fig. 2c(3) after 30 min milling demonstrates the formation of intermediate H₂BOH [21, 29]. The reaction transformation of $[B_4O_5(OH)_4]^{2^-}$ is therefore proposed as shown in Fig. 2d. The unit of $[B_4O_5(OH)_4]^{2^-}$ contains two BO₄ tetrahedra and two BO₃ triangles as showed in Fig. 2d(1). The B-O bond (average bond length: 1.3683 Å) in BO₃ triangles is stronger than the one (average bond length: 1.4418 Å) in BO₄ tetrahedra [30]. Thus, the B-O in BO₄ tetrahedra preferentially breaks, and B forms bond with the H in MgH₂ and the O forms bond with Mg. It is reasonable to assume that three intermediates are formed (Fig. 2d(2-4)). Thermodynamically, Mg is more likely to bond with oxygen to form a more stable compound, MgO (\triangle G_f^o of MgO: -569.3 kJ/mol oxygen; \triangle G_f^o of B₂O₃: -398.1 kJ/mol oxygen) [31]. Therefore, B-O and Mg-H in the B-O-Mg-H intermediate break and the B-H and MgO are formed (Fig. 2d(2,4)). The breaking of the (B)-O-H (O bonded with sp² boron) in Fig. 2d(5) results into formation of intermediate "H₂BOH", which is detected in NMR spectra (Fig. 2c(3)). According to the literature [21], B in "H₂BOH" is Lewis acidic and could accept H from MgH₂. As a result, "BH₄" and MgO are generated. In addition, the "OH" that is bonded with sp³ boron (Fig. 2d(3,4)), is substituted by H in MgH₂ forming "BH₄",

which agrees with previous studies [17].

Fig. 2. (a) XRD patterns and (b) FT-IR spectra of 1) raw Na₂B₄O₇·10H₂O; products obtained after ball milling Mg, Na₂B₄O₇·10H₂O, and Na₂CO₃ mixtures (in 18:1:1 molar ratio) at 1200 CPM for different durations 2) 5 min, 3) 10 min, 4) 30 min, 5) 2 h and 6) 5 h. (c) Solid-state ¹¹B NMR spectra of 1) raw Na₂B₄O₇·10H₂O; products obtained after ball milling for different durations 2) 10 min, 3) 30 min, 4) 2 h. (d) Proposed reaction mechanism between Mg, Na₂CO₃, and Na₂B₄O₇·10H₂O to form NaBH₄.

3.3 Yield of NaBH₄

Efforts have been made to optimize the yield of NaBH₄ by ball milling CO₂ treated hydrolytic products (a mixture of Na₂B₄O₇ \cdot 10H₂O and Na₂CO₃) with Mg. Fig. 3a shows the XRD patterns of the products obtained by ball milling Mg, Na₂B₄O_{7 \cdot}10H₂O, and Na₂CO₃ in a 18:1:1 molar ratio for different durations. After 2.5 h of ball milling,

the diffraction peaks of raw materials disappear, along with the appearance of strong diffraction peaks of MgO. Although the diffraction peaks of NaBH₄ are invisible, the typical BH₄ bands (2200-2400 and 1125 cm⁻¹) are detectable by FT-IR (Fig. 3b(1)), which indicates the formation of NaBH₄ after 2.5h ball milling. As milling time increases to 10h, the diffraction peaks assigned to Fe_2B become visible (Fig. 3a(3)). With further increase in milling time, the diffraction peaks of Fe₂B become stronger while the characteristic FT-IR bands of NaBH₄ become weaker. The FT-IR results indicate that the yield of NaBH₄ firstly increases and then decreases with the milling time (Fig. 3b). Iodometric analysis was carried to quantify NaBH₄ after its isolation from the ball-milled product. The relationship between the yield and milling time is consistent with FT-IR results (Fig. 3b, c), reflecting the fact that NaBH₄ is decomposed after long-time ball-milling. This is likely due to the reaction between NaBH4 and Fe (peeling off the balls and jar after long-time ball-milling), as evidenced by the formation of more Fe₂B as milling time increases (Fig. 3a). The highest yield among the five durations for the mixture with 18:1:1 molar ratio is about 17.4% after 5 h of ball milling (Fig. 3c).

The impact of Mg loading on the yield was also studied (Fig. 3d). For 20h milling, the yield increased when more Mg was used, and it was ~46.9% for a molar ratio of 20.25:1:1 (Mg: Na₂B₄O₇·10H₂O: Na₂CO₃), and reached the maximum of 75.7% for a ratio of 24.75:1:1. The highest yield of 78.9% was obtained after 30 h of ball milling for the sample with 24.75:1:1 mole ratio (Fig. 3c). For this particular batch, the yield after 5 h (38.0%) is already much higher than that with 18:1:1, and the XRD diffraction peaks of NaBH₄ are clearly visible (Fig. 3f). Yields can be improved by increasing the amount of Mg used, which is consistent with previous studies [10, 11, 14, 19, 31, 32]. With a high loading of Mg, powders do not stick to the jar and balls, resulting in better the ball-milling efficiency. In addition, more Mg leads to better contact among all the reactants resulting in favorable yield. Limited by the ball mill machine, only two milling speeds, 1000 and 1200 CPM, were tried, which proves that ball mill speed, ie energy, does impact the yield. Although the energy is higher at 1200 CPM, we fail to obtain better yields under any circumstances, especially for a low molar ratio (Fig. 3d). This is because more Fe peels off the balls and jar for small amount of Mg at high speed and promotes NaBH₄ decomposition (Fig. 3e).

We have also found that when $Na_2B_4O_7 \cdot 10H_2O$ and $Na_2B_4O_7 \cdot 5H_2O$ were ball milled simultaneously with Na_2CO_3 and Mg in a molar ratio of 0.6:0.4:1:22, NaBH₄ was also successfully synthesized (Fig. S10). Mg can also be replaced by Al or Ca to synthesize $NaBH_4$ (Fig. S11). More research is needed to optimize the yields of NaBH₄ from these reactions.

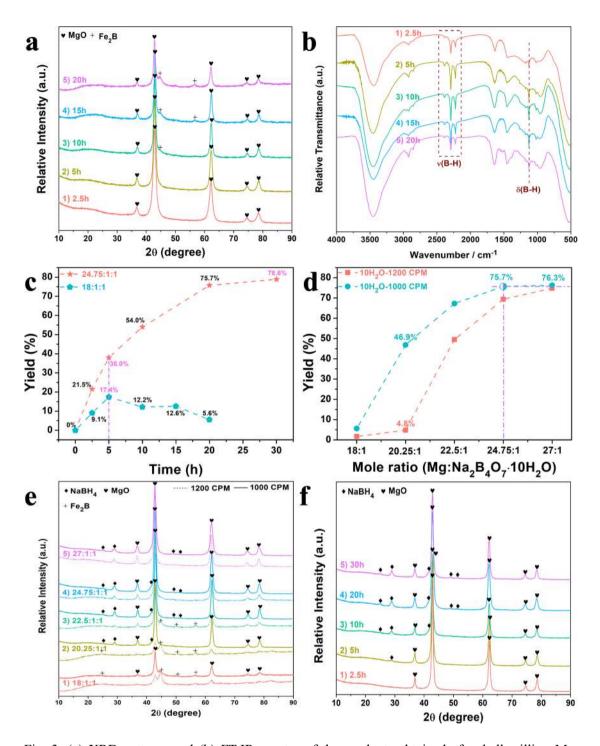


Fig. 3. (a) XRD patterns and (b) FT-IR spectra of the products obtained after ball milling Mg, Na₂B₄O₇·10H₂O, and Na₂CO₃ mixtures (in 18:1:1 molar ratio) at 1000 CPM for different durations.
(c) Yields of NaBH₄ with reactants in different molar ratios at 1000 CPM for different durations.
(d) Yields of NaBH₄ and (e) XRD patterns of the products obtained after ball milling Mg and Na₂B₄O₇·10H₂O in different molar ratios (Na₂B₄O₇·10H₂O and Na₂CO₃ were fixed at 1:1 molar

ratio) for 20h at 1000 CPM and 1200 CPM, respectively. (f) XRD patterns of the products obtained via ball milling Mg, $Na_2B_4O_7 \cdot 10H_2O$, and Na_2CO_3 in a molar ratio of 24.75:1:1 at 1000 CPM for different durations.

4. Conclusions

In summary, we present a closed pathway for utilizing NaBH₄ for hydrogen storage. The regeneration of NaBH₄ can be achieved by ball milling its CO₂ treated hydrolytic product (Na₂B₄O₇·10H₂O and Na₂CO₃) and Mg under ambient condition, with the yield being among the highest reported so far. This process outperforms the literature methods in several key aspects. First of all, the current yield is the best among the reported literatures [10, 14, 19, 33-35] (Table S1). Secondly, the direct use of Na₂B₄O₇·10H₂O avoids high temperatures (over 600°C [12]) required to dehydrate Na₂B₄O₇·10H₂O. Thirdly, this process does not need expensive MgH₂, which is usually obtained by high-temperature reaction between Mg and H₂. When comparing this method with reported process using MgH₂, Na₂CO₃ and Na₂B₄O₇ [10], the cost of the raw materials in this method is reduced by 24-fold (Table S2). This indicates a promising pathway for large-scale application of NaBH₄ as a hydrogen carrier.

Acknowledgement

This work was financially supported by the National Key R&D Program of China (No. 2018YFB15-02100), Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. NSFC51621001), National Natural Science

Foundation of China Projects (Nos. 51771075) and by the Project Supported by Natural Science Foundation of Guangdong Province of China (2016A030312011). Author Ouyang also thanks Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2014). Z.H. acknowledges support under the Australian Research Council's Discovery Projects funding scheme (project number DP170101773). Shao acknowledges support from Macau Science and Technology Development Fund (FDCT)

(Project No.: 0062/2018/A2 and 118/2016/A3).

References

[1] A.F. Dalebrook, W. Gan, M. Grasemann, S. Moret, G. Laurenczy, Chem. Commun., 49 (2013) 8735-8751. [2] I.P. Jain, Int. J. Hydrogen Energy, 34 (2009) 7368-7378. [3] L. Schlapbach, A. Züttel, Nature, 414 (2001) 353-358. [4] Y. Kojima, Y. Kawai, H. Nakanishi, S. Matsumoto, J. Power Sources, 135 (2004) 36-41. [5] R.B. Biniwale, S. Rayalu, S. Devotta, M. Ichikawa, Int. J. Hydrogen Energy, 33 (2008) 360-365. [6] E.Y. Marreroalfonso, A.M. Beaird, T.A. Davis, M.A. Matthews, Ind. Eng. Chem. Res., 48 (2009) 3703-3712. [7] M.A. Budroni, S. Garroni, G.R.C. Mulas, M. Rustici, J. Phys. Chem. C, 121 (2017) 4891-4898. [8] F. Schubert, K. Lang, W. Schlabacher, in, DE Pat. 1067005, 1959. [9] İ. Kayacan, Ö. M. Doğan, B. Z. Uysal, Int. J. Hydrogen Energy, 36 (2011) 7410-7415. [10] Z.P. Li, N. Morigazaki, B.H. Liu, S. Suda, J. Alloys Compd., 349 (2003) 232-236. [11] C. Çakanyıl dırım, M. Gürü, Energy Sources, 34 (2012) 1104–1113. [12] A. Ekmekyapar, A. Ahmet Baysar, A. Künkül, Ind. Eng. Chem. Res., 36 (1997) 3487-3490. [13] D.A. Lyttle, E.H. Jensen, W.A. Struck, Anal. Chem., (1952) 1843-1844. [14] L. Kong, X. Cui, H. Jin, J. Wu, H. Du, T. Xiong, Energy Fuels, 23 (2009) 5049-5054. [15] L. Ouyang, M. Ma, M. Huang, R. Duan, H. Wang, L. Sun, M. Zhu, Energies, 8 (2015) 4237-4252. [16] L.Z. Ouyang, H. Zhong, Z.M. Li, Z.J. Cao, H. Wang, J.W. Liu, X.K. Zhu, M. Zhu, J. Power Sources, 269 (2014) 768-772. [17] L. Ouyang, W. Chen, J. Liu, M. Felderhoff, H. Wang, M. Zhu, Adv. Energy Mater., 7 (2017) 1700299.

[18] H. Zhong, L.Z. Ouyang, J.S. Ye, J.W. Liu, H. Wang, X.D. Yao, M. Zhu, Energy Storage Materials, 7 (2017) 222-228. [19] C.L. Hsueh, C.H. Liu, B.H. Chen, C.Y. Chen, Y.C. Kuo, K.J. Hwang, J.R. Ku, Int. J. Hydrogen Energy, 34 (2009) 1717-1725. [20] M. Huang, H. Zhong, L. Ouyang, C. Peng, X. Zhu, W. Zhu, F. Fang, M. Zhu, M. Huang, H. Zhong, J. Alloys Compd., 729 (2017) 1079-1085. [21] C. Lang, Y. Jia, J. Liu, H. Wang, L. Ouyang, M. Zhu, X. Yao, Int. J. Hydrogen Energy, 42 (2017) 13127-13135. [22] J. Huang, Y. Yan, A. Remhof, Y. Zhang, D. Rentsch, Y.S. Au, P.E.D. Jongh, F. Cuevas, L. Ouyang, M. Zhu, Dalton Trans., 45 (2016) 3687-3690. [23] J.F. Hull, Y. Himeda, W.H. Wang, B. Hashiguchi, R. Periana, D.J. Szalda, J.T. Muckerman, E. Fujita, Nat. Chem., 4 (2012) 383-388. [24] I. Waclawska, J. Therm. Anal., 43 (1995) 261-269. [25] Y. Chen, J.S. Williams, J. Alloys Compd., 217 (1995) 181-184. [26] I.P. Jain, C. Lal, A. Jain, Int. J. Hydrogen Energy, 35 (2010) 5133-5144. [27] E. Mukhina, A. Kolesnikov, V. Kutcherov, Scientific reports, 7 (2017) 5749. [28] J.Y. Chen, L.J. Jin, J.P. Dong, H.F. Zheng, G.Y. Liu, Chin. Chem. Lett., 19 (2008) 475-478. [29] A.C. Stowe, W.J. Shaw, J.C. Linehan, B. Schmid, T. Autrey, Phys. Chem. Chem. Phys., 9 (2007) 1831-1836. [30] Y. Wang, S. Pan, X. Hou, L. Gang, D. Jia, Solid State Sci., 42 (2015) 1726-1730. [31] Z. P. Li, B. H. Liu, N. Morigasaki, S. Suda, J. Allovs Compd., 354 (2003) 243-247. [32] Ç. Çakanyıl dırım, M. Gürü, Renewabl e Energy, 35 (2010) 1895-1899. [33] W. Chen, L.Z. Ouyang, J.W. Liu, X.D. Yao, H. Wang, Z.W. Liu, M. Zhu, J. Power Sources, 359 (2017) 400-407. [34] A.K. Figen, S. Pişkin, Int. J. Hydrogen Energy, 38 (2013) 3702-3709. [35] B. H. Liu, Z. P. Li, J. K. Zhu, J. Alloys Compd., 476 (2009) L16-L20.