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ABSTRACT

W epféiefidiat Weaplti Gonf,ofder n has a hamiltonian prism if and only if the graph
Clyn/3-4/3(G) has a hamiltonian prism where Cly,/3_4/3(G) is the graph obtained from
G by sequential adding edges between non-adjacent vertices whose degree sum is at least
4n/3 — 4/3. We show that this cannot be improved to less than 4n/3 — 5.
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1. INTRODUCTION

A spanning cycle in a graph is called a Hamilton cycle. A graph with such a cycle is called
hamiltonian. Hamiltonian problems are one of the most studied in the graph theory, see
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surveys [7, 8]. They trace their history to Sir William Rowan Hamilton to the 1850s.
Various generalizations of the concept of a Hamilton cycle were also introduced, among
them, so-called k-walks and k-trees. A k-walk is a closed spanning walk which visits each
vertex at most k times (thus a Hamilton cycle is a 1-walk) and a k-tree is a spanning tree
with maximum degree k. It is not hard to show [9] that a graph which has a k-tree has
also a k-walk and a graph which has a k-walk has a (k + 1)-tree. Hence, the properties
of “having a k-walk” and “having a k-tree” are interlaced in the following sense:

1-walk = 2-tree = 2-walk = 3-tree = 3-walk - --

Some sufficient and necessary conditions on a graph to have a k-walk / k-tree can be
found in [5].

Recently, another property sandwiched between “having a 2-tree”, i.e., a Hamilton
path, and “having a 2-walk” has attracted attention of researchers [10]. This property is
that the prism of a graph is hamiltonian. The prism of a graph G is the graph obtained
from two copies of G by connecting the pairs of corresponding vertices. If GG is a graph of
order n and size m, then its prism has 2n vertices and 2m + n edges. We often identify
one of the two copies of G in the prism with the graph G itself. It can be shown that
if G has a Hamilton cycle, then its prism is hamiltonian and if its prism is hamiltonian,
then G has a 2-walk [10]. Some old conjectures relaxed from “having a Hamilton cycle”
to “having a hamiltonian prisms” become easy and some seem to remain still hard, e.g.,
it is not known whether there exists a constant k& such that each k-tough graph has a
hamiltonian prism (recall that a graph G is k-tough if, for every subset A of its vertices,
G \ A is connected or has at most k|A| components). This is known to be true for
the property of “having a 2-walk” [6], but the problem in the case of Hamilton cycles,
originally posed by Chvdtal [4], remains open for more than 25 years. Ouly recently,
Bauer, Broersma and Veldman [1] have disproved a stronger conjecture of Chvatal that
each 2-tough graph is hamiltonian by constructing a non-hamiltonian (9/4 — ¢)-tough
graphs.

Another concept which does not obviously translate to the case of hamiltonian prisms
is the concept of graph closures. A k-closure of a graph G, denoted by Cli(G), is the
unique graph obtained from G by recursively joining pairs of non-adjacent vertices whose
degree sum is at least k until no such pair remains. See also a survey on closure concepts
by Broersma, Ryjdcek and Schiermeyer [3]. Thus, if G is a graph of order n, we have:

G = Clzn73(G) - Clgn74(G) c...c(CL (G) - Clo(G) =K,

A graph property is called k-stable if G has the property if and only if Clgx(G) has.
The motivation for this concept comes from the original closure of Bondy and Chvéatal
[2] developed for Hamilton cycles: A graph G of order n is hamiltonian if and only if
Cl,,(G) is hamiltonian and it is known that this cannot be weakened to Cl,,_1(G), i.e., the
property of “having a Hamilton cycle” is n-stable but not (n — 1)-stable. It is also known
that a property of “having a k-walk” for k > 2 is (n — 1)-stable but not (n — 2)-stable.
We remark that a different kind of closures was developed by Ryjacek [11] for Hamilton



Il Please write \titlerunninghead{<(Shortened) Article Title>} in file !! 3

cycles in the class of so-called claw-free graphs. All of these show a tight connection
between hamiltonian problems and closures of graphs and thus the authors of [10] posed
the following problem:

Problem 1. Let G be a graph of order n and let z and y be two non-adjacent vertices
such that the sum of their degrees is at least n. Is it true that G has a hamiltonian prism
if and only if G + xy does?

In particular, this problem asks whether the property of “having a hamiltonian prism”
is n-stable for graphs of order n.

In this paper, we answer this problem in negative by constructing graphs that show the
property of “having a hamiltonian prism” is not k-stable for &k = 4n/3 — 16/3 (Proposi-
tion 1). On the other hand, the main result of this paper is that the prism of a graph G of
order n is hamiltonian if and only if the prism of Cl;(G) is hamiltonian for k = 4n/3—4/3
(Theorem 2). It seems that this could be little improved by tedious case analysis. We
think that the lower bound is tight and decided to pose this as a conjecture to stimulate
research to close the (quite small) gap between the upper and the lower bound:

Conjecture 1. The property of “having a hamiltonian prism” is k-stable with k =
4n/3 — 5 for graphs of order n and this cannot be further improved. [

2. THE MAIN RESULT

In this section, we present our main result. We first show by a double counting argument
(which we formulate using a discharging method) that the property is k-stable with
k =4n/3 —1 (Theorem 1). Next, we improve this to k = 4n/3 — 4/3 by a little technical
case analysis.

Theorem 1. Let G be a graph of order n. Then, G has a hamiltonian prism if and
only if Cly,/3-1(G) has a hamiltonian prism.

Proof. Let G be a fixed graph of order n. Consider two non-adjacent vertices  and
y of G such that the sum of deg(x) and degy(y) is at least 4n/3 — 1. In order to prove
the theorem, it is enough to show that the prism of GG is hamiltonian if and only if the
prism of G 4 xy is hamiltonian (this follows directly from the definition of Cly,/3_1(G)).

Clearly, if the prism of G is hamiltonian, then the prism of G+ xy is also hamiltonian.
Assume now that the prism of G + zy is hamiltonian. In order to show that the prism
of GG is also hamiltonian, we use a double counting argument which is formulated using
the discharging method.

Let us fix a Hamilton cycle C in the prism of G 4 zy which uses the two copies of
the edge xy as few times as possible. Let V and V' be the vertex sets of the copies of
G. If the Hamilton cycle C' omits a counterpart of the edge xy in both copies, then C
is also a Hamilton cycle in the prism of G and we are done. Hence assume by way of
contradiction that the cycle C' traverses the image of the edge zy in the copy of G with
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the vertex set V. Note that it can also traverse the image of xy in the copy with the
vertex set V'. Let vy,...,v, be vertices of V in the order visited by the cycle C where
v; = x and v, = y. Note that some pairs v;v;41 are not edges of the cycle C; such pairs
v;v;41 are further called virtual edges. Let v} be the counterpart of the vertex v; among
the vertices of V',

A vertex v; is said to be vertical if the edge v;v] is contained in the cycle C. We classify
the edges v;v;11 which are not virtual into three types I, II and III: An edge v;v;11 is
of type I, if neither v; nor v;41 is vertical. It is of type II if exactly one of the vertices
v; and v;41 is vertical. And it is of type III, if both vertices v; and v;41 are vertical.
Similarly, the edge v,v; = yx is classified to be one of these three types. Let mp, mir
and myr; be the number of edges of type I, IT and III, respectively, and let nyert be the
number of vertical vertices. Since both ends of an virtual edge must be vertical vertices
and each vertical vertex is an end of a single virtual edge, the number of virtual edges
is Nyert/2 = mir/2 + mu. Since each pair v;v;41,1 <4 < n —1 (and the edge v,vy) is
either a virtual edge or one of the types I, IT and III, we have:

n = (mr/2 + mumr) +mi + mi + mm = mi + 3mi/2 + 2ma - (1)

We now describe the discharging process. At the beginning, each edge v;v;+1,1 < i <

n — 1 which is not virtual receives a charge of 1, 2 or 2 units according to whether it is

of type I, II or III, respectively. The edge v,v1 = yx does not receive any charge. Now

the charge will be reassigned from edges v;v;41 to edges incident with vertices v; and v,

using the following rules (no charge will be reassigned to the edge v,v; = yz). If a target

edge vyv; or v,v; described in one of the following rules does not exist, the rule does not

apply.

Rule R1: An edge vjv; receives a charge of 1 unit from the edge v;_jv; if the edge
v;—1v; is not virtual.

Rule R2: An edge viv; receives a charge of 1 unit from the edge v;v;41, if the edge
v;—1v; 1s virtual.

Rule R3: An edge v,v; receives a charge of 1 unit from the edge v;v;11 if the edge
V;V;+1 18 not virtual.

Rule R4: An edge v,v; receives a charge of 1 unit from the edge v;_jv; if the edge
V; V41 18 virtual.

Observe that if the edge v;_jv; is virtual, then the edge v;v;41 is not virtual. Similarly,
if the edge v;v;41 is virtual, then the edge v;_1v; is not virtual. Thus, each edge viv;
and vyv;, 2 < i < n — 1, receives charge of exactly 1 unit since exactly one of the rules
apply to it. Note that the edges v1v2 and v,v,—1 (if they exist) receive some charge from
themselves by Rules R1 and R3.

We now show each edge v;v;11 sends out at most the amount of charge that it was
initially assigned. Assume the opposite and fix an edge v;v;41 which sends more. Three
cases need to be considered according to the type of the edge v;v;1:

The edge v;v;+1 is of type I: The initial charge of v;v;41 is one. Since neither v; nor
v;41 is vertical, the edge v;v;41 can send out some charge only using the Rules R1
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and R3. Thus, if v;v;4+1 sends out more than the initial amount of charge, there
must exist both the edges v1v;11 and v,v;. Consider now the cycle C’ obtained
from C by replacing edges v,v1 and v;v; 41 with edges viv;41 and v, v;, respectively.
The cycle C’ is a Hamilton cycle in the prism of G + xy which uses fewer copies of
xy than C—contradiction.

The edge v;v;+;1 is of type II: The initial charge of v;v;41 is two. Since exactly one
of v; and wv;y1 is vertical, at most one of the Rules R2 and R4 can be applied.
Thus, if v;v;41 sends out more than the initial amount of charge, both the Rules
R1 and R3 apply and there exist both edges v1v;11 and v,v;. Similarly as in the
previous case, the cycle C’ obtained from C by replacing edges v,v; and v;v;11
with edges viv;41 and v,v; is a Hamilton cycle which uses less copies of zy than
C—contradiction.

The edge v;v;+1 is of type III: The initial charge of v;v;41 is two. If v;u;41 sends
out more than the initial amount of charge, there must be at least three of the
edges v1v;, V1Vi4+1, Vpv; and v,v; 1 present in the graph. Hence, there is definitely
the pair of edges v1v;41 and v,v; or the pair of edges viv; and v,v;11. In the
former case, it is possible to obtain Hamilton cycle C’ in the prism of G + xy which
uses less copies of xy similarly as in the two previous cases. Let us now analyze
the latter case. Since v;v;41 is of type III, the path ’U;’Ui'UiJ,_l'Ug_,’_l is contained in
the cycle C. Consider now the cycle C” obtained from C by replacing the path
Vjvivi4+1V;,, by the edge vjvj, ; and the edge v,v1 by the path v,vi41vv1. Again,
C" is a Hamilton cycle in the prism of G + xy which uses less copies of zy than
C——contradiction.

The initial charge of all the edges v;v;41 is at most my + 2my1 + 2myr — 1; the one is
subtracted because the (non-virtual) edge v,v1 has zero initial charge. Note that if v, v1
is of type II or III, it is possible to subtract two instead of one. A simple calculation
(depending on the type of the edge v,v1) using (1) yields that the initial charge is at
most 4(n — 1)/3. Indeed, if v,v; is of type I, then

mi + 2myr + 2m — 1 < 4/3~ (mI +3mH/2 + 2m111) — m1/37 1< 471/37 4/3 .
If v,v1 is of type II or III, we have:
m1 + 2my + 2mp — 2 < 4/3- (mI +3m11/2+ 2m) — 2 = 4n/3 —2.

Since each edge viv; and v,v; (including the edges vivs and v,—1v,) received charge of
exactly one unit, we have that degq(v1) + dege(vy) < 4(n —1)/3. This contradicts the
assumption that degq(z) + degys(y) = degg(v1) + dege(vn) > 4n/3 — 1 and thus the
prism of G is hamiltonian. n

Note that the initial charge in the proof of Theorem 1 can be equal to 4(n —1)/3 only
if the edge v,v; is of type I and all the other non-virtual edges are of type II. Using this,
we can further improve the bound of Theorem 1:
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Theorem 2. Let G be a graph of order n. Then, G has a hamiltonian prism if and
only if Cly,/3_4/3(G) has a hamiltonian prism.

Proof. Let us keep the notation of Theorem 1. It is enough to show that the equality
degq(z)+degs(y) = degy(v1)+degy (v,) = 4(n—1)/3 cannot hold under the assumption
that G does not have a hamiltonian prism. Let us again have a look at the analysis of the
discharging process. The initial charge is 4(n — 1)/3 only if neither v; nor v, is vertical
and all the non-virtual edges v;v;4+1, 1 < i < n — 1, are of type II. Thus, the vertices
UV, U3, Vs, Ug, Us, V9, - - s Un—5, Up—4, Un—2, Up—1 are vertical. In addition, each edge v;v; 1
must send out charge of 2 units.

Let now B denote the set of vertices in V' which are vertical and let A =V \ B. Let
A’ and B’ be the counterparts of vertices in A and B in V', respectively. Note that
v1, v, € A by the assumption. Since all the non-virtual edges v;v;41 are of type II, each
vertex v; in A except for v; and v, has its two neighbors in the cycle C among the
vertices of B. Also, the vertices v; and v,, have a single neighbor from B in the cycle C.
Thus C[A4] is a graph consisting of a single edge vyv,, and ”T_‘l isolated vertices. An easy
degree counting argument yields that C'[A’] also contains at least one edge. Let v} and
v} be the end vertices of an edge of C[A] and assume w.l.o.g. that the path of the cycle
C' from vy to vy, visits first v and then v;-.

Since the edge v1v2 sends out 2 units of charge, both edges viv2 and v, v are present
in the graph. Similarly, there are also edges viv,—1 and v,v,—1. We now distinguish
several cases according to the mutual position of edges v,v; and U;’U; on the cycle C:
i=1and j =n: The cycle C' which is obtained from the cycle C by replacing the

edge ’ugvé- = v}, and the path v,_jv,v1v2 with the paths vjv1v,—1 and v} v,v2,
respectively, is a Hamilton cycle in the prism of G.

t=mn and j = 1: Consider the cycle C’ obtained from C' by removing the edges v,v;
and vjv; = v, vy and adding the edges v1v] and v,v;, instead. The cycle C” is a
Hamilton cycle in the prism of G—contradiction.

i =1 and j # n: By our assumption, both the edges v;_;v; and v;v;41 are of type II
and they send out charge of 2 units each. Since the cycle C' uses the least number
of copies of the edge xy, there are not both edges viv; and v,v;_1 present in G.
Then, G must contain an edge vi1v;_1 (otherwise, the edge vj_1v; could send out
only one unit of charge). A symmetric argument yields the existence of an edge
UpVj4+1. In the cases which follow, similar reasons are needed to show existence of
some edges in GG, but we present them in less detail for the sake of brevity.

Remove now the edges vgv; = v’lfug and vj_1v; and the path v,v1v2 from the cycle
C. Let P be the set of the resulting three paths obtained in this way. Now, there
are two possibilities: Either the path from v; to v, in the cycle C first traverses the
edge vjv; = v1v} and then the edge v;_1v;, or vice versa. In both cases, the paths
in P together with edges v,v2 and ’U;-Uj and the path U’lvlvj_l form a Hamilton
cycle C’ in the prism of G+xy that uses less copies of zy (Figure 1)—contradiction.
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Un U1 Un U1 Un U1

the cycle C' the paths P the cycle C’

FIGURE 1. The construction of a Hamilton cycle in the proof of Theorem 2. The case i = 1 and j # n.

i =n and j # 1: Since both the edges v;_1v; and v;v;41 are of type II, they both send
out charge of 2 units each and the cycle C' uses the least number of copies of the
edge zy, there are also edges v1v;—1 and v,v;+1. Remove now the edges vjv; = v, v}
and v;_1v; and the path v,_iv,v1v2 from the cycle C. Let P be the set of the
resulting three paths obtained in this way. Now, two cases need to be considered:
Either the path from vy to v, in the cycle C first traverses the edge vjv; = v, v}
and then the edge v;_iv;, or vice versa. In the first case, the paths in P together
with the edge vjv;- and the paths v;_1vive and v,—1v,v), form a Hamilton cycle
C’ in the prism of G + xy that uses less copies of xy. In the other case, the paths
in P together with the edge vgvj and the paths v;_jviv,—1 and vl vpve form a
Hamilton cycle C” in the prism of G + zy that again uses less copies of xy. Consult
also Figure 2. In both cases, this contradicts the choice of C.

j=1and i # n: This case is symmetric to the case i =n and j # 1.

j=mn and i # 1: This case is symmetric to the case i = 1 and j # n.

i, ¢ {1,n}: Since all the edges v;—1v;, v;Vi41, vj—1v; and v;v;41 are of type II, each
of them sends out charge of 2 units and since the cycle C' uses the least number of
copies of the edge xy, there must also be edges v1v;—1, V1vj—1, Vpvit1 and vV 4.
Now, remove the path v,_1v,v1v2 and the edges v;v;41, vj—1v; and U;’U; from the
cycle C' and add the edges v1vj_1, UpViy1, v;v; and ’Ujvé- instead. This operation

yields two paths in the prism whose end vertices are vy, ve, v,—1 and v,, (Figure 4)

for five out of six possible mutual positions of edges v;v;41, vj—1v; and vgvé- in the
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Un, U1

Uj

the cycle C the paths P the cycle C’

FIGURE 2. The construction of a Hamilton cycle in the proof of Theorem 2. The case i = n and j # 1.

Un, U1 Un, U1 Un, U1
Un—1 Vg Un—1 ® ® 09 Un—1 Vg
] . ° f ]
Vi g Vi v é oV U a 6 Uj
R e e . A
Vi1 . qp_o Vj+1 Vi-1 g o Ui+l Vj—1 ™. U1
! / ! / / /
v; v v v v )
the cycle C' ... with edges removed the cycle C’

FIGURE 3. The exceptional configuration in construction of a Hamilton cycle in the proof of Theorem 2
in the case i,j € {1,n}.

cycle C' on the path from v to v,. The exceptional configuration of the edges is
the following: The cycle C first traverses the edge v;_1v;, then the edge vgv; and
then the edge v;v;+1. In the exceptional case, one can obtain a Hamilton cycle
C’ in the prism of G + xy as follows: Remove the path v,_jv,v1v2 and edges
v;i—1vi, v;vj41 and vjv; from C and add the edges v;v; and v;v} and the paths
V;i—101Up—1 and vavpvjq1 (Figure 3). The cycle C’ uses less copies of zy than C
does, a contradiction.
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Let us return to the general case. Since all four edges viv2, v1v,_1, Vv and

UnpU,—1 are present in G, the resulting two paths may be joined to a Hamilton

cycle C” of the prism of G + zy in the general case. This cycle again uses less

copies of zy as C' does—contradiction.

[ |

We strongly believe that the bound on the degree sum in Theorem 2 can be further

improved by a case analysis similar to that in the proof. However, the number of cases
needed to consider grows quite fast and hence we decided not to follow this direction.

3. A LOWER BOUND

In this section, we show that the statement of Theorem 2 cannot be asymptotically
improved:

Proposition 1. For each k£ > 2, there is a graph G of order n = 3k + 4 such that the
prism of GG does not have a Hamilton cycle but the prism of Cly, /3_16/3(G) does.

Proof. Fix an integer kK > 2 and consider a complete bipartite graph Ky 2. Let 2
and y be two vertices of its larger part. Identify now the vertices x and y with their
counterparts in the gadget from Figure 5. Let G be the resulting graph of order 3k + 4.
The graph G for k = 3 is depicted in Figure 6. We show that G does not have a
hamiltonian prism but Cly,/3-16/3(G) does.

Assume for the sake of contradiction that the prism of G has a Hamilton cycle C. Let
A and B be the vertices of the smaller and the larger part of the bipartite graph Ky, o,
respectively. Note that AU B does not contain the additional four vertices of the gadget.

We now count the number of A-B edges in each copy of G in the prism that belong
to the cycle C. Since each vertex of A is isolated in G[A], there is either one or two
such edges incident with it in each copy of G. Hence, the numbers of A-B edges in both
the copies of G are equal. On the other hand, each vertex of B except for z and y is
also isolated in G[B] and the cycle C' can traverse the gadget only in one of the two
(symmetric) ways depicted in Figure 7. Thus, the number of A-B edges in the copies
of G must differ by two. This contradicts the previously established fact that they are
equal. Hence, the prism of G is indeed non-hamiltonian.

Let now vq,...,v; be the vertices of A and wy,...,ws the vertices of B. We can
assume that wor—1 = = and wyr, = y. Observe that degqo(vi—1) + degg(vi) = 4k =
4n/3 — 16/3. Hence, G + vg_1vp € Cly,/3-16/3(G). We construct a Hamilton cycle
in the prism of G + vg_jvx. Clearly, this also establishes that Cly, 3_16/3(G) has a
hamiltonian prism. Let v} be the counterpart of v; in the other copy of G' and similarly
w} the counterpart of w;. Consider now the following path P pasted from the segments
VjWai—1Wh; 1 Ujwh;wovi41 for 1 <4 < k —1. P visits each of the vertices v;, v}, w; and
wj exactly once except for the vertices v}, wag—1, wh_, war and wj,. Replace now in P
the segment wh, _vj._ wh, o by wh, v viwh, o and extend this new path by adding
the edges wop_1v1 and worvg. Let P’ be the resulting path. Observe that P’ contains
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vn—l/’——\ V2 Up—1 @ @ Vo

] . Y

Ui+1:& J vl Vit1é o v
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Ui Uj-1 Ui Vj-1 Vi Vj-1
Un U1 Un U1
VU V—\ Vo Un—1 ® ® v
) » .
‘: x . I
vj J v, Ui e ¢ v
v g v e
=1 ek Vj -1 & Uj
Vit1 Y Vi+1 U;
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J . o
Vi ¢ V; Vj @ 6 U
K e K
Uj—1""qgq__o" Vit1 Vj—1"q o Vitl
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Vi ag—ea U v e e Ui
Vit+1l V; Vit1 Uy
Un, U1 Un, U1

Un—1 () Un—1 ® ® v
, . .
v $u o e e
g x J 7 j [
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! .
V) ap_et Vitl V) e e Vitl
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the cycle C' ... with edges removed  the final 2 paths

FIGURE 4. The construction of a Hamilton cycle in the proof of Theorem 2. The general case
i, ¢ {1,n}.
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€T Y

FIGURE 5. The gadget from the proof of Proposition 1.

FIGURE 6. The graph G from the proof of Proposition 1 constructed for k = 3.

FIGURE 7. The only two possibilities how a Hamilton cycle in the prism can traverse the prism of the
gadget of Figure 5.

all vertices of the prism of Ky o + vk—1vk, except vertices wj, ; and wh,. In addition,
the end vertices of P’ are wor_1 = x and wo,, = y. Hence P’ may be extended by one of
the paths depicted in Figure 7 to a Hamilton cycle in the prism of G + vi_1vg. B
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