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Abstract. This paper describes a new approach for solving disjunctive temporal
problems such as the open shop and job shop scheduling domains. Much previous
research in systematic search approaches for these problems has focused on de-
veloping problem specific constraint propagators and ordering heuristics. Indeed,
the common belief is that many of these problems are too difficult to solve without
such domain specific models. We introduce a simple constraint model that com-
bines a generic adaptive heuristic with naive propagation, and show that it often
outperforms state-of-the-art solvers for both open shop and job shop problems.

1 Introduction

It is usually accepted that the most efficient methods for solving Open shop and Job
shop scheduling problems are local search algorithms, such as tabu search for job shop
[16, 17] and particle swarm optimization for open shop [20]. However, constraint pro-
gramming often remains the solution of choice. It is indeed relatively competitive [4, 23]
whilst providing a more flexible approach. For instance, one can add domain-specific
constraints without entailing major design revisions. Moreover, it is commonly believed
that the most efficient CP models are those based on strong inference methods, such as
Edge Finding [7, 18], and specific search strategies, such as Texture [9].

In this paper we build on the results of [1] which showed that for open shop prob-
lems a constraint programming approach with strong inference and domain specific
search strategies outperforms the best local search algorithms. Here, we introduce a
constraint model combining simple propagation methods with the generic weighted de-
gree heuristic [5] and empirically show that the complex inference methods and search
strategies can, surprisingly, be advantageously replaced by this naive model.

An n × m open shop problem (OSP) involves n jobs and m machines. A job is
composed of m tasks, each associated with a duration and a machine. Each machine
maps to exactly one task in each job, and can only run a single task at a time. The
objective is to minimise the makespan M , that is, the total duration to run all tasks. A
job shop problem (JSP) is identical except the order of the tasks within each job is fixed.

Our approach relies on a standard model and generic variable ordering and restart
policy. First, each pair of conflicting tasks, whether because they belong to the same
job, or share a machine, are associated through a disjunctive constraint, with a Boolean



variable standing for their relative ordering. Following the standard search procedure
for this class of problems, the search space can thus be restricted to the partial orders on
tasks. Second, the choice of the next (Boolean) variable to branch on is made by com-
bining the current domain sizes of the associated two tasks with the weighted degree of
the corresponding ternary disjunctive constraint. Third, we use restarts, together with a
certain amount of randomization and nogood recording from restarts [13].

We demonstrate that this simple approach outperforms more sophisticated con-
straint models using state of the art heuristics and filtering algorithms implemented in
Choco [8] and Ilog Solver, both on OSPs and JSPs. We believe that the weighted degree
heuristic, within this model, is extremely effective at identifying the contentious pairs
of tasks. In Section 2 we first describe state of the art constraint models and strategies
for open shop and job shop scheduling problems. Next, we describe a lighter model as
well as the search strategies that we use to empirically support our claims. In Section 3,
we present an experimental comparison of our model with state-of-the-art solvers for
open shop and job shop scheduling problems.

2 Constraint Models

Here, we describe the two models that we compared in our experiments on the open
shop and job shop benchmarks. The first model is the accepted state of the art, using
strong inference (global unary resource constraints with the Edge Finding filtering al-
gorithm) as well as specific search heuristics. The second is our lighter and simpler ap-
proach, relying on ternary reified disjunctive constraints, and a variable heuristic largely
based on the generic weighted degree heuristic [5]. We shall refer to the former as the
“heavy” model, and to the latter as the “light” model throughout.

Edge Finding + Profile, “Heavy” Model: In this model, a global filtering algorithm is
used for each unary resource. Let T denote a set of tasks sharing an unary resource and
Ω denote a subset of T . We consider the three following propagation rules:

Not First/Not Last: This rule determines if the task ti cannot be scheduled after or
before a set of tasks Ω. In that case, at least one task from the set must be scheduled
after (resp. before). The domain of task ti can be updated accordingly.

Detectable Precedence: If a precedence ti ≺ tj can be discovered by comparing ti
and tj’s time bounds, then their domains can be updated with respect to all the prede-
cessors or successors.

Edge Finding: This filtering technique determines that some tasks must be executed
first or last in a set Ω ⊆ T . It is the counterpart of the first rule.

Search Strategy: The branching scheme is that proposed in [3] and denoted Profile.
We select a critical pair of tasks sharing the same unary resource and impose an order-
ing. This heuristic, based on the probabilistic profile of the tasks, determines the most
constrained resources and tasks. At each node, the resource and the time point with
the maximum contention are identified, then a pair of tasks that rely most on this re-
source at this time point are selected (it is also ensured that the two tasks are not already
connected by a path of temporal constraints).



Once the pair of tasks has been chosen, the order of the precedence has to be de-
cided. For that purpose, we retain one of the three randomized value ordering heuristics
from the same paper: centroid. The centroid is a real deterministic function of the do-
main and is computed for the two critical tasks. The centroid of a task is the point that
divides its probabilistic profile equally. We commit the sequence which preserves the
ordering of the centroids of the two tasks. If the centroids are at the same position, a
random ordering is chosen. (For a more detailed discussion on filtering techniques for
disjunctive scheduling problems we would point the reader to [2].)

Simple Disjunction + Weighted Degree, “Light” Model: The starting time of each task
ti is represented by a variable ti ∈ [0..M − di]. Next, for every pair of unordered tasks
ti, tj sharing a job or a machine we introduce a Boolean variable bij standing for the
ordering between ti and tj . A value of 0 for bij means that task ti should precede task
tj , whilst a value of 1 stands for the opposite ordering. The variables ti, tj and bij are
linked by the following constraint, on which Bounds Consistency (BC) is maintained:

bij =
{

0⇔ ti + di ≤ tj
1⇔ tj + dj ≤ ti

For n jobs and m machines, this model therefore involves nm(m+ n− 2)/2 Boolean
variables for OSPs, nm(m+ n− 2)/4 for JSPs, and as many disjunctive constraints.

Search Strategy: Instead of searching by assigning a starting time to a single value
on the left branches, and forbidding this value on the right branches, it is common to
branch on precedences. In the heavy model, an unresolved pair of tasks ti, tj is selected
and the constraint ti + di ≤ tj is posted on the left branch whilst tj + dj ≤ ti is
posted on the right branch. In our model, branching on the Boolean variables precisely
simulates this strategy and thus significantly reduces the search space. Indeed, it has
been observed (for instance in [15]) that the existence of a partial ordering of the tasks
(compatible with start times and durations, and such that its projection on any job or
machine is a total order) is equivalent to the existence of a solution. In other words, if
we successfully assign all Boolean variables, the existence of a solution is guaranteed.

We use the weighted degree heuristic [5], which chooses the variable maximising
the total weight of neighbouring constraints, initialised to its degree. A constraint’s
weight is incremented by one each time the constraint causes a failure during search.
We show in Section 3, that the weighted degree heuristic is very efficient in this context.
It is important to stress that the behaviour of this heuristic is dependent on the modelling
choices. Indeed, two different, yet logically equivalent, sets of constraints may distribute
the weights differently. In this model, every constraint involves one and only one search
variable. Moreover, the relative light weight of the model allows the search engine to
explore much more nodes, thus learning weights quicker.

However, at the start of the search, this heuristic is completely uninformed since
every Boolean variable has the same degree (i.e. 1). We use the domain size of the
two tasks ti, tj associated to every disjunct bij to inform the variable selection method
until the weighted degrees effectively kick in. We denote w(ij) the number of times
the search failed while propagating the constraint on ti, tj and bij . We pick the vari-
able minimising the sum of the residual time windows of the two tasks’ starting times,
divided by the weighted degree: (max(ti)+max(tj)−min(ti)−min(tj)+2)/w(ij)



3 Experimental Section

All experiments reported in this paper were run on an Intel Xeon 2.66GHz machine
with 12GB of ram on Fedora 9. Each algorithm run on a problem had an overall time
limit of 3600s. Unless otherwise stated, values were chosen lexically, ties were broken
randomly and nogoods were recorded from restarts.

We first provide evidence that, contrary to popular belief, the domain-specific model
and heuristics are unnecessary for solving these problems. For OSPs, we compare our
model with the heavy model which was recently shown to be the state-of-the-art on
these benchmarks, matching the best metaheuristics on the Taillard benchmarks, and
outperforming both exact and approximate methods on the other two benchmarks [1].
We implemented our algorithm in Mistral [11] and, for better comparison on the OSPs,
in Choco. The code and parameters used for the heavy model are those used in [1].

Next, on JSPs, we compare the same light model implemented in Mistral, with the
heavy model implemented in Ilog Scheduler (algorithm denoted “randomized restart”
in [4]). Once again, we got the code for our comparison from the author and used the
same parameters as were used in that paper.

3.1 Open shop scheduling

We used three widely studied sets of instances: Brucker [6], Gueret & Prins [10], and
Taillard [21]. The problems range from size 3x3 to 20x20, with 192 instances overall.
For all experiments, a sample of 20 runs with different seeds was performed.

The Choco models use a simple randomised constructive heuristic detailed in [1],
and referred to as “CROSH”, to calculate a good initial upper bound, followed by branch
and bound search. The restarting strategy used for the light model (both Choco and
Mistral) was geometric [22], with a base of 256 failures, and a multiplicative factor of
1.3. The heavy model uses the Luby restarting sequence [14] order 3 with a scale factor
tuned to the problem dimensions. We also ran the most effective Mistral model which
only differs from the Choco light model in that a dichotomic search was used instead of
CROSH to get an initial upper bound. The lower bound lb is set to the duration of the
longest job/machine, whilst the upper bound ub in the dichotomic search is initialised
by a greedy algorithm. We repeatedly solve the decision problem with a makespan fixed
to ub+lb

2 , updating lb and ub accordingly, until they have collapsed.
Figure 1 is a log-log plot of the average (a) time and (b) number of nodes taken

by the two models to solve each of the 192 open shop instances. Next, in Table 1,
we selected a subset of 11 of the hardest problems based on overall results, choosing
problems for which at least one of the light and heavy models took over 20 seconds to
solve. This subset consisted of one Gueret-Prins, 4 Taillard and 6 Brucker instances,
respectively of order 10, 20 and 7-8. The results are presented in terms of average time
and average nodes (where a model failed to prove optimality on a problem its time is
taken as 3600s, so in these cases the average time is a lower bound).

Both Choco models proved optimality on all 11 instances. However, the light model
is generally much faster (only slower on 1 of the 11 instances), even though it explores
many more nodes. The Mistral light model was fastest on all problems (nodes for Mis-
tral include those explored in dichotomic search, hence the difference). It is also of
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Fig. 1. Log-log plots of Choco Light vs Heavy models on open shop problems.

interest to note that on the hardest problems (6 Brucker instances), the heavy model
was slightly quicker on average than the (Choco) light model at finding the optimal
solution (310s vs 360s), but was 3 times slower at proving optimality once the solu-
tion had been found (385s vs 125s). This reinforces our belief that the weighted degree
heuristic is adept at identifying the most contentious variables.

In order to better understand the importance of the heuristics to the two models we
ran the same experiments but with the heuristics swapped, “Light-profile” and “Heavy-
domwdeg”. As can be seen in the table, swapping heuristics resulted in worse perfor-
mance in both cases (failing to prove optimality on some problems for both), albeit
more noticeably for combining profile with the light model.

Table 1. Results (Time) For Hard Open Shop Scheduling Problems

Instances Light Heavy Light-profile Heavy-domwdeg Mistral
Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes

GP10-01 6.1 4K 118.4 53K 2523.2 6131K 9.6 3K 0.3 3K
j7-per0-0 854.5 5.1M 1310.9 1.4M 979.1 4.3M 3326.7 2.6M 327.0 8.7M
j7-per10-2 57.6 0.4M 102.7 0.1M 89.5 0.4M 109.6 0.1M 33.5 1.2M
j8-per0-1 1397.1 6.4M 1973.8 1.5M 1729.3. 6.0M 3600.0 2.4M 427.1 10M
j8-per10-0 24.6 0.10M 30.9 0.02M 19.7 0.05M 68.0 0.06M 17.6 0.47M
j8-per10-1 275.2 1.3M 154.8 0.1M 92.8 0.3M 796.7 0.7M 89.3 2.3M
j8-per10-2 335.3 1.6M 651.4 0.6M 754.0 2.7M 697.1 0.6M 93.1 2.3M
tai-20-1 25.4 2K 27.5 3K 2524.7 1458K 34.4 3K 3.9 21K
tai-20-2 56.5 11K 178 42K 3600.0 2261K 81.9 10K 14.1 61K
tai-20-7 47.8 9K 60.9 11K 3600.0 2083K 63.7 8K 9.5 47K
tai-20-8 66.8 14K 108.3 25K 3600.0 2127K 84.8 11K 8.2 39K
Total Avg 286.1 1.3M 428.9 0.4M 1774.3 2.5M 806.6 0.6M 93.0 2.3M

Finally, we investigated whether the difference in restarting strategies might account
for the improvement with the light model. We ran the Luby strategy on the light model
and the geometric strategy on the heavy model. Again, in both cases, the change lead to
a degradation in performance.

Search Heuristics We next assess the impact of the two aspects of the domwdeg
heuristic, task size (dom) and weighted degree (wdeg), on the light model.

The following experiments were run using the Mistral light model with the same
settings as before. However, due to the nature of wdeg and dom, all variable heuristics



were further randomized by randomly choosing from their top three choices when no
tie existed. Furthermore the cutoff for dichotomic search was 30 seconds for each (lb
ub) to allow all heuristics to achieve a good initial upper bound. We present our results
in terms of average makespan found (mks), average percent proven optimal and the
average time over the sample of 20 runs for each problem.

Table 2. Variable Heuristic Comparison: Open Shop Scheduling Problems

Instances dom wdeg domwdeg
Mks Opt(%) Time(s) Mks Opt(%) Time (s) Mks Opt(%) Time (s)

Brucker 1019.7 89.2 1529.2 1019.5 100.0 381.4 1019.5 100.0 249.7
Taillard 1253.7 0.0 3600.0 1215.2 93.7 1423.9 1214.7 100.0 8.8
Total Avg 1113.4 53.0 2358.5 1097.7 97.0 798.4 1097.6 100.0 153.3

Table 2 presents our findings on the Brucker and Taillard instances of Table 1. The
results clearly show the effectiveness of wdeg on these problems. It proved optimality
on average 97% of the time, and in the cases where it failed to prove optimality the
average makespan found was within one of the optimal value. However, as previously
mentioned, it suffers from a lack of discrimination at the start of search. For example,
in the tai-20-* problems there are 7600 variables all with an initial weighted degree
of 1. Discrimination will only occur after the first failure which, given the size of the
problems and the looseness of constraints, can occur deep in search, especially with a
heuristic that is random up until at least one failure occurs.

The domain heuristic is relatively poor on these problems (only proving optimality
53% of the time and finding poor makespans for the tai-20-* problems). However, the
addition of this information to the wdeg heuristic (domwdeg) results in 100% optimality.
The domain factor has two benefits, it provides discrimination at the start of search, and
it improves the quality of the initial weights learnt due to its fail firstness.

3.2 Job shop scheduling

We now compare the light model, implemented in Mistral, with a randomized restart al-
gorithm used in [4], which is implemented in Ilog scheduler. It should be noted that we
are not comparing with Beck’s SGMPCS algorithm, but with the randomized restarts
approach that was used as an experimental comparison by Beck. This algorithm is
nearly identical to the heavy model introduced in Section 2.

All parameters for the algorithm are taken from [4], so the restart strategy is Luby
with an initial failure limit of 1 (i.e there is no scale factor). The variable ordering
heuristic is the profile heuristic described earlier. Randomization is added by randomly
selecting with uniform probability from the top 10% most critical pairs of (machine,
time point). Finally, the standard constraint propagation techniques for scheduling are
used, such as time-table [19], edge-finding [18], and balance constraints [12]. However
nogood recording from restarts isn’t part of the algorithm. We ran experiments on the
same cluster described earlier, using Ilog scheduler 6.2.

The Mistral parameters are the same as for the open shop problems, with the excep-
tion that we used a 300 second cutoff for the dichotomic search in order to achieve a



good initial upper bound. Furthermore, we used a static value ordering heuristic, where
each pair of operations on a machine were ordered based on their relative position in
their job (i.e. if precedences on two jobs state that ti is second and tj is fourth on their
respective jobs, then bij will first branch on 0 during search, i.e. ti precedes tj). (We
experimented with several value heuristics and this proved to be the best.)

Table 3 describes our results on 4 sets of 10 JSP instances proposed by Taillard [21].
The different sets have problems of different sizes (#jobs x #machines). The four sets
are of size 20x15, 20x20, 30x15, 30x20, respectively. For each instance of each set,
10 randomized runs were performed, since problems were rarely solved to optimality
within the cutoff. (This set of experiments took roughly 33 days of CPU time.)

We present our results in terms of averages over each set of problems. In particular,
the average of the mean makespan found per problem in each set, the average of the
best makespan found for each problem in each set, and average standard deviation.

Table 3. Job Shop Scheduling Problems

Instances Scheduler Mistral
Mean Best Std Dev Mean Best Std Dev

tai11-20 1411.1 1409.9 11.12 1407.3 1392.9 24.35
tai21-30 1666.0 1659.0 13.51 1666.8 1655.1 22.91
tai31-40 1936.1 1927.1 18.67 1921.6 1899.2 37.79
tai41-50 2163.1 2153.1 17.85 2143.3 2119.5 42.71

As expected, since we used faster hardware, the results we obtained with Ilog Sched-
uler match, or improve slightly on the values reported in [4]. Both approaches perform
similarly on the first two sets, although best solutions found by mistral are consistently
better than Ilog scheduler. Mistral scales up better on the next two (larger) sets, in-
deed its average mean makespan for each set is better than Scheduler’s average best
makespan in both sets. It is interesting to note that the standard deviation is much larger
for the lighter model. The down side is that it means our approach is less robust. How-
ever, it also means that using parallel computing should improve the lighter model more
than it would improve Scheduler’s results.

4 Conclusion

In this paper we have shown that, contrary to popular belief, disjunctive temporal prob-
lems (such as in the scheduling domain) can be efficiently solved by combining naive
propagation with the generic weighted degree heuristic. Important additional factors
in such an approach are restarting, nogood recording from restarts, a good method for
finding an initial upper bound, and an element of randomization. We have shown that
such an approach can often outperform the state of the art solvers for open shop and job
shop scheduling problems.

However, our approach was not able to match the results of solution guided multi
point constructive search (SGMPCS) for job shop scheduling problems [4]. It is our
belief that a similar solution guided approach can be incorporated into our model to
improve its performance, and this is the direction we intend to take our future work.
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